
Quality of Design

Design must satisfy Requirements
~ testing

Design must be Consistent
 (i..e., no inconsistencies)

Design must satisfy (type) Constraints

■ Liskov Substitutability Principle
 State-space, behaviour
 In presence of inheritance

■ Closed Behaviour

Quality of Design

■ What is a good object-oriented design?
■ How to determine whether a given design is good?
■ What are the quality characteristics (qualitative)?
■ What are the quality metrics (quantitative)?

A closer look at Designs

■ Domains of classes
 Not all classes are equal

■ Encumbrance
 Measure for class sophistication
 Law of Demeter

■ Class cohesion
 Mixed – instance/domain/role

Classes used in a
Human Resources (HR) System

■ Employee
■ Date / Time
■ Salary
■ Performance Review
■ Job Position
■ Job Offer
■ Recruitment
■ Currency
■ Bonus
■ Location/Office

 Classes used in an
Inventory System

■ Equipment
■ Bar code
■ Loan History
■ Date/Time
■ Employee
■ Location/Office
■ Repair Order
■ Repair History
■ Purchase Order
■ Currency

Classes used in an
Accounting System

■ Client
■ Account
■ Invoice
■ Date / Time
■ Currency
■ Employee
■ Bar code
■ Delivery
■ Pickup

Similarities

HR

■ Employee
■ Date / Time
■ Salary
■ Performance

Review
■ Job Position
■ Recruit
■ Currency
■ Location/Office

Accounting

■ Client
■ Account
■ Invoice
■ Date / Time
■ Currency
■ Employee
■ Bar code
■ Delivery
■ Pickup

Inventory

■ Equipment
■ Bar code
■ Loan History
■ Date/Time
■ Employee
■ Location/Office
■ Repair Order
■ Purchase Order
■ Currency

Domains of Classes

■ Foundation Domain
 classes useful for all businesses, architectures, applications

➔ Fundamental: int, boolean, ... (data types)
➔ Structural: stack, tree, ... (container data structures)
➔ Semantic: date, time, height (adds meaning, often units)

■ Architecture Domain
 classes useful for a single architecture

➔ Networking: port, socket, ...
➔ Database: transaction, rollback, ...
➔ User Interface: window, button, ...

Domains of Classes

■ Business Domain
 classes useful for one type of business

➔ Attribute: BodyTemperature of patient
➔ Role: Patient
➔ Relationship: PatientSupervision

■ Application Domain
 classes useful for one application

➔ MNIPatientTemperatureMonitor (event recognizer)
➔ RoyalVictoriaHospitalInventoryPurchaseOrder

Reusability & Sophistication

Application

domain

Business

domain

Architecture

domain

Foundation

domain

LOW

REUSE

MEDIUM

REUSE

HIGH

REUSE

HIGH

SOPHISTICATION

LOW

SOPHISTICATION

BUILD BUY

Encumbrance

■ Quantitative measure for the distance of a class to the
foundation domain (i.e., its sophistication)

■ Encumbrance : take a class C and measure the number
of classes C depends on, recursively ...

■ First introduce direct and indirect class reference sets

Class Reference Set

■ Direct class reference set refers to the set of classes that
a given class C directly refers to (via inheritance,
association, ...), call these C1, C2, C3, ...

■ Refers to ...
 Inherits from Ci
 Has attribute of type Ci
 Has method with argument/return value of type Ci

Class Reference Set

■ Indirect class reference set of C is the union of its direct
class reference set DCRS(C) and the indirect class
reference sets of the elements of DCRS(C).

■ Indirect Class Reference Set has a recursive
definition ... so when does it stop?

■ ... the direct class reference set of classes of the
foundation domain is the empty set.

Enumbrance

■ Direct and indirect class reference sets lead to direct and
indirect encumbrance, which is just the size of the
respective class reference set

Simple Example

Low/High Encumbrance

■ A foundation class should have low encumbrance.
■ An application class should have high encumbrance.
■ A good indication of a problem in the design is:

 High indirect encumbrance in the Foundation domain.
 Low indirect encumbrance in an Application domain.

Law of Demeter

■ The Law of Demeter limits the size of direct class
reference sets.

■ It states that if an object o1 refers to a object o2 through
some method m of o1, then o2 must be:
 the object itself (so o2 is actually o1)
 an object referred to by the arguments of m
 an object referred to by an attribute of o1
 an object created by m
 an object referred to by a global variable

■ Weak law (vs. strong law): attribute of superclass
■ In summary, an object should only send messages to

objects it can directly reference.
Only talk to your immediate friends!

Example

String employeeStreet = this.office.getAddress().getStreet();

Example Fixed

String employeeStreet = this.office.getStreet();

Cohesion

■ Measure of interrelatedness of features (attributes and
methods) in an external interface of a class.

■ Low (bad) cohesion
 set of features that don't belong together

■ High (good) cohesion
 set of features that all contribute to the implementation

Three types of Cohesion

■ Mixed-Instance Cohesion
 Really really bad!

■ Mixed-Domain Cohesion
 Really bad!

■ Mixed-Role Cohesion
 Bad!

Mixed-Instance Cohesion

A class with mixed-instance cohesion has some features that are
undefined for some objects of the class.

■ Suppose you work at a company that has managers and non-
managers.

■ Managers receive a ManagerSalary and other employees receive
a RegularSalary.

■ Imagine employees are implemented using a Person class.
 That class has a getManagerSalary() and a getRegularSalary()

method which returns both types of salary.
■ For each Person instance, we have features that won't be used.

 Thus, Person is too broad

How to solve this?

■ Usually means that there is a class hierarchy missing.
 in our case, we should have classes Manager and Employee

that inherit from a superclass Person.

■ Now we won't have any unused features.

Extrinsic vs. Intrinsic

■ The class B is extrinsic to A if A can be fully defined with
no notion of B.
 For example, Dog is extrinsic to Person, because in no sense

does “Dog” capture some characteristic of Person.

■ B is intrinsic to A if B captures some characteristic
inherent to A.
 For example, Dog is intrinsic to DogOwner, because “Dog”

captures some characteristic of DogOwner.

Mixed-Domain Cohesion

A class with mixed-domain cohesion contains an element that directly
encumbers the class in an extrinsic class of a different domain.

■ In other words, a class should only encumber classes in other
domains if they are intrinsic.

■ For example, Invoice and Currency are two classes that exist in
different domains.

■ Since Currency is intrinsic to Invoice, there is no mixed-domain
cohesion.

■ However, Invoice and Printer, which also exist in different
domains, would present mixed-domain cohesion since Printer is
extrinsic to Invoice.

Mixed-Role Cohesion

A class C with mixed-role cohesion contains an element that directly
encumbers the class with an extrinsic class that lies in the same

domain as C.

■ In other words, a class should only encumber classes if they are
intrinsic.

■ Lets go back to our example with Dog and Person.
■ Although both classes exist in the same domain, they are not

intrinsic
■ As such, Dog should not encumber Person.
■ Although this is the less serious cohesion problem, you must take

it into account when designing for reusability.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

