'Diving in: the Singleton Design Pattern

Mammoth Is a massively _
multiplayer game research ;

I I I I I I I = n
; H f

framework.
mammoth.cs.mcgill.ca

The world of Mammoth is a 2D
environment viewed from a 2D
perspective.

The world contains a fixed

number of game objects, some §&s "'i'" i

111
=

of which can be controlled by
humans (players).

A player can move around In the
game, examine objects, pick
them up, and drop them again.

Hans Vangheluwe and Alexandre Denault



' IDs?

Each object in the world ( player, items, grass, etc ) has a
unique ID associated to It.

How do we hand out IDs, making sure that one never
distributes a duplicate one?

y



' ID Distributor

Mammoth uses unique identifiers (ID) to identify all the
Game objects in the world.

These IDs are distributed by a single object.

If more than one distributor were used, duplicate IDs could be
distributed.

The application needs global access to this distributor.
It would be very complicated/ugly to pass around the reference to the

distributor throughout the application.



' Problem

We need to make sure that only one instance of a class can
be created.

We want that instance to be easy to access anywhere in the
application.

y



' Singleton

Ensure a class only has one instance,
and provide a global point of access to It.




Class Diagram

Singletan

instance: Singleton

-constructar()

+getlnstancel); Singleton { retum instance }




' Code Structure

public class Singleton {
private static Singleton instance = new Singleton();
private Singleton() { }

public static Singleton getInstance() {
return Singleton.instance;




' Consequences

You are assured that only one instance can be created.

Global access to that instance without the use of a global variable
(less pollution)

Can be modified to allow a fixed number of instances.
Singletons can be sub-classed.

y



' ID Distributor Example

public class IdDistributor {

private static IdDistributor instance = new
IdDistributor();

private long lastId;

private IdDistributor() {
this.lastId = -1;
b
public static IdDistributor getInstance() {
return IdDistributor.instance;
b
public long getId() {
this.lastId++;
return this.lastId;




' Lazy Initialization

public class Singleton {
private static Singleton instance;
private Singleton() { }
public static Singleton getInstance() {

i1f (Singleton.instance == null) {
Singleton.instance = new Singleton()

return Singleton.instance;




' Lazy Initialization (Better)

public class Singleton {
private static Singleton instance;
private Singleton() { }

public static synchronized Singleton getInstance() {

i1f (Singleton.instance == null) {
Singleton.instance = new Singleton()

return Singleton.instance;

| y



Dsheet

& - DSheet =observing subject 1> 0.90 —/—— v A b3

File Edit -

D HdE & A9 00:36 |
A B C D E F G H I ) K

I T N I N N T N e e e e el e I
OUBWNROWN~NOWU &WN RO LN UEWN -

if
| =




Singleton

<<Interface>>
Singleton

+getInstance(): Object

—————— e e e e e e e e e e e e e Em o Em o Em oEm Em oEm o
| |
! |
<<5ingleton=> :
Errorutility !
+L0G: const int = @ TypeCheckutility
+WARNING: const int = 1 +debug; bool = true
HEATAL: copnst dnt = 2 +typeCheck{arguments:list0f0bject, types: list0fTypes)

+exceptionRaised(msg:5tring, level:1int=FATAL,exception:Exception=None}
+getOutput(): Stream
+setOutput(s:Stream)
+register(obj:0bject)

exception is the object

representing the error

that has just occured.

Depending on the implementation
language, exception as classes instances
could be built-in or not.

This is why 1t 1s optional




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

