
Diving in: the Singleton Design Pattern

Mammoth is a massively
multiplayer game research
framework.
mammoth.cs.mcgill.ca

The world of Mammoth is a 2D
environment viewed from a 2D
perspective.
The world contains a fixed
number of game objects, some
of which can be controlled by
humans (players).
A player can move around in the
game, examine objects, pick
them up, and drop them again.
Hans Vangheluwe and Alexandre Denault

IDs?

Each object in the world (player, items, grass, etc) has a
unique ID associated to it.
How do we hand out IDs, making sure that one never
distributes a duplicate one?

ID Distributor

Mammoth uses unique identifiers (ID) to identify all the
Game objects in the world.
These IDs are distributed by a single object.
If more than one distributor were used, duplicate IDs could be
distributed.

The application needs global access to this distributor.
It would be very complicated/ugly to pass around the reference to the
distributor throughout the application.

Problem

We need to make sure that only one instance of a class can
be created.
We want that instance to be easy to access anywhere in the
application.

Singleton

Ensure a class only has one instance,
 and provide a global point of access to it.

Class Diagram

Code Structure

public class Singleton {

private static Singleton instance = new Singleton();

private Singleton() { }

public static Singleton getInstance() {

return Singleton.instance;

}

}

Consequences

You are assured that only one instance can be created.
Global access to that instance without the use of a global variable
(less pollution)

Can be modified to allow a fixed number of instances.
Singletons can be sub-classed.

ID Distributor Example

public class IdDistributor {

private static IdDistributor instance = new
IdDistributor();

private long lastId;

private IdDistributor() {

this.lastId = -1;

}

public static IdDistributor getInstance() {

return IdDistributor.instance;

}

public long getId() {

this.lastId++;

return this.lastId;

}

}

Lazy Initialization

public class Singleton {

private static Singleton instance;

private Singleton() { }

public static Singleton getInstance() {

if (Singleton.instance == null) {

Singleton.instance = new Singleton()

}

return Singleton.instance;

}

}

Lazy Initialization (Better)

public class Singleton {

private static Singleton instance;

private Singleton() { }

public static synchronized Singleton getInstance() {

if (Singleton.instance == null) {

Singleton.instance = new Singleton()

}

return Singleton.instance;

}

}

Dsheet

Singleton

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

