Object-Oriented Software Design (COMP 304)

Object-Oriented Software Design
and Software Processes

Hans Vangheluwe

B McGill

Modelling, Simulation and Design Lab (MSDL)
School of Computer Science, McGill University, Montréal, Canada

Hans Vangheluwe hv@cs.mcgill.ca

Overview

1. (Software) Process: definition
2. Various Software Processes

3. The Process Influences Productivity:
Dynamic Process Modelling using Forrester System Dynamics

Hans Vangheluwe hv@cs.mcgill.ca

Process: A Queueing System

o AT —

Departure
Arrival Queue Cashi er
Physical View
—_—
< } Departure
Arrival Queue Cashi er
[1 AT distribution] [ST distribution]

Abstract View

Hans Vangheluwe hv@cs.mcgill.ca

Event/Activity /Process

Cust2 Process

A

Cust2 Activity

Cust2 Activity

\/

A

|
Custl Prt‘IJcess

queue

A J
A

\ 4

|
Custl Adtivity

pay cashier
|

\4

pay cashier

Y

Hans Vangheluwe

Custl IArrival

Custl Start Ipay cashier
|

i

Cust2 Airrival
Cust2 Start Queueing
|

T

Custl End pay cashier
CustljLeave
|
Cust2 End Queueing
Cust2 Start pay cashier
|
|

T

Cust2 End Pay cashier
Cust2'Leave
|

!

Event

hv@cs.mcgill.ca

v

Software Processes

“The Software Engineering process is the total set of Software

Engineering activities needed to transform requirements into

software” .

Watts S. Humphrey. Software Engineering Institute, CMU.

(portal.acm.org/citation.cfm?id=75122)

Hans Vangheluwe hv@cs.mcgill.ca

Hans Vangheluwe

Software Processes

Waterfall (Royce)

V Model (German Ministry of Defense)

Prototyping

Operational Specification (Zave)

Transformational (automated software synthesis) (Balzer)
Phased Development: Increment and lteration

Spiral Model (Boehm)

Rational Unified Process (RUP)

Extreme Programming (XP)

System Dynamics (Dynamic Process Model)
(see Process ~ Productivity)

hv@cs.mcgill.ca

SOFTNARE
ENGINEERING

 SECOND EDITION

BHARI LAWRINCE PFLEIOER

Shari Lawrence Pfleeger. Software Engineering: Theory and Practice
(Second Edition). Prentice Hall. 2001.
Chapter 2: Modelling the Process and Life Cycle.

Hans Vangheluwe hv@cs.mcgill.ca

Waterfall Process (Royce)

Hans Vangheluwe hv@cs.mcgill.ca

Waterfall Process in Reality

Hans Vangheluwe hv@cs.mcgill.ca

Hans Vangheluwe

Waterfall Process with Prototyping

hv@cs.mcgill.ca

10

Hans Vangheluwe

V Model (German Ministry of Defense)

hv@cs.mcgill.ca

11

Hans Vangheluwe

Prototyping Process

hv@cs.mcgill.ca

12

Hans Vangheluwe

Operational Specification Process (Zave)

hv@cs.mcgill.ca

13

Hans Vangheluwe

Transformational Process

hv@cs.mcgill.ca

14

Hans Vangheluwe

Phased Development Process

hv@cs.mcgill.ca

15

Hans Vangheluwe

Phased Development: Incremental vs. lterative

hv@cs.mcgill.ca

16

Hans Vangheluwe

Spiral Model (Boehm)

hv@cs.mcgill.ca

17

Hans Vangheluwe

The Rational Unified Process (RUP):
Activity Workload as Function of Time

Phases
Workflows | | Inception|| Elaboration Construction Transition

Business Modeling

Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

Initial || Elab #1 | | Elab #2 C:-;st || c;a;u Const |[Tran | Tran

Iterations

hv@cs.mcgill.ca

18

The (Rational) Unified Process ((R)UP):

Empirical Observations

1. Waterfall-like sequence of

Requirements, Design, Implementation, Testing.
2. Not pure waterfall:

e Phased Development (iterative)

e Overlap (concurrency) between activities

3. Testing:

e Regression (test not only newly developed,
but also previously developed code)

e Testing starts before design and coding
(Extreme Programming)

Hans Vangheluwe hv@cs.mcgill.ca

19

Requirements

Analysis & Design
Initial Piumina e
Planning Implementation
Envirmumnt
Evaluation -
lr"
Deployment

Each iteration
results in an
executable release

Use:
e descriptive
e prescriptive

e proscriptive

Hans Vangheluwe hv@cs.mcgill.ca

20

Extreme Programming (XP)

extreme
ogrammmg

EMBRACE CHANGE

Kent Beck

Foreword by Erich Gamma

(www.extremeprogramming.org)

Hans Vangheluwe hv@cs.mcgill.ca

21

Extreme Programming (XP) highlights

User Stories are written by the customers as things that the system
needs to do for them (requirements). They drive the creation of
acceptance tests.

