UML

Class Diagrams

' Class Diagram

a Classes consist of ClassName
Attributes
+ the class name
> written in BOLD Methods
+ “features”

_ User-defined constraints
> attributes and methods (invariants)

+ user-defined constraints

» Note that class diagrams Cfnsgai”tsjt:“ﬂy
contain only classes, not ﬁ;t‘; € written as
objects.

Class Example

y

= Here is a concrete 2DPoint
example of a class called int
Point, which depicts a 2D j.
oint. y:int
P getx():int {return x}
= There are no constraints setx(a:int):void {x = a}
(yet...) gety():int {return y}

s A class name iIs written in
UpperCamelCase

y

' Visibility

= A set of prefixes for attributes and methods

+ + public — visible to instance of any class

+ # protected — visible to instances of any subclass

+ — private — visible only to instances of the class itself
« ~ package — visible to instance of any class

within enclosing package

= Visibility is a class feature. It is found only in class
diagrams and Is enforced statically (at compile-time).

y

Visibility

-a: 1nt
#b: 1int
+m(pl:int,p2:1int): 1int

A

d:D
D .
7 ..g':.; —————— <_<u\S_taﬂCEl>>_ - = 3=10
+d: int = 0 . o
+n(p:Boolean): void e

y

s In UML, Inheritance
syntax: a line with a
nollow arrow.

= In this case, Cube is a
Rectangle (good design).

Inheritance

Rectangle

- width: int
- height: int

+ Rectangle(width: int, height: int)

+ getWidth(): int
+ getHeight(): int

JA\

Cube

Cube(int size)

y

Interfaces

= In UML, Interfaces are used to represent
require/provide relationships

DataAccess 3]
o, Facilitics
Facilities
= 70— Encryption
> o+ 2]
8 Security
Seminar g] = g Access Control | <<infrastructure=>
DataAccess p-
Management § e O— Student 0
<<|]>> N o ~—Stude
N :
\ s
v Pt < gl
g] DataAce Seminar Persistence
Student . Persistence | <<infrastructure>>
Administration jpe= — — Semgo—' — © \
<<|>> \ I \
<<oompongnt>> | \
DalaAcce&o_ <<requires>>
Schedule
Schedule |
e 2] |

University DB
<<database>> JOBC

Interfaces

y

» Interfaces allow specification of

a realization of requires/provide nieriace
relation. , E E
getWidth(): int
n Interfaces describe a contract getHeight(): int
between the class and the /T\
outside world. |
s [his contract Is enforced at Rectangle
build time by the compiller. width: int
height: int

o al mfem(’ds deft')”e.d b?’ that 1| Rectangle(width: int, height: int)
Interrace must be Imp emente) getWIdth() int

the class. getHeight(): int

x» UML: <<interface>> stereotype
Note: stereotype and profile are
UML's extension mechanisms

' Abstract Members

s Abstract methods (in italic):

: : : Vehicle

no implementation given
. _ _ wheels: Wheel[4]
can not instantiate body: CarBody
= Class with at least one position: Position
abstract method: move(float distance): void
Abstract Class. f“"””’*'”?.f am?unt) -V oid
getPosition(): Position

s Inherit from Abstract Class
and implement the abstract
methods.

y

' Templates

= As we saw with genericity, ———
Templates are a 0:Object
mechanism to —List
“parametrize” the types of ~ peontent: List<0>

: : add(element: O): void
ObJeCtS In class/method remove(element: O): void

definitions. isContained(element: O): boolean

= In UML, they are defined
with a box in the upper
right corner of the class.

y

4

Package

s A package allows grouping model elements.

s Can be used for all UML constructs. Most common for
Class Diagrams and Use Case Diagrams.

s Classes and objects in package have a prefix:

+ ClassName::PackageName

+ oObjectName:ClassName::PackageName

s A package may (hierarchically) contain other packages.

