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Overview

1. (Software) Process: definition
2. Various Software Processes

3. The Process Influences Productivity:
Dynamic Process Modelling using Forrester System Dynamics
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Process: A Queueing System
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Event/Activity /Process
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Software Processes

“The Software Engineering process is the total set of Software

Engineering activities needed to transform requirements into

software” .

Watts S. Humphrey. Software Engineering Institute, CMU.

(portal.acm.org/citation.cfm?id=75122)
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Software Processes

Waterfall (Royce)

V Model (German Ministry of Defense)

Prototyping

Operational Specification (Zave)

Transformational (automated software synthesis) (Balzer)
Phased Development: Increment and lteration

Spiral Model (Boehm)

Rational Unified Process (RUP)

Extreme Programming (XP)

System Dynamics (Dynamic Process Model)
(see Process ~ Productivity)
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SOFTNARE
ENGINEERING

 SECOND EDITION

BHARI LAWRINCE PFLEIOER

Shari Lawrence Pfleeger. Software Engineering: Theory and Practice
(Second Edition). Prentice Hall. 2001.
Chapter 2: Modelling the Process and Life Cycle.
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Waterfall Process (Royce)
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Waterfall Process in Reality
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Waterfall Process with Prototyping
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V Model (German Ministry of Defense)
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Prototyping Process

hv@cs.mcgill.ca

12



Hans Vangheluwe

Operational Specification Process (Zave)
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Transformational Process
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Phased Development Process
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Phased Development: Incremental vs. lterative
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Spiral Model (Boehm)
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The Rational Unified Process (RUP):
Activity Workload as Function of Time
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The (Rational) Unified Process ((R)UP):

Empirical Observations

1. Waterfall-like sequence of

Requirements, Design, Implementation, Testing.
2. Not pure waterfall:

e Phased Development (iterative)

e Overlap (concurrency) between activities

3. Testing:

e Regression (test not only newly developed,
but also previously developed code)

e Testing starts before design and coding
(Extreme Programming)
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Requirements

Analysis & Design
Initial Piumina e
Planning Implementation
Envirmumnt
Evaluation -
lr"
Deployment

Each iteration
results in an
executable release

Use:
e descriptive
e prescriptive

e proscriptive
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Extreme Programming (XP)

extreme
ogrammmg

EMBRACE CHANGE

Kent Beck

Foreword by Erich Gamma

(www.extremeprogramming.org)
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Extreme Programming (XP) highlights

User Stories are written by the customers as things that the system
needs to do for them (requirements). They drive the creation of
acceptance tests.
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Extreme Programming (XP) Process

The project is divided into Iterations.

w _1
] : —
> 4 Iteration @Zoorm Out
Extreme Prnurammm{: N U St
eWwW L ser ory,
Release Project Velocity
Plan _
User Stories nfinished Tasks Learn and
‘/_\ Communicate
(=0
Project . lteration Functionality
Next  welocy  Iteration Plan Devel . — —aLatest
. - ; —F - . -
Iteration Planning cvelopment | BugFixes v yersion
@ =N
Failed Acceptance l\
Tests
Dray by Day
Bugs Copyrnght HHK ], Deavan Wells

The “inner loop” is a daily cycle!
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Extreme Programming (XP) highlights

Use Class, Responsibilities, and Collaboration (CRC) Cards
to design the system.

Class Mame:

Superclasses:

Subclasses:

Responsibilities: Collaborators

Hans Vangheluwe hv@cs.mcgill.ca



Extreme Programming (XP) highlights

e Code the Unit Test first (from requirements/user stories).

e All code must have Unit Tests; All code must pass all unit tests
before it can be released.
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Extreme Programming (XP) highlights

Refactor whenever and wherever possible.
e for readability (~ maintanability)
e for re-use
e for optimization
o ...

Refactoring code or design.

Catalog of Refactoring Patterns (rules):
http://www.refactoring.com/catalog/
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Refactoring Pattern: Reverse Conditional

e Motivation: increase clarity.

e Mechanics: (1) remove negative from conditional; (2) Switch
clauses.

e Example:

if ( !isSummer( date ):
charge = winterCharge( quantity )
else:

charge = summerCharge( quantity )

=

if ( isSummer( date ) ):
charge = summerCharge( quantity )
else:

charge = winterCharge( quantity )
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Refactoring Pattern:
Consolidate Duplicate Conditional Fragments

e Motivation: increase clarity, performance optimization.

e Mechanics: lift commonality out of conditional.

e Example:

if (isSpecialDeal()):
total = price * 0.95
send ()

else:
total = price * 0.98
send ()

=

if (isSpecialDeal()):
total = price * 0.95
else:
total = price * 0.98
send ()
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Refactoring Pattern: Split Loop

e Motivation: increase clarity (not performance optimization (yet)).

e Mechanics: lift commonality out of conditional.

e Example:

def printValues:

averageAge = 0
totalSalary = 0O
for person in people:

averageAge += person.age

totalSalary += person.salary
averageAge = averageAge / people.length
print averageAge

print totalSalary
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def printValues:

averageAge = 0O
for person in people:
averageAge += person.age
averageAge = averageAge / people.length

print averageAge

totalSalary = 0O
for person in people:
totalSalary += person.salary

print totalSalary
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Refactoring Pattern: Pull Up Method

e Motivation: re-use.

e Mechanics: pull up identical (type-wise) methods from (all)

=

sub-classes.
e Example:
Employee
| |
Salesman Engineer
gethlame gethlame

Hans Vangheluwe
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gethlame

=

Salesman

Engineer
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Extreme Programming (XP) highlights

Pair Programming
Slides Pair Desk

D Manitor Bridge

Keyboard Tray

Front View =

(www.charm.net/~jriley/pairall.html)
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Advantages:
e Higher Quality
e Collective Ownership of code/design

e Productivity Increase (“flow”) thanks to programmer/backseat
pair

e Learning/Training
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Extreme Programming (XP) Process
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The Process influences Productivity

R =

THE

MYTHICAL
MAN-MONTH

FREDERICK P. BROOKS, JR.

“Adding manpower to a late software project makes it later”

Fred Brooks. The Mythical Man-Month.

(www.ercb.com/feature/feature.0001.html)
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Why Brooks' Law ? Team Size.

wotlt to be — - work
completed A completed

\\iﬂﬁpmem rate
h

notnnal
productrnty mmber of person C overhead

Model in Forrester System Dynamics

using Vensim PLE (www.vensim.com)

development rate =
nominal _productivity* (1-C_overhead* (N*(N-1)))x*N
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Team Size N =5
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Team Size N =3 ...9

el W=IEl-] Graph for work to be completed __[=lkd
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Optimal Team Size between 7 and 8
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The Effect of Adding New Personnel (FSD model)

wotl to be

s work
completed = -
\\__iﬁ.velopment rate completed
 overhead S
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Tyl U NEW ————= numexp |[—Wenum exp working

inject new assitrilation

i trauner

development rate = nominal_productivityx*

(1-C_overhead* (N*(N-1)))* (1.2*num_exp_working + O.8*num_new)
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5 New Programmers after 100 days
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5 New Programmers after 100 days
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0 ...6 New Programmers after 100 days
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