
UML

Object-Interaction Diagrams:
Sequence Diagrams

Communication and Time

■ In communication diagrams, ordering of messages is
achieved by labelling them with sequence numbers

■ This does not make temporal ordering easy to follow.

Sequence Diagrams

■ Sequence diagrams
make temporal
ordering explicit.

■ However, they do not
contain explicit link
information (so the
correspondence with
the class diagram is not
as explicit as with
communication
diagrams).

A closer look

Components of Sequence Diagrams

■ Vertical axis: time, increasing downwards.

■ Objects that exchange messages in a behaviour trace
are shown on the horizontal axis, at the top.

■ With every object is a vertical dashed line, which depicts
an object's lifeline.

■ Over the object's active lifetime, the lifeline is a rectangle,
which depicts when an object is active (i.e., has control).

 The rectangle's size is proportional to how long the object is active.

 Explicit time unit may be added.

 Arrows depict messages from a sender object to a target
object and the message is written along the arrow.

Types of Fragments

■ Alt: Alternative fragment for conditional
logic expressed in the guards.

■ Loop: Loop fragment while guard is
true.

■ Break: If guard is true, execute this
fragment and jump to end of parent
fragment.

■ Opt: Optional fragment that executes if
guard is true.

■ Par: Parallel fragments that execute in
parallel.

■ Critical: Critical region within which only
one thread of control active at a time.
No concurrent region (e.g.: par) may
execute at the same time.

■ Ref: Reference to another diagram.

■ Assert: This behaviour is the only valid
at that point.

■ Seq: Weak sequencing of messages;
no order of reception.

Synchronous vs. Asynchronous

■ If you order a piece of equipment, and the salesman
goes in the back of the store to get it, do you wait for the
piece of equipment?

■ If you order a piece of equipment, and the salesman tells
you it is backordered, and will arrive next week, do you
wait for the piece of equipment?

Synchronous Messages

■ The sender object waits until target object finishes its
proccessing of the message.

■ Target object processes only one message at a time.

■ Consequently, this behavior represents a single thread of
control.

 only one object is active at any time

Asynchronous Messages

■ Sender object does not wait until target object finishes its
processing of the message (execution of the called
method).

■ Target object may accept many messages at a time.

■ Consequently, this behavior requires multiple threads of
control.

 many objects can be active at any time

 this is also known as concurrency

Depicting Asynchronous Messages

■ Instead of using a filled arrowhead, we use an open
arrowhead (in both communication and sequence
diagrams).

■ In sequence diagrams

 we may have two objects active at the same time (box).

 The sender object remains active after sending a message. The
target object becomes active as well.

■ If the target object can accept multiple messages, how
does it handle them?

Concurrency

■ If target object's method implements threading,

 It can thread itself to handle messages.

 This is called operation level concurrency.

■ If target object itself implements threading,

 It can thread itself to handle messages.

 This is called object level concurrency.

■ If objects don't implement any threading but the system is concurrent,
objects must implement some way of handling messages:
system level concurrency.

 Refuse message(s) if busy

 Interrupt current executing message and start on new message

 Queue message(s) for later processing (can be priority queue)

Message Priorities

■ One way to deal with asynchronous messages is to
queue them.

■ That way, only one of them is processed at a time.

■ But what happens if one message is more important than
others.

■ You can use priority levels to determine the order
messages are processed.

■ What are the dangers of this?

Callback Mechanism

■ Uses asynchronous messages.

■ A subscriber object o1 is interested in an event e that
occurs in o2.

■ o1 registers interest in e by sending a message (that
contains a reference to itself) to o2 and continues its
execution.

■ When e occurs, o2 will callback asynchronously to o1
(and any other subscribers).

Callback (but not to self) illustrated

Object creation/destruction

■ Sequence diagrams use

 A special method sent to the object
(not its lifeline) to denote object
creation.

 an X to symbolize the end-of-life of
an object.

■ In garbage-collected
languages, nothing needs to be
done.

■ However, in other languages,
such as C++, the memory must
be freed.

Broadcast

■ Similar to iterative messaging, broadcast allows you to
send a message to multiple objects.

■ However, contrary to iterative messaging, no references
are required.

■ A broadcast is sent to all the objects in the system.

■ If only a specific category of objects is targeted, we call
this narrowcast.