Hans Vangheluwe hv@cs.mcgill.ca

22

Extreme Programming (XP) Process

The project is divided into Iterations.

w _1
] : —
> 4 Iteration @Zoorm Out
Extreme Prnurammm{: N U St
eWwW L ser ory,
Release Project Velocity
Plan _
User Stories nfinished Tasks Learn and
‘/_\ Communicate
(=0
Project . lteration Functionality
Next welocy Iteration Plan Devel . — —aLatest
. - ; —F - . -
Iteration Planning cvelopment | BugFixes v yersion
@ =N
Failed Acceptance l\
Tests
Dray by Day
Bugs Copyrnght HHK], Deavan Wells

The “inner loop” is a daily cycle!

Hans Vangheluwe hv@cs.mcgill.ca

23

Extreme Programming (XP) highlights

Use Class, Responsibilities, and Collaboration (CRC) Cards
to design the system.

Class Mame:

Superclasses:

Subclasses:

Responsibilities: Collaborators

Hans Vangheluwe hv@cs.mcgill.ca

Extreme Programming (XP) highlights

e Code the Unit Test first (from requirements/user stories).

e All code must have Unit Tests; All code must pass all unit tests
before it can be released.

Hans Vangheluwe hv@cs.mcgill.ca

25

Extreme Programming (XP) highlights

Refactor whenever and wherever possible.
e for readability (~ maintanability)
e for re-use
e for optimization
o ...

Refactoring code or design.

Catalog of Refactoring Patterns (rules):
http://www.refactoring.com/catalog/

Hans Vangheluwe hv@cs.mcgill.ca

26

Refactoring Pattern: Reverse Conditional

e Motivation: increase clarity.

e Mechanics: (1) remove negative from conditional; (2) Switch
clauses.

e Example:

if (!isSummer(date):
charge = winterCharge(quantity)
else:

charge = summerCharge(quantity)

=

if (isSummer(date)):
charge = summerCharge(quantity)
else:

charge = winterCharge(quantity)

Hans Vangheluwe hv@cs.mcgill.ca

Refactoring Pattern:
Consolidate Duplicate Conditional Fragments

e Motivation: increase clarity, performance optimization.

e Mechanics: lift commonality out of conditional.

e Example:

if (isSpecialDeal()):
total = price * 0.95
send ()

else:
total = price * 0.98
send ()

=

if (isSpecialDeal()):
total = price * 0.95
else:
total = price * 0.98
send ()

Hans Vangheluwe hv@cs.mcgill.ca

Refactoring Pattern: Split Loop

e Motivation: increase clarity (not performance optimization (yet)).

e Mechanics: lift commonality out of conditional.

e Example:

def printValues:

averageAge = 0
totalSalary = 0O
for person in people:

averageAge += person.age

totalSalary += person.salary
averageAge = averageAge / people.length
print averageAge

print totalSalary

Hans Vangheluwe hv@cs.mcgill.ca

29

Hans Vangheluwe

def printValues:

averageAge = 0O
for person in people:
averageAge += person.age
averageAge = averageAge / people.length

print averageAge

totalSalary = 0O
for person in people:
totalSalary += person.salary

print totalSalary

hv@cs.mcgill.ca

30

Refactoring Pattern: Pull Up Method

e Motivation: re-use.

e Mechanics: pull up identical (type-wise) methods from (all)

=

sub-classes.
e Example:
Employee
| |
Salesman Engineer
gethlame gethlame

Hans Vangheluwe

hv@cs.mcgill.ca

Employee

gethlame

=

Salesman

Engineer

31

Hans Vangheluwe

Extreme Programming (XP) highlights

Pair Programming
Slides Pair Desk

D Manitor Bridge

Keyboard Tray

Front View =

(www.charm.net/~jriley/pairall.html)

hv@cs.mcgill.ca

32

Advantages:
e Higher Quality
e Collective Ownership of code/design

e Productivity Increase (“flow”) thanks to programmer/backseat
pair

e Learning/Training

Hans Vangheluwe hv@cs.mcgill.ca

Hans Vangheluwe

Extreme Programming (XP) Process

v N
2 Collective Code Ownership &Zoom Out
Extreme Frogramming
Move People
SRE Around 100%
ares Unit

