
Design Patterns

Visitor Pattern

Hans Vangheluwe and Alexandre Denault

3D Room

Scene Graphs

Universe

Room 1 Room 2

Desk

Books Lamp

Bed Wardrobe

DrawersDoors

What if?

I want to print out the content of the universe.
To do this, I need to build a string containing a list of the
items in the room.
How do I do this?
universe.toString() (recursively)

The Challenge

The class calling the universe.toString() method should not
have information on how data is stored in the universe.
Thus, universe.toString() should take care of traversing the
tree.
This means that each node will need to have its own
toString() method.
If I want to calculate the weight of the universe, I will also
need to add a getWeight() function to each node.
Is there a generic way I can traverse a structure (tree)
without having to add new methods to the classes encoding
the structure?

Visitor Pattern

Put an operation to be performed on the elements of an
object structure in a separate class.
Separate the algorithm from the data structure.

Introduction to Compilers

A compiler is a tool that transforms a program/model from a
high level representation to a lower level representation.
Java -> Bytecode

C -> Assembler

The first step of a compiler is to transform the source code
into an abstract syntax tree (as specified by a language
“grammar”).
Flex + Bison in C

SableCC in Java

The Code (input to compiler)

int i = 5;
float j = 4.5;
float k = i + j;

The constructed AST

Class Diagram of the AST

Compilers Continued

Further operations are done by traversing the tree
Weeding

Type Checking

Symbol Table Generation

Code Generation

Do we want to add (recursive) methods to every node we
need to traverse?
This would be the intuitive solution

We would need the following methods: weed(), typeCheck(), symbol(),
code()

Naieve Solution

Problem

Each node class is polluted with several methods.
The implementation of an algorithm is spread over all
classes.
i.e. The weeding algorithm is spread across several nodes.

To keep track of the traversal, either
must use global variables

must pass arguments by reference in each method call

Visitor Pattern Solution

Advantages

The traversal algorithm is now located in a single class.
All variables needed to execute the algorithm are also in the class.

No need for global variables anymore (or variables passed by
reference).

The AST class structure (tree) was not modified!
 It could even be pre-compiled!

It's easy to add new operations (new Visitor sub-class).

Disadvantages

However, if a new subtype of Node is added, all the visitors
must be modified.
For instance, we might want to add an 'Addition' node.

This would require a new function 'visitAddition' in each visitor.

Encapsulation could be broken if a visitor needs to access
an element's internal state.

Class Diagram

Sequence Diagram “double dispatch”

Composite Elements

Data structures are often composite: a node contains
references to other nodes (children, etc).
For the visitor pattern to work, the accept() calls must be
propagated to the children nodes (other references).
Most often, the simplest solution is add this propagation to the
accept() call of the parent.

 public void accept(Visitor visitor) {

 visitor.visit(this);

for (Node node: nodes) {

node.accept(visitor)

}

 }

Example

Add the visitor pattern

Wheel, Body, Engine
class Wheel {

 public void accept(Visitor visitor) {

 visitor.visitWheel(this);

 }

}

class Engine {

 public void accept(Visitor visitor) {

 visitor.visitEngine(this);

 }

}

class Body {

 public void accept(Visitor visitor) {

 visitor.visitBody(this);

 }

}

Car

class Car {

 private Engine engine;

 private Body body;

 private Wheel[] wheels;

 public void accept(Visitor visitor) {

 visitor.visitCar(this);

 engine.accept(visitor);

 body.accept(visitor);

 for(int i = 0; i < wheels.length; ++i) {

 wheels[i].accept(visitor);

 }

 }

}

Visitor
class PrintVisitor implements Visitor {

 private static count = 0;

 public void visitWheel(Wheel wheel) {

 count++;

 System.out.println("Visiting wheel " + count);

 }

 public void visitEngine(Engine engine) {

 System.out.println("Visiting engine");

 }

 public void visitBody(Body body) {

 System.out.println("Visiting body");

 }

 public void visitCar(Car car) {

 System.out.println("Visiting car");

 }

}
Caveat: multiple visits?

Composite Concerns

When dealing with composites, who should take care of the
traversal?

The Composite

An External class

The Visitor

Traversal encoded in Composite

Using the composite to take care of the traversal is the
simplest solution. Remember the car example.

 public void accept(Visitor visitor) {

 visitor.visitCar(this);

 engine.accept(visitor);

 body.accept(visitor);

 for(int i = 0; i < wheels.length; ++i) {

 wheels[i].accept(visitor);

 }

 }

Unfortunately, this only works if all the visitors need to visit
the elements in the same order.

Traversal encoded in External Class

Use an external class to define the traversal.
That class would require internal knowledge of the data
structure, but at least the visitor would remain generic.
This traversal object could even be an iterator.

Traversal encoded in External Class

BreadthFirst

Traversal encoded in Visitor

To allow different traversal orders (for different visitors), the
traversal could be in the visitors.
This would allow each visitor to use a specific traversal.
This is the only solution for very complex traversal.

Back to the AST example

int i = 5;
float j = 4.5;
float k = i + j;

AST example

Visitor

class PrettyPrinterVisitor implements Visitor {

...

public visitStatement(Statement elem) {

elem.def.accept(this)

elem.assign.accept(this)

print(“ ;”);

}

public visitAssignment(Assignment elem) {

elem.id.accept(this)

print(“ = “);

elem.exp.accept(this)

}

...

Drawbacks

The visitor needs to know and understand the data
structure.
 Breaks the abstraction, creates coupling

Each visitor must include information on how to traverse the
data structure.
 Can lead to lots of duplicate code.

DSheet

Dsheet: Composite Pattern ++

Dsheet: Visitor Pattern

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