FackageMame

ClassMame :FackageMName

ol:Classhame: FPackageMName

Attributes

Attributes

Methods

Methods

User defined constraints
(invariants)

User defined constraints
(invariants)

y

~
Seminar 3] ~
Management % .
<<= \\ —_
~N

Student g:'

Administration
i

DataAccess

T

Facilities

i

g

Facilities

Components

O

g

Student

g

Seminar

Schedule
O—

<<oomponent>>

Schedule

2]

University DB
<<database>>

\

Encryption
o I]
Security
Access Control | <<infrastructure>>
O
Persistence
Persistence | <<infrastructure>>
© \
\
\
<<requires>>
\

JDBC

y

Class Attributes

Class Attibutes aka static members (either attributes or

methods) exist at the class level.

Only one unique value across all instances of the class.

They can be used without instantiating an object.

UML syntax: underlined (why?).

VideoUltils

y

' Arrows

Inheritance
<]
s Arrows in UML can have
different meaning. <] — mplements _ _ _
s Hollow arrows describe an (interface)
Inheritance relation. Association

s Closed arrows are used to
describe associations.

~ Aggregation
a Diamond arrows define

composition relations.

P Composite

' Annotations

< {dynamic}

= annotations put over
arrows in class diagrams to C o
specialize their meaning. & {complete, disjoint}

y

' Special Inheritance Relations

s We can use stereotype relations to better define the type
of inheritance.

= [he three attributes are
+ Disjoint or Overlapping
+ Complete or Non-complete

+ Dynamic or Static

= [hese attributes are best understood using set theory.

Animal

y

Animal Example

Animal

{cﬁerlapping, complete}

Carnivore

L

Herbivore

JAY

Ominivore

y

Vehicle Example

Vehicule
«abstract»

JAN

{disjoint, complete}

ExternalPower

power location

InternalPower

y

Employee Example

Employee
«abstract»

Manager

Non-Manager

{ﬁj‘tint, complete,dynamic}

y

' Implementation

s Employees can get promotion and become managers.
s Employees can get demoted and become non-managers.
= How would you implement this change?

y

Non-Manager to Manager

y

= How do we implement the dynamic change of a Non-
Manager becoming a Manager?

x Option A: Create new object Manager. Copy fields.
Destroy old object Non-Manager.

= Option B: Flag if Manager or not. So we only need an
object employee and it contains all the attributes for Non-

Manager and Manager.

' Association

s Assoclations describe which/how classes interact which
each other.

+ YOU can give an association a name (always a noun)

> A full black arrow next to a name indicates the direction the
diagram can be read.

+ You can put roles at the end of connectors.

+ You can also put numbers to indicate cardinality.

y

' Cardinality of Associations

s One-to-one
s Many-to-one or One-to-many
x Many-to-many

' Employee Example

friendship »

employement

Person 0_* 02 Company

primary_rgsident_inp

Province

' Association Class

s Used to represent associations which contain information.

dog ownership<
owned 0..n

Dog Owner

owner 1

DogOwnership

+getBuyDate()
+setBuyDate()

y

Navigation

Person object has a reference to dog object(s).

Dog

ownership

owned * owner 1

Person

Dog object has a reference to person object.

Dog

ownership

owned * owner

Person

Both objects have references to each other.

Dog

ownership

This relates to performance (at the cost of space).

owned * owner

Person

y

' Association, in whole or in part

Two special types of associations exists:

i
.

= Composition .

= Aggregation

' Which is which?

Scenario 1 Scenario 2
s You can find books in a s You can find shelves in a
bookcase. bookcase.

y

' Aggregation

s Aggregate (whole) object can exist without aggregands
(parts).

s Objects may be part of multiple aggregates.
s Often, components are of the same type.

s Shared
Menultem I
| 1

Item | ComboMenu |

y

' Composition

s A composite object does not exist without its components.

+ If we delete a composite object, we could use cascading-delete
to remove it and its components.

a Often, components are of different types
s Each component is a part of a single composite.

Table Vase I
1

Legs

Person | siton
1

K

BackRest |

