Meta-modelling and Model Transformation—the
two pivots of Model Driven Architecture

Amaranth Wei He supervised by Hans Vangheluwe
School of Computer Science,
McGill University,
Montreal, Canada
whe6@s. ncgill. ca

December 21, 2004

Abstract

Initiated by Object Management Group (OMG), Model Driverciitecture
(MDA) recently stirs enormous interests of both the redearganizations and the
industry corporations. This new approach is intended tp @key role in the fields
of information system and software engineering. It spexHie automated process
of developing information systems from high-level anayg code generation.
Two prerequisites for the success of MDA application are estensible meta-
modeling framework and an automated model transformatiechanism.

1 Introduction

Model Driven Architecture (MDA) is the OMG initiative thattampts to separate busi-
ness functionality specification from the platform-spedifiplementation. It provides
a solution to develop the software system at the businesgntmal. Although per-
fect and practicable in principle, two issues need to beestad satisfactorily for the
successful application of MDA- an extensible meta-modgliamework and an auto-
mated model transformation mechanism.

This report introduces the basic concepts of MDA in sectioiTBen, in section
3 and 4, it looks into some of the technology details of the t@st important is-
sues in MDA- meta-modeling and model transformation. After discussions, an
implementation of a MDA application is given in section 5. eTtool supporting the
implementation is ATOM3-a meta-modeling and model tramsfttion tool developed
by Modeling, Designing and Simulation Laboratory at SchafdComputer Science in
McGill University.

2 MDA Introduction
2.1 The OMG Vision

In 2001, Object Management Group launched a new movemeravalaping soft-
ware systems by proposing Model Driven Architecture. Frbdsed on OMG’s many
well-established modeling standards like UML, MOF, XMl .etdDA provides a rev-
olutionary way of developing software systems. It separtiie technology dependent
concepts from independent concepts and proposes solttiecagomate the software
development process. The ambition of OMG is to raise theatt&n level of devel-
oping systems to a new height and to settle the problems#sdbhg exist in the tradi-
tional software industry. As stated in [7], the promise of MI3 —" to allow definition

of machine-readable application and data models whiclvddog-term flexibility of
implementation, integration, maintenance, testing amdikition.”

2.2 MDA development process

MDA defines a full life cycle based on the use of various modatemating a seamless
process from analysis to code generation. Figure 1 and &@ugiven in [8] illustrate
the traditional software development process and the M&gss.

Feqiramats Beguirememts

Extlr
Text

Tostly

Text

;

Diagram L

and text Froces Ik

Lomlevel Tezien

<

LomLevel Desien

Diagram

and text sk

Froprammer £ CODE
short ent

B

COIE COmE

Deplormeat

Deployment

g
0000

Figurel. Traditional software development process Figur2. MDA development process
Although they both consist of the same six stages in therdifcles, there’re several
distinguished features in a MDA process

¢ In the analysis stage, we build a model with a high level otralotion that is
independent of any implementation technology. This maglebiled Platform

Independent Model (PIM). Unlike the UML diagrams and texaitraditional
development process, which were only used to convey mesbigigveen
people, this PIM is an executable model that can be calallateomputers.

¢ In the low-level design stage, the PIM is transformed autarably by certain
tools into one or more Platform Specific Models (PSMs). A PSivhbines the
specifications in the PIM with the details that specify how slystem uses a
particular type of platform. PSMs are also executable nedel

¢ In the coding stage, PSMs are transformed to source cod&DA coding is
no longer a manual work. It is performed by transformatiarigo

In conclusion, a MDA development process consists of tHevahg three steps:

e Stepl Using specific tools to build Platform Independent 8ledhich includes
all the business logics of the system but no technology métion.

e Step2 After deciding on the implementing platforms, usiag$formation tools
to transform PIM to corresponding Platform Specific Models.

e Step3 Using transformation tools to transform PSMs to spoeading source
codes.

2.3 MDA Framework

The MDA framework consists of the following building blocks

2.3.1 Models

A model is a simplification of a system, which captures theess of the system.
There're three types of models in the MDA process, each dferelint abstraction
level.

e Platform Independent Model (PIM)
These models describe the structure and behaviour of thensysdependent of
any technology implementation platform.

e Platform Specific Model (PSM)
These models are expressed in terms of particular implatientplatforms.

e Code
In MDA, source codes can also be viewed as a special kind oetaod

2.3.2 Transformations

In MDA, transformations means the automatic generationtafget model from a
source model, according to a transformation definition[8].

