
Quality of Design



Design must satisfy Requirements
~ testing



Design must be Consistent
 (i..e., no inconsistencies)



Design must satisfy (type) Constraints

■ Liskov Substitutability Principle
 State-space, behaviour
 In presence of inheritance

■ Closed Behaviour



Quality of Design

■ What is a good object-oriented design?
■ How to determine whether a given design is good?
■ What are the quality characteristics (qualitative)?
■ What are the quality metrics (quantitative)?



A closer look at Designs

■ Domains of classes
 Not all classes are equal

■ Encumbrance
 Measure for class sophistication
 Law of Demeter

■ Class cohesion
 Mixed – instance/domain/role



Classes used in a 
Human Resources (HR) System

■ Employee
■ Date / Time
■ Salary
■ Performance Review
■ Job Position
■ Job Offer
■ Recruitment 
■ Currency
■ Bonus
■ Location/Office



 Classes used in an 
Inventory System

■ Equipment
■ Bar code
■ Loan History
■ Date/Time
■ Employee
■ Location/Office
■ Repair Order
■ Repair History
■ Purchase Order
■ Currency



Classes used in an 
Accounting System

■ Client
■ Account
■ Invoice
■ Date / Time
■ Currency
■ Employee
■ Bar code
■ Delivery
■ Pickup



Similarities

HR

■ Employee
■ Date / Time
■ Salary
■ Performance 

Review
■ Job Position
■ Recruit
■ Currency
■ Location/Office

Accounting

■ Client
■ Account
■ Invoice
■ Date / Time
■ Currency
■ Employee
■ Bar code
■ Delivery
■ Pickup

Inventory

■ Equipment
■ Bar code
■ Loan History
■ Date/Time
■ Employee
■ Location/Office
■ Repair Order
■ Purchase Order
■ Currency



Domains of Classes

■ Foundation Domain
 classes useful for all businesses, architectures, applications

➔ Fundamental: int, boolean, ... (data types)
➔ Structural: stack, tree, ... (container data structures)
➔ Semantic: date, time, height (adds meaning, often units)

■ Architecture Domain
 classes useful for a single architecture

➔ Networking: port, socket, ...
➔ Database: transaction, rollback, ...
➔ User Interface: window, button, ...



Domains of Classes

■ Business Domain
 classes useful for one type of business

➔ Attribute: BodyTemperature of patient
➔ Role: Patient
➔ Relationship: PatientSupervision

■ Application Domain
 classes useful for one application

➔ MNIPatientTemperatureMonitor (event recognizer)
➔ RoyalVictoriaHospitalInventoryPurchaseOrder
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Encumbrance

■ Quantitative measure for the distance of a class to the 
foundation domain (i.e., its sophistication)

■ Encumbrance : take a class C and measure the number 
of classes C depends on, recursively ...

■ First introduce direct and indirect class reference sets



Class Reference Set

■ Direct class reference set refers to the set of classes that 
a given class C directly refers to (via inheritance, 
association, ...), call these C1, C2, C3, ...

■ Refers to ...
 Inherits from Ci
 Has attribute of type Ci
 Has method with argument/return value of type Ci



Class Reference Set

■ Indirect class reference set of C is the union of its direct 
class reference set DCRS(C) and the  indirect class 
reference sets of the elements of DCRS(C).

■ Indirect Class Reference Set  has a recursive 
definition ... so when does it stop?

■ ... the direct class reference set of classes of the    
foundation domain is the empty set.



Enumbrance

■ Direct and indirect class reference sets lead to direct and 
indirect encumbrance, which is just the size of the 
respective class reference set



Simple Example



Low/High Encumbrance

■ A foundation class should have low encumbrance.
■ An application class should have high encumbrance.
■ A good indication of a problem in the design is:

 High indirect encumbrance in the Foundation domain.
 Low indirect encumbrance in an Application domain.



Law of Demeter

■ The Law of Demeter limits the size of direct class 
reference sets.

■ It states that if an object o1 refers to a object o2 through 
some method m of o1, then o2 must be:
 the object itself (so o2 is actually o1)
 an object referred to by the arguments of m
 an object referred to by an attribute of o1
 an object created by m
 an object referred to by a global variable

■ Weak law (vs. strong law): attribute of superclass
■ In summary, an object should only send messages to 

objects it can directly reference.
Only talk to your immediate friends!



Example

String employeeStreet = this.office.getAddress().getStreet();



Example Fixed

String employeeStreet = this.office.getStreet();



Cohesion

■ Measure of interrelatedness of features (attributes and 
methods) in an external interface of a class.

■ Low (bad) cohesion
 set of features that don't belong together

■ High (good) cohesion
 set of features that all contribute to the implementation



Three types of Cohesion

■ Mixed-Instance Cohesion 
 Really really bad!

■ Mixed-Domain Cohesion
 Really bad!

■ Mixed-Role Cohesion
 Bad!



Mixed-Instance Cohesion

A class with mixed-instance cohesion has some features that are 
undefined for some objects of the class.

■ Suppose you work at a company that has managers and non-
managers. 

■ Managers receive a ManagerSalary and other employees receive 
a RegularSalary.

■ Imagine employees are implemented using a Person class.
 That class has a getManagerSalary() and a getRegularSalary() 

method which returns both types of salary.
■ For each Person instance, we have features that won't be used. 

 Thus, Person is too broad



How to solve this?

■ Usually means that there is a class hierarchy missing.
 in our case, we should have classes Manager and Employee 

that inherit from a superclass Person.

■ Now we won't have any unused features.



Extrinsic vs. Intrinsic

■ The class B is extrinsic to A if A can be fully defined with 
no notion of B.
 For example, Dog is extrinsic to Person, because in no sense 

does “Dog” capture some characteristic of Person.

■ B is intrinsic to A if B captures some characteristic 
inherent to A.
 For example, Dog is intrinsic to DogOwner, because “Dog” 

captures some characteristic of DogOwner.



Mixed-Domain Cohesion

A class with mixed-domain cohesion contains an element that directly 
encumbers the class in an extrinsic class of a different domain.

■ In other words, a class should only encumber classes in other 
domains if they are intrinsic.

■ For example, Invoice and Currency  are two classes that exist in 
different domains. 

■ Since Currency is intrinsic to Invoice, there is no mixed-domain 
cohesion.

■ However, Invoice and Printer, which also exist in different 
domains, would present mixed-domain cohesion since Printer is 
extrinsic to Invoice.



Mixed-Role Cohesion

A class C with mixed-role cohesion contains an element that directly 
encumbers the class with an extrinsic class that lies in the same 

domain as C.

■ In other words, a class should only encumber classes if they are 
intrinsic.

■ Lets go back to our example with Dog and Person.
■ Although both classes exist in the same domain, they are not 

intrinsic
■ As such, Dog should not encumber Person.
■ Although this is the less serious cohesion problem, you must take 

it into account when designing for reusability.
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