Simple
Design Chande Wie Tests
Complex o Meed P d
Prablem Pair . asse
Help Run All Unit
Failed
Tests/

Next Task o Create Unt M Linit
or Failed__ Ur Unit Pair _™% , Continuous |Run
alnit—— R —-) Failed
Acceptance Test P?_ansited Programming ., Integration Acceptance
Test @ Ted Functionality Tect
Simple Complex
Code Code
Acceptance
Test
Refactor Passed
Mercilessly

Capyright 2000), Deavan Wells

hv@cs.mcgill.ca 34

The Process influences Productivity

R =

THE

MYTHICAL
MAN-MONTH

FREDERICK P. BROOKS, JR.

“Adding manpower to a late software project makes it later”

Fred Brooks. The Mythical Man-Month.

(www.ercb.com/feature/feature.0001.html)

Hans Vangheluwe hv@cs.mcgill.ca

35

Why Brooks' Law ? Team Size.

wotlt to be — - work
completed A completed

\\iﬂﬁpmem rate
h

notnnal
productrnty mmber of person C overhead

Model in Forrester System Dynamics

using Vensim PLE (www.vensim.com)

development rate =
nominal _productivity* (1-C_overhead* (N*(N-1)))x*N

Hans Vangheluwe hv@cs.mcgill.ca

36

Hans Vangheluwe

Team Size N =5

S =Tl *] SOFTWARE PROGRESS NO NEW 0Ol x|

SOFTWARE PROGRESS NO NEW

&00

&00

300

300

-0.02

0 50 100 1500 200 250 300 350 400 450 500
Time (Day)

wotk to be completed n_ 3
development rate :n_ 5
worl completed ' n 5

hv@cs.mcgill.ca

37

Hans Vangheluwe

Team Size N =3 ...9

el W=IEl-] Graph for work to be completed __[=lkd
Graph for work to be completed

&00

443 95

299596

145,94

-0.08

0 50 100 1500 200 250 300 350 400 450 500
Time (Day)

wronds to be completed 13
wrords to be completed 14
wrords to be completed (1 9
wrords to be completed (1 8
wrords to be completed (1 T
wrork; to be corrpleted (n 6
wrords to be completed 15

Optimal Team Size between 7 and 8

hv@cs.mcgill.ca

38

The Effect of Adding New Personnel (FSD model)

wotl to be

s work
completed = -
__iﬁ.velopment rate completed
 overhead S
\ PO gramnTing

owverhead =
’ productinty

N pErson

h

Tyl U NEW ————= numexp |[—Wenum exp working

inject new assitrilation

i trauner

development rate = nominal_productivityx*

(1-C_overhead* (N*(N-1)))* (1.2*num_exp_working + O.8*num_new)

Hans Vangheluwe hv@cs.mcgill.ca

39

5 New Programmers after 100 days

SFU=TEl] 5 NEW PERSONNEL 1 [al)d
5 NEW_PERSONNEL 1

0.4
&00
&00

0.2
300
300

-0.0004

0 200 400 600 B00 1000 1200 1400 1600 1800 2000
Time (Day)

development rate 1n D
wotrk completed 1n D
wotl to be completed 1n_ 5

Hans Vangheluwe hv@cs.mcgill.ca

5 New Programmers after 100 days

SISNEL-] 6 NEw PERSONNEL 2 [al}
5 NEW_PERSONNEL 2
e | /]

wa)

EC TN

)

0 200 400 &00 s00 1000 1200 1400 1600 1800 2000
Time (Day)

iUt few oS
futn exp oS
mumn actual programiming (o 5

Hans Vangheluwe hv@cs.mcgill.ca

0 ...6 New Programmers after 100 days

el H=TEl>] Graph for work to be completed . [=[kd
Graph for work to be completed
600
449.99
300
149.98
-0.02

0 200 400 600 8OO 1000 1200 1400 1600 1200 2000
Time (Day)

worl to be completed - n 0
wotrk to be completed :n 2
5
&

work to be completed :n
wotl to be completed n

Hans Vangheluwe hv@cs.mcgill.ca