In essence, MDA is a series of transformations from higlederodels with no
technology information to elaborated platform-specificd@ig. Best practices and
accepted defaults allow for these transformations.

The two most important transformations in MDA are:

e Transformations from PIM to PSMs

e Transformations from PSMs to cods

2.3.3 Languages for describing the source and target models

Models are depicted in certain languages. Since the mau&IIA are executable
models, the languages depicting them should be well-defimeith means they
should have strict syntax and semantics. In MDA, we use aaldanguage definition
mechanism, which is formally named meta-modelling. Wddb®rate this
mechanism in the next section.

2.3.4 Language for describing the transformations

Transformations specify how the constructs in the sourceetscare mapped to target
models. This is depicted as a set of transformation ruleseldefined language is
needed to describe the transformation definition in ordatritrcan be understood by
computer programs.

2.3.5 Transformation tools

In a MDA process, transformations are performed by tramsétion tools, which are
special programs that support certain transformatiorsriutem the source models to
target models.

2.4 MDA specification

A complete MDA specification consists of a definitive platfemdependent UML
model, plus one or more platform-specific models (PSM) atetface definition sets,
each describing how the base model is implemented on aetiffeniddleware
platform. An example of a MDA specification is given in Fig8re

FIE \
s~ 4 e
/ \

} ans: foma! Jrans fa%n:)u} 1 g}.cf N ‘T’\

\ \
MRepits j v J EE v
Belaticnal PSK

T ansf:mrall T f}rmuﬂ ansf::kalxﬂ
<.- rode L.-j
gemeratio r e 1
\

L source cods EJD source cods 5P source code

Figure3 The structure of the MDA specification of a three-tie web-based information system
In Figure 3, we depict a typical three-tier web-based infation system. The MDA
specification of the system consists of the following buigdblocks

e aPIM
This PIM is written in UML. It comprises the information alktall the business
logics of the system.

e Three PSMs
a Relational Database PSM depicted in an Entity-Relatiprdiagram
a EJB PSM written in UML profile.
a Web Interface PSM written in UML profile

e Three PIM to PSMs transformations
a PIM to Relational Database PSM transformation
a PIM to EJB PSM transformation
a PIM to Web interface PSM transformation

e Three PSMs to codes transformations
a relational database PSM to SQL transformation
a EJB PSM to Java code transformation
a Web interface PSM to JSP and Html transformation

2.5 Benefits of adopting MDA

[8] explains why MDA is a solution to many of the long-exisi@wblems in software
development.

e Productivity
In MDA, the focus of development shifts to developing PIM. dhwof the
coding is done by the transformation tools. Developersaeuaticentrate on the
business logics instead of the technical details.

o Portability and Interoperability
Tools supporting transformations to different platforni ae available. The
same PIM can be automatically transformed into multiple B®ylthese tools.
These tools can also generate the bridges between diffeBMs.

e Maintenance and Documentation problem
As a description of the system in high-level abstractiol i also directly
related to the final implementation. Changes made to themsysill eventually
be reflected in PIM, In this way, high-level documentatioiMPwill remain
consistent with the actual code while the system evolves.

3 Meta-modeling in MDA

The application of MDA requires that the models, whether MPSMs, be
described in well-defined languages which is suitable foomated interpretation by

a computer. Since modeling languages like UML often takddahms of graphics, the
traditional methods like Backus Naur Form(BNF), which hastsuccessful in
defining text-form languages, are not appropriate here ffaréint mechanism is
needed to define the modelling languages in MDA. On the ond,lihis mechanism
should be able to describe the syntax and semantics st@tiyhe other hand, it
should support the extensibility of the modelling languagehe solution is a
meta-modelling framework based on the traditional foyefametadata architecture. .

3.1 The concept of meta-modeling

In [4], the concept of meta-modeling is proposed as a saiutidhe following
questions:

e Systems in different domains or different parts in a comglestem are often
modeled by different formalisms that are most appropriateéscribing their
behaviors.

e The need to investigate the overall behavior of the systetm different parts
described by different formalisms

The essence of meta-modeling is to use an appropriate mgdeatiguage to model
the different formalisms. Each formalism is described agabissible structures that
can be expressed in the language. Based on this common roell;fit's possible to
generate a tool supporting all these formalisms. Also sfiaimations between
models described in different formalisms can be descripticitly. Entity-Relation
formalism and UML Class Diagram are often used for meta-riogle

3.2 The classical framework for meta-modeling
3.2.1 The four layers of the classical framework of meta-moeling

The four layers of the classical framework with a concret@negle, are illustrated in
Figure 4. [6]

meta-metamaodel

Hard-wired Meta-metamodel!

