
UML

Class Diagrams

Class Diagram

■ Classes consist of

 the class name

 written in BOLD

 “features”

 attributes and methods

 user-defined constraints

■ Note that class diagrams
contain only classes, not
objects.

Class Example

■ Here is a concrete
example of a class called
Point, which depicts a 2D
point.

■ There are no constraints
(yet...)

■ A class name is written in
UpperCamelCase

Visibility

■ A set of prefixes for attributes and methods

 + public – visible to instance of any class

 # protected – visible to instances of any subclass

 – private – visible only to instances of the class itself

 ~ package – visible to instance of any class

within enclosing package

■ Visibility is a class feature. It is found only in class
diagrams and is enforced statically (at compile-time).

Visibility

Inheritance

■ In UML, inheritance
syntax: a line with a
hollow arrow.

■ In this case, Cube is a
Rectangle (good design).

Interfaces

■ In UML, interfaces are used to represent

require/provide relationships

Interfaces

■ Interfaces allow specification of
a realization of requires/provide
relation.

■ Interfaces describe a contract
between the class and the
outside world.

■ This contract is enforced at
build time by the compiler.

 all methods defined by that
interface must be implemented by
the class.

■ UML: <<interface>> stereotype

Note: stereotype and profile are

UML's extension mechanisms

Abstract Members

■ Abstract methods (in italic):

no implementation given

can not instantiate

■ Class with at least one
abstract method:

Abstract Class.

■ Inherit from Abstract Class
and implement the abstract
methods.

Templates

■ As we saw with genericity,
Templates are a
mechanism to
“parametrize” the types of
objects in class/method
definitions.

■ In UML, they are defined
with a box in the upper
right corner of the class.

Package

■ A package allows grouping model elements.

■ Can be used for all UML constructs. Most common for
Class Diagrams and Use Case Diagrams.

■ Classes and objects in package have a prefix:

 ClassName::PackageName

 objectName:ClassName::PackageName

■ A package may (hierarchically) contain other packages.

Components

Class Attributes

■ Class Attibutes aka static members (either attributes or
methods) exist at the class level.

■ Only one unique value across all instances of the class.

■ They can be used without instantiating an object.

■ UML syntax: underlined (why?).

Arrows

■ Arrows in UML can have
different meaning.

■ Hollow arrows describe an
inheritance relation.

■ Closed arrows are used to
describe associations.

■ Diamond arrows define
composition relations.

Annotations

■ annotations put over
arrows in class diagrams to
specialize their meaning.

Special Inheritance Relations

■ We can use stereotype relations to better define the type
of inheritance.

■ The three attributes are

 Disjoint or Overlapping

 Complete or Non-complete

 Dynamic or Static

■ These attributes are best understood using set theory.

Dog
Cat

Animal

Animal Example

Vehicle Example

Employee Example

Implementation

■ Employees can get promotion and become managers.

■ Employees can get demoted and become non-managers.

■ How would you implement this change?

Non-Manager to Manager

■ How do we implement the dynamic change of a Non-
Manager becoming a Manager?

■ Option A: Create new object Manager. Copy fields.
Destroy old object Non-Manager.

■ Option B: Flag if Manager or not. So we only need an
object employee and it contains all the attributes for Non-
Manager and Manager.

Association

■ Associations describe which/how classes interact which
each other.

 You can give an association a name (always a noun)

 A full black arrow next to a name indicates the direction the
diagram can be read.

 You can put roles at the end of connectors.

 You can also put numbers to indicate cardinality.

Cardinality of Associations

■ One-to-one

■ Many-to-one or One-to-many

■ Many-to-many

Employee Example

Association Class

■ Used to represent associations which contain information.

Navigation

■ Person object has a reference to dog object(s).

■ Dog object has a reference to person object.

■ Both objects have references to each other.

■ This relates to performance (at the cost of space).

Association, in whole or in part

Two special types of associations exists:

■ Composition

■ Aggregation

Which is which?

Scenario 1

■ You can find books in a
bookcase.

Scenario 2

■ You can find shelves in a
bookcase.

Aggregation

■ Aggregate (whole) object can exist without aggregands
(parts).

■ Objects may be part of multiple aggregates.

■ Often, components are of the same type.

■ Shared

Composition

■ A composite object does not exist without its components.

 If we delete a composite object, we could use cascading-delete
to remove it and its components.

■ Often, components are of different types

■ Each component is a part of a single composite.

