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Reminder

Mercury class evaluations



Human vs Orc

■ The following classes are from a real time strategy game 
where Humans and Orcs face each other for supremacy

■ Each Human unit has an Orcs counterpart which is 
identical.



If ... else ...

■ The interface for players playing either race is identical.
■ Thus, every function that creates a unit has a similar 

piece of code:
Worker worker;
if (player.race == RACE.HUMAN) {

worker = createPeasants()
} else {

worker = createPeon()
}

■ This is bad because
 It's code duplication.
 It's going to make things complicated when I add another race.

■ What can I do to avoid this?



Factory Patterns

■ Factory patterns are examples of creational patterns
■ They hide how objects are created and help make the 

overall system independent of how its objects are created 
and composed.



Two Types

■ Class creational patterns focus on the use of inheritance 
to decide the object to be instantiated
 Factory Method

■ Object creational patterns focus on the delegation of the 
instantiation to another object
 Abstract Factory



Abstract Factory

■ Provide an interface for creating families of related or 
dependent objects without specifying their concrete 
classes.



Applicability

■ Use the Abstract Factory pattern in any of the following 
situations:
 A system should be independent of how its products are 

created, composed, and represented
 A class can't anticipate the class of objects it must create
 A system must use just one of a set of families of products
 A family of related product objects is designed to be used 

together, and you need to enforce this constraint



Families of Soldiers



Class Diagram



Participants

■ AbstractFactory
 Declares an interface for operations that create abstract 

product objects
■ ConcreteFactory

 Implements the operations to create concrete product objects
■ AbstractProduct

 Declares an interface for a type of product object
■ ConcreteProduct

 Defines a product object to be created by the corresponding 
concrete factory

 Implements the AbstractProduct interface
■ Client

 Uses only interfaces declared by AbstractFactory and 
AbstractProduct classes



Consequences

■ Exchanging or adding product families is easy.
■ It also promotes consistencies among product (across 

families).
■ However, adding new products involves a lot more 

modifications.



GUI Systems Games

■ Before 3D acceleration, GUI system in game very 
sensitive to screen resolution variations.

■ For gameplay reasons, whatever the screen resolution, 
the GUI had to be the same size.

■ Because of this complexity, many games had only one 
resolution.



GUIFactory



Factories as Singletons

■ Typically, you only need one instance of a factory per 
product family.

■ That makes it an ideal candidate for Singleton.



Extensible Factories

■ One of the big limitation of Abstract Factory is the impact 
of adding new products.

■ A flexible, but less safe design, is to parameterize the 
object you want to create.



Example



The Problems ...

■ As already mentioned, this is not a safe design.
 Implementing in all factories
 Coercision

■ In addition, all return Products must have the same 
return type.



Another Example



Let design this ...

■ I'm currently designing a unified driver for Nvidia Geforce 
cards.

■ This unified driver supports the following cards.
 Geforce 2
 Geforce 3
 Geforce 4
 Geforce FX
 Geforce 6
 Geforce 7
 Geforce 8



Shader Objects

■ Shaders are programs written specifically for graphic 
cards to perform visual effects.

■ Two main types of shaders exist:
 Pixel shaders : works on a 2D image / texture
 Vertex shaders : works on a 3D mesh



Shader Support

■ Different architectures support different types of shaders.
 Geforce 2,3,4 : Pixel and Vertex Shaders 1.0
 Geforce FX : Pixel and Vertex Shaders 2.0
 Geforce 6, 7 : Pixel and Vertex Shaders 3.0
 Geforce 8 : Pixel and Vertex Shaders 4.0



Shader Objects



Creating these objects

■ As already mentioned, different cards create different 
types of shader objects.
 If a particular functionality is not supported by a particular card, 

it is sometimes emulated in software.
■ However, an OpenGL or DirectX application should be 

able to create shader objects in a generic fashion.
 i.e. It doesn't need to know we have a Geforce FX.



ShaderFactory





Performance Problem

■ Game X takes 30 seconds to load a level.
 It needs to load 300 images.

■ On average, a level only uses 50 images.
■ Images are stored in an FileImage class

 FileImage is a proprietary class file from a 3rd party library
■ How can I improve performance and minimize code 

changes?

Original idea from Wikipedia



Image and FileImage



DelayedImage



Focus on DelayedImage



Proxy

■ Provide a surrogate or placeholder for another object to 
control access to it.

■ Aka: Surrogate



What is a proxy?

■ A proxy is
 a person authorized to act for another person
 an agent or substitute
 the authority to act for another



Motivation

■ Sometimes, you want to modify the behavior of an object 
(or control access to it), without modifying the object 
itself.



Structure



When to use?

■ Use the Proxy pattern when
 You want to remotely access a local object.
 You want to create expensive objects on demand.
 You want to protect the original object.
 You want to make the original object smarter.



How does it work?



Implementation Issues

■ Proxies are even easier to use (and transparent) in 
languages where you can …
 Override the member access operators.
 Use Aspects.

■ Proxy doesn't need to know the concrete type of the 
subject.

■ What to do with proxies without subjects?



Arithmetic Example



Solution

17 911 178



Mammoth Example



Replication Systems



Architecture



Remote Call



Local Call



Profiler Example



Other Types of Proxies

■ Copy-On-Write Proxy - Defers copying (cloning) a target object 
until required by client actions. Really a form of virtual proxy.

■ Protection (Access) Proxy - Provides different clients with different 
levels of access to a target object

■ Cache Proxy - Provides temporary storage of the results of 
expensive target operations so that multiple clients can share the 
results

■ Firewall Proxy - Protects targets from bad clients (or vice versa)
■ Synchronization Proxy - Provides multiple accesses to a target 

object
■ Smart Reference Proxy - Provides additional actions whenever a 

target object is referenced such as counting the number of 
references to the object



Extending 3rd party tools

■ You don't have the code.
■ Can't always subclass existing code.
■ Proxies are the next best things.



Design Patterns, the big picture

■ Design Patterns are solutions to problems.
■ You can teach them with lectures, but that's not optimal.
■ To appreciate them, you need to use them.
■ And first them in using them is recognizing when to use 

them.



The Design Pattern Challenge!

Name that Design Pattern
Left vs Right Edition

<insert inspirational music here>



Question 1

I need to efficiently update several 
displays monitoring the content of a file, 

every time the file is updated.



Question 2

I need to be able to queue actions, since I can only 
process one at a time.



Question 3

I need to generate objects from either the Fire, 
Water, Air or Earth family of objects.



Question 4

I need to traverse a data structure containing 
Ninja, Monkey, Pirates and Zombie objects.



Question 5

I need to make sure that a maximum of 
three copies of my SuperCache object exists.



Question 6

I need to make a library I just purchased 
type compatible with an existing one.



Question 7

I need to add security to an object 
from the library I just purchased.



Question 8

I need my application to process all orders 
in an identical fashion, regardless if 

they have sub-orders or not.
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