MetaModel { “RecordTypes™,
MetaClass (“Record”,
[MetaAtr ("name”, String),
MetaAttr (“fields”, List < “Field™>) |
MetaClass (“Field™. ...)
Record (“StockQuote™,
[Field { “company”. String)
Field { “price”, FizedPoint)])

metamodel

model

StockQuote (“Sunbeam Harvesters”, 98.77)

StockQuote (“Ace Taxi Cab Lud”, 12.32) mnformation

Figure4. Classical Four Layer meta-model architecture

e |t can support any kind of models and meta-models.

e It can support interchange of arbitrary metadata (modeld)aeta-metadata
(meta-models) between parties that use the same metarnostek

3.3 MOF meta-modeling framework

Meta Object Facility (MOF), the metadata architecturedéad proposed by OMG, is
based on the traditional four layer metadata architecture.

Figure 5 illustrates the four layers of MOF framework witheample given in [8].
The meaning of each layer is described below.

e Layer MO: The instances
The MO layer is where the actual instances of the systems éxigsur example,
the customers "Dr. Joe Nobody” and "Mr. Mark Everyman” ar¢hbitems in
the real systems.

e Layer M1: The Model of the System
The M1 layer contains models of the system. In our exampigwhere the
concept "Customer” is defined: a UML Class named "Customaeiti two
UML Attributes named "title” and "name” respectively. Eaelement at the MO
layer is an instance of an element at the M1 layer. So, bothJ&& Nobody”
and "Mr. Mark Everyman” are instances of "Customer”

e Layer M2: The Model of the Model
An element at the M2 layer specifies the elements at M1 layes. Hlements at
the M1 layer are instances of the elements at M2 layer. In xaimgle, it is in
the M2 layer that the concept "UML Class” and "UML Attributate defined.
The UML Class "Customer” and "Order” are instances of "UMLa&$” at M2
layer

e Layer M3: The Model of M2
Similarly, M2 layer elements are defined at M3 layer. In MORaneodeling
framework, MOF is the standard M3 language, all the modétinguages are
instances of MOF.

M3:hodel of a klodel of abdodel
MOF Class
[EEH= T
£ T
] -
indam e of = 44 insimnce of
| -
! . MZModel of 3 Maodel
1
UKL Clz=s UL Atribute
[EEH= T vame Sy
v xw
t t
nztance of o) \ 1n:lanc:e- oty
[anstan e ob | icintame ot
: vl : hd1:badel of 3 System
I
Custo rmer | lOrder
I
1 ; Sty vifber ;Sug
vam e Sting vale Sty
L) F; ¥
! i
inztance of oy \ i intance ot
pe ot e RS
.
,rlr * W0 System-
Customer Customer Order
e =01 it ="M B b 1= TI00E04°
vame = "Jog Hobody™ vame = "Mark Eve ym an” vame ="zomerame”

Figure5. An example in MOF meta-model framework

3.4 The importance of meta-modelling in MDA

Meta-modeling provides the basis for describing and t@nsing models in MDA.
This is demonstrated in two ways

e |tis used to describe the source and target models.
In MDA, both PIM and PSM are described in M2 modeling langusage
(meta-models).

e Itis used to describe the model transformations
In MDA , the model transformations are specified by sets adgalefined in
terms of the corresponding meta-models.

3.5 Some issues in the current meta-model framework

Although it is generally recognized that an extensible mmetaleling framework is
the prerequisite of MDA application, there’s still no consas on the form of this
framework. Recently there are a lot of discussions abouptbblems existed in the
MOF framework. Many researches have been carried out iratks and some
incomplete solutions have been proposed.

3.5.1 Strict Meta-modeling

The characteristics of MOF meta-model framework that hasloiscussed most is
strict meta-modeling. The precise definition of this contéegiven in [2] as follows:
In an n-level modeling architecture, MO,M1,Mn-1, everymabat of an Mm-level
model must be an instance-of exactly one element of an Memel4nodel. For all
0j=min-1, and any relationship other than the instance-aétionship between two
elements X and Y implies that level(X)=level(Y).

