'Diving in: the Singleton Design Pattern

Mammoth Is a massively _
multiplayer game research ;
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The world of Mammoth is a 2D
environment viewed from a 2D
perspective.

The world contains a fixed

number of game objects, some §&s "'i'" i
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of which can be controlled by
humans (players).

A player can move around In the
game, examine objects, pick
them up, and drop them again.
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' IDs?

Each object in the world ( player, items, grass, etc ) has a
unique ID associated to It.

How do we hand out IDs, making sure that one never
distributes a duplicate one?
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' ID Distributor

Mammoth uses unique identifiers (ID) to identify all the
Game objects in the world.

These IDs are distributed by a single object.

If more than one distributor were used, duplicate IDs could be
distributed.

The application needs global access to this distributor.
It would be very complicated/ugly to pass around the reference to the

distributor throughout the application.



' Problem

We need to make sure that only one instance of a class can
be created.

We want that instance to be easy to access anywhere in the
application.
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' Singleton

Ensure a class only has one instance,
and provide a global point of access to It.




Class Diagram
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' Code Structure

public class Singleton {
private static Singleton instance = new Singleton();
private Singleton() { }

public static Singleton getInstance() {
return Singleton.instance;




' Consequences

You are assured that only one instance can be created.

Global access to that instance without the use of a global variable
(less pollution)

Can be modified to allow a fixed number of instances.
Singletons can be sub-classed.
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' ID Distributor Example

public class IdDistributor {

private static IdDistributor instance = new
IdDistributor();

private long lastId;

private IdDistributor() {
this.lastId = -1;
b
public static IdDistributor getInstance() {
return IdDistributor.instance;
b
public long getId() {
this.lastId++;
return this.lastId;




' Lazy Initialization

public class Singleton {
private static Singleton instance;
private Singleton() { }
public static Singleton getInstance() {

i1f (Singleton.instance == null) {
Singleton.instance = new Singleton()

return Singleton.instance;




' Lazy Initialization (Better)

public class Singleton {
private static Singleton instance;
private Singleton() { }

public static synchronized Singleton getInstance() {

i1f (Singleton.instance == null) {
Singleton.instance = new Singleton()

return Singleton.instance;
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Singleton

<<Interface>>
Singleton

+getInstance(): Object
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<<5ingleton=> :
Errorutility !
+L0G: const int = @ TypeCheckutility
+WARNING: const int = 1 +debug; bool = true
HEATAL: copnst dnt = 2 +typeCheck{arguments:list0f0bject, types: list0fTypes)

+exceptionRaised(msg:5tring, level:1int=FATAL,exception:Exception=None}
+getOutput(): Stream
+setOutput(s:Stream)
+register(obj:0bject)

exception is the object

representing the error

that has just occured.

Depending on the implementation
language, exception as classes instances
could be built-in or not.

This is why 1t 1s optional
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