
Command Pattern

Design Patterns

Hans Vangheluwe and Alexandre Denault

Example

Problem

User interface toolkit/widget library includes buttons and
menus that carry out a request corresponding to user input.
The buttons and menus (from the library) can't explicitly
implement the action, because only an application knows
what should be done on which object.
GUIs only provide a button construct. It has no behavior.

It's up to the programmer to give the button a behavior.

How do we encapsulate behavior?

Command Pattern

Encapsulate requests/methods as OBJECTS!
“objectifying” a design is very common in design patterns

Motivation

Separates an operation from the object that executes it.
 Before: method is integral part of class.

With the Command Pattern, it is possible to parametrize an
object with an operation.
Support undo/redo
Possible to execute the request at a different time and/or at
a different location.
 How?
 By passing the command object to another process.

Participants

Why?

Each item in the menu is conceptually the same object.
The only difference is with the action that is taken when
pressed.
Solution:
 parametrize the menu item object
 with a command object.

Class Diagram of Example

Collaborations

Implementation

How “intelligent” should a command be?
Just call receiver's action (cfr. Adapter pattern)

Implement all functionality directly in execute()

Supporting Undo/Redo

Since a command is an object,
 it can hold state (memory).

A command object could store the information required to
undo itself.
The receiver

The arguments to the operation performed on the receiver

The original (changed) values in the receiver or

 ability to apply inverse operation

More than one level of undo/redo: use a history list.

Supporting Undo/Redo

Each command should know how to undo and redo itself
(one level) by providing an unexecute() method.
A command manager holds the history list of commands:
[commandA; commandB; commandC; :::]

Moving backward: undoing commands

Moving forward: redoing commands

Let's go over an example...

DSheet

SetCells Command

The SetCells command, acting on the CellTable (a
HashTable) is used to support undo/redo
The history list is stored directly in the SetCells command.
(SetCells Command is a Singleton)
Each time a set of cells is modified, the difference between
the previous state and the next state is added on the history
stack.

Example (cont.)

Undo

Undo/Redo

Beware of hystersis (errors accumulating)!

Consequences

Decoupling of the command and the invoker.
 Requests can be issued without knowing about:

Operation

Receiver

Commands are first-class objects. They can be manipulated
(saved, duplicated, passed around, ...)
like any other object.
You can assemble commands into composite commands.
Adding new commands is easy and does not require the
modification of existing code.

Hierarchy in Commands (Macro)

How else can it be used?

■Transactional Behavior
■Action Queuing / Progress Monitoring (bar)
■Macro Recording
■Networking / Distributed Actions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

