
Factory and Proxy Patterns

Comp-304 : Factory and Proxy Patterns

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Winter 2009



Reminder

Mercury class evaluations



Human vs Orc

■ The following classes are from a real time strategy game 
where Humans and Orcs face each other for supremacy

■ Each Human unit has an Orcs counterpart which is 
identical.



If ... else ...

■ The interface for players playing either race is identical.
■ Thus, every function that creates a unit has a similar 

piece of code:
Worker worker;
if (player.race == RACE.HUMAN) {

worker = createPeasants()
} else {

worker = createPeon()
}

■ This is bad because
 It's code duplication.
 It's going to make things complicated when I add another race.

■ What can I do to avoid this?



Factory Patterns

■ Factory patterns are examples of creational patterns
■ They hide how objects are created and help make the 

overall system independent of how its objects are created 
and composed.



Two Types

■ Class creational patterns focus on the use of inheritance 
to decide the object to be instantiated
 Factory Method

■ Object creational patterns focus on the delegation of the 
instantiation to another object
 Abstract Factory



Abstract Factory

■ Provide an interface for creating families of related or 
dependent objects without specifying their concrete 
classes.



Applicability

■ Use the Abstract Factory pattern in any of the following 
situations:
 A system should be independent of how its products are 

created, composed, and represented
 A class can't anticipate the class of objects it must create
 A system must use just one of a set of families of products
 A family of related product objects is designed to be used 

together, and you need to enforce this constraint



Families of Soldiers



Class Diagram



Participants

■ AbstractFactory
 Declares an interface for operations that create abstract 

product objects
■ ConcreteFactory

 Implements the operations to create concrete product objects
■ AbstractProduct

 Declares an interface for a type of product object
■ ConcreteProduct

 Defines a product object to be created by the corresponding 
concrete factory

 Implements the AbstractProduct interface
■ Client

 Uses only interfaces declared by AbstractFactory and 
AbstractProduct classes



Consequences

■ Exchanging or adding product families is easy.
■ It also promotes consistencies among product (across 

families).
■ However, adding new products involves a lot more 

modifications.



GUI Systems Games

■ Before 3D acceleration, GUI system in game very 
sensitive to screen resolution variations.

■ For gameplay reasons, whatever the screen resolution, 
the GUI had to be the same size.

■ Because of this complexity, many games had only one 
resolution.



GUIFactory



Factories as Singletons

■ Typically, you only need one instance of a factory per 
product family.

■ That makes it an ideal candidate for Singleton.



Extensible Factories

■ One of the big limitation of Abstract Factory is the impact 
of adding new products.

■ A flexible, but less safe design, is to parameterize the 
object you want to create.



Example



The Problems ...

■ As already mentioned, this is not a safe design.
 Implementing in all factories
 Coercision

■ In addition, all return Products must have the same 
return type.



Another Example



Let design this ...

■ I'm currently designing a unified driver for Nvidia Geforce 
cards.

■ This unified driver supports the following cards.
 Geforce 2
 Geforce 3
 Geforce 4
 Geforce FX
 Geforce 6
 Geforce 7
 Geforce 8



Shader Objects

■ Shaders are programs written specifically for graphic 
cards to perform visual effects.

■ Two main types of shaders exist:
 Pixel shaders : works on a 2D image / texture
 Vertex shaders : works on a 3D mesh



Shader Support

■ Different architectures support different types of shaders.
 Geforce 2,3,4 : Pixel and Vertex Shaders 1.0
 Geforce FX : Pixel and Vertex Shaders 2.0
 Geforce 6, 7 : Pixel and Vertex Shaders 3.0
 Geforce 8 : Pixel and Vertex Shaders 4.0



Shader Objects



Creating these objects

■ As already mentioned, different cards create different 
types of shader objects.
 If a particular functionality is not supported by a particular card, 

it is sometimes emulated in software.
■ However, an OpenGL or DirectX application should be 

able to create shader objects in a generic fashion.
 i.e. It doesn't need to know we have a Geforce FX.



ShaderFactory





Performance Problem

■ Game X takes 30 seconds to load a level.
 It needs to load 300 images.

■ On average, a level only uses 50 images.
■ Images are stored in an FileImage class

 FileImage is a proprietary class file from a 3rd party library
■ How can I improve performance and minimize code 

changes?

Original idea from Wikipedia



Image and FileImage



DelayedImage



Focus on DelayedImage



Proxy

■ Provide a surrogate or placeholder for another object to 
control access to it.

■ Aka: Surrogate



What is a proxy?

■ A proxy is
 a person authorized to act for another person
 an agent or substitute
 the authority to act for another



Motivation

■ Sometimes, you want to modify the behavior of an object 
(or control access to it), without modifying the object 
itself.



Structure



When to use?

■ Use the Proxy pattern when
 You want to remotely access a local object.
 You want to create expensive objects on demand.
 You want to protect the original object.
 You want to make the original object smarter.



How does it work?



Implementation Issues

■ Proxies are even easier to use (and transparent) in 
languages where you can …
 Override the member access operators.
 Use Aspects.

■ Proxy doesn't need to know the concrete type of the 
subject.

■ What to do with proxies without subjects?



Arithmetic Example



Solution

17 911 178



Mammoth Example



Replication Systems



Architecture



Remote Call



Local Call



Profiler Example



Other Types of Proxies

■ Copy-On-Write Proxy - Defers copying (cloning) a target object 
until required by client actions. Really a form of virtual proxy.

■ Protection (Access) Proxy - Provides different clients with different 
levels of access to a target object

■ Cache Proxy - Provides temporary storage of the results of 
expensive target operations so that multiple clients can share the 
results

■ Firewall Proxy - Protects targets from bad clients (or vice versa)
■ Synchronization Proxy - Provides multiple accesses to a target 

object
■ Smart Reference Proxy - Provides additional actions whenever a 

target object is referenced such as counting the number of 
references to the object



Extending 3rd party tools

■ You don't have the code.
■ Can't always subclass existing code.
■ Proxies are the next best things.



Design Patterns, the big picture

■ Design Patterns are solutions to problems.
■ You can teach them with lectures, but that's not optimal.
■ To appreciate them, you need to use them.
■ And first them in using them is recognizing when to use 

them.



The Design Pattern Challenge!

Name that Design Pattern
Left vs Right Edition

<insert inspirational music here>



Question 1

I need to efficiently update several 
displays monitoring the content of a file, 

every time the file is updated.



Question 2

I need to be able to queue actions, since I can only 
process one at a time.



Question 3

I need to generate objects from either the Fire, 
Water, Air or Earth family of objects.



Question 4

I need to traverse a data structure containing 
Ninja, Monkey, Pirates and Zombie objects.



Question 5

I need to make sure that a maximum of 
three copies of my SuperCache object exists.



Question 6

I need to make a library I just purchased 
type compatible with an existing one.



Question 7

I need to add security to an object 
from the library I just purchased.



Question 8

I need my application to process all orders 
in an identical fashion, regardless if 

they have sub-orders or not.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

