Design Patterns

Command Pattern

Hans Vangheluwe and Alexandre Denault

Ly
—_
=

b0 &0 [,

[«

=

L aw

MNew
CpEm, .. Chrl+O

Recent Docurnents
Wizards

Close

Save Chel+5
Save As...

Save all

Relnad

Versions. ..

Export...
Export as POF...
Send

Properties...
Digital Signatures. ..

Templates

Brink. .. Ckel+P

Printer Settings...

Exit Chrl+C

]

k

'jP

Iﬂ' i

& & | m

<
% [

a3

Undo: Move Bitmap Chrl+2
Zuk Chel+¥
Copy Chrl+C
Paste Chel+Y

Paste Special,., Crrl+Shifk+y

Select Al Chel+A
Find & Replace. .. Ckrl+F
Mavigakar Ckrl+Shift+FS
Cuplicate, .. Shift+F3
Painks Fa
Glue Poinks

Delete Slide

Plug-in

ImageMap

Eal

Slide
Duplicate Slide

Summary Slide
Page Mumber. ..
Date and Time. ..
Fields

Farmatking Mark,
Hyperlink,

Animated Image. ..

Picture

Mavie and Saund
Ohiject
Spreadshest
Chart...

Flaaking Frame

Eile. ..

Eum@ 47 i

Example

Character. ..
Paragraph...
Bullets and Mumbering. ..

Page...

Change Case r

Line. ..
Area...,

Texk...

Slide Design. ..
Slide Layout, .,
Skyles and Formatking F11

Graup [

F@

Spellcheck. ..

Language
AutaCorrect, .,

Gallery
Evedropper
Media Playver

Macros

F7

Extension Manager...
®ML Filker Setkings. ..

Cuskomize, ..

Options...

' Problem

User interface toolkit/widget library includes buttons and
menus that carry out a request corresponding to user input.

The buttons and menus (from the library) can't explicitly
Implement the action, because only an application knows
what should be done on which object.

GUIs only provide a button construct. It has no behavior.
It's up to the programmer to give the button a behavior.

How do we encapsulate behavior?

y

' Command Pattern

Encapsulate requests/methods as OBJECTS!
“objectifying” a design Is very common in design patterns

y

' Motivation

Separates an operation from the object that executes it.
Before: method is integral part of class.

With the Command Pattern, it is possible to parametrize an
object with an operation.

Support undo/redo

Possible to execute the request at a different time and/or at
a different location.

How?
By passing the command object to another process.

y

Participants

Invaker K2 = Command
+execuie()
\
Feceiver = ConcreteCammand
+action|) +EXECUtE() {recever.action()}

y

' Why?

Each item in the menu is conceptually the same object.

The only difference is with the action that is taken when
pressed.

Solution:
parametrize the menu item object

with a command object.

y

Class Diagram of Example

Application
+add(doc: Document)

<> ﬁ
Menu <] Menultem
+add(item: Menultem) command: Command = Command
+Clicked() {command. execute()} +execute()
+unexecute()
Document

IEE?;% < FasteCommand

+oUt() -document Document

+COpy() +execute() {document paste()}

+paste() +Unexecute()

Collaborations

' Implementation

How “intelligent” should a command be?
Just call receiver's action (cfr. Adapter pattern)
Implement all functionality directly in execute()

' Supporting Undo/Redo

Since a command is an object,
It can hold state (memory).

A command object could store the information required to
undo itself.
The receiver
The arguments to the operation performed on the receiver
The original (changed) values in the receiver or
ability to apply inverse operation

More than one level of undo/redo: use a history list.

y

' Supporting Undo/Redo

Each command should know how to undo and redo itself
(one level) by providing an unexecute() method.

A command manager holds the history list of commands:
[commandA; commandB; commandC; :::]

Moving backward: undoing commands

Moving forward: redoing commands

Let's go over an example...

y

' DSheet

DSheet <observing subject 1> 0.85 SR=Rik
File Edit I
D1 03:14
A B C D E F ¢ F_}'
; = HashTable:
3
: 100 "A]_" CE"(“A]_", lr=5+c4n)
5 oL n n m ll_ 11
7 450 B7 Cell("B7", "=45")
8
g llc4ll Ce"(nc4u’ lr= 10")
10
]
12
13
14
15
16 /
| [=

y

' SetCells Command

The SetCells command, acting on the CellTable (a
HashTable) is used to support undo/redo

The history list is stored directly in the SetCells command.
(SetCells Command is a Singleton)

Each time a set of cells is modified, the difference between
the previous state and the next state is added on the history
stack.

SetCells .
recelver

-stack
CellTable
+execute(set0fCells) > i | |

+unexecute() |

+reexecute() I

' Example (cont.)

DSheet <observing subject 1> 0.85
File Edit ’
D1 03:14
A B C D E F ¢ [N

1 150
z |
3 History: |
4 100
5 —>|[[Cell"B7", "), Cell("B7", "=45")]]
&
7 450 " nonn n non "
- [[Cell"A1", ™), Cell("A1", "=5+C4")]]
190 [[Cell("C4", "), Cell("C4", "=10")]]
11
12
13
14
135
16 £

il | .

y

' Undo

DSheet <observing subject 1> 0.85

File Edit |
G7 a7:22
A B C D E F ¢ [X
1 150 |
| |
: =
; 100 ~ History:
3
? : :Cell("B7", llll)’ CEIl("B7", II=45")]]
: |
5 | — :CE"("A].“, ""), CE"("A].“, "=5+C4")]]
10
E | [Cell("C4", ™), Cell("C4", "=10")]]
13
14
15
16 -
N | —

y

Undo/Redo

Beware of hystersis (errors accumulating)!

y

' Consequences

Decoupling of the command and the invoker.

Requests can be issued without knowing about:

Operation
Receiver

Commands are first-class objects. They can be manipulated
(saved, duplicated, passed around, ...)

like any other object.
You can assemble commands into composite commands.
Adding new commands is easy and does not require the

modification of existing code.

' Hierarchy in Commands (Macro)

Command
texecutef)
+unexecute() *
A
CommandA MacroCommand [<K>——
+execuiE() +execuiz()
Hunexecute() Hunexecute()

' How else can it be used?

®BTransactional Behavior

mAction Queuing / Progress Monitoring (bar)
m\Macro Recording

mNetworking / Distributed Actions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