This restriction means that in MOF meta-model framework :[2

¢ the meta-modeling framework takes the form of a linear h#na
e Levels are formed purely by instance-of relationships

e Levels have strict boundaries that may not be crossed biyaeships other
than instance-of relationships

e lInstance-of relationship only exists in immediately adjat two levels

3.5.2 Problems caused by strict meta-modeling restriction

Since strict meta-modeling restricts the instance-oti@tghip in two immediately
adjacent levels, a model can only define the semantics oiféstdnstances, and can
have no effect on entities created by further instantiagteps. This instantiation
mechanism, which is called "shallow instantiation”, caasiseme fundamental
problems when the meta-levels scale up to more than twosgtg|

Two problems that are discussed most are: [1]

e Ambiguous Classification This problems occurs when an im&taeed to be
assigned both the physical classifier and the logical dlassi

e Replication of Concepts Because shallow instantiatids faicarry information
across more than one level, it's often necessary to duplio&rmation at
multiple levels

3.5.3 Some proposals for solving the problems

A lot of research work has been devoted to solve the problarteicurrent
meta-modeling framework. Some solutions have been projtossure the
symptoms. Below are two of them.

e Two Fundamental Meta-dimensions [2]
This addresses the problem of ambiguous classificationdgygsing a
two-dimensional modeling framework, one physical dimensind one logical
dimension.

e Deep Instantiation [1]
This proposition cures the shallow instantiation symptomstroducing the
concepts of "Potency” and "Single and Dual Fields” into thedal class, thus
allowing the modeling element’s class feature be acquinédraatically by the
instantiation steps.

3.5.4 UML2.0 and MDA meta-modeling solution

While still under revision, UML2.0 is supposed to provide golution to MDA
meta-modeling framework. In UML2.0, the definition of the UN$ organized into
two parts:

e The infrastructure which describes the overall framewoitkivww which UML
modeling is performed

e The superstructure which populates this framework with etiod concepts
that constitute the UML modeling language.

It is generally accepted that unless a sound meta-modekngeivork is provided, the
success of MDA is not possible

4 Model Transformation in MDA

As we have discussed in Section 2, the MDA approach specitiggpings from
Platform Independent Model(PIM) to one or more Platformd&peModels(PSMs).
While meta-modeling provides the foundation for descugfdime PIM and PSMs, it is
the model transformation that act as the engine of the wh@eé Mrocess.

4.1 Basic concepts in Model transformation in MDA
4.1.1 Some important definitions

Before looking into the details of model transformation ilDK, there’re some
important definitions need to be clarified. In [8], the defarit are given as below:

e Model transformation
A model transformation is the automatic generation of agtangodel from a
source model, according to a transformation definition.

e Transformation definition
A transformation definition is a set of transformation rutest together
describe how a model in the source language can be transiontoea model in
the target Language.

e Transformation rule
A transformation rule is a description of how one or more tautss in the
source language can be transformed into one or more cotssinutbe target
language.

e Transformation definition language (transformation mpdel
Transformation definition language is the language in whachrite the
transformation definitions. In MDA, it is also consideredsasodel as the
languages depicting PIM and PSM.

10

4.1.2 Relations between meta-modeling and model transforation in MDA

The relations among PIM, PSM, meta-models, meta-meta-tsadedel
transformation definition language, transformation dééiniand transformation tools
is illustrated in Figure6 [8] . It provides the view of the cplate MDA framework we
have discussed so far.

Heta language

-
e

o
o

&

|

1 enguEzel J

TpnErornat o

B
F tacl

Figure6. The complete MDA framework

4.1.3 Model Transformation procedure
A model transformation consists of the following three ®ssive steps:
e Stepl. Selecting components from source models

e Step2. Constructing and populating new models to form tigetaof the
transformation

e Step3. Modifying the source model so that it is used to forn pkthe target
model

4.1.4 MDA model transformation language requirements

Transformation definitions in MDA should be depicted in wielimed languages in
order that it can be executed in computers. Based on expetisroéseveral different
methods to implement the model transformation, [5] propadise set of requirements
for a transformation language suitable for describing rhtmemodel mapping rules
required to realise the MDA vision.

e Match sets of source model elements

11

e Match elements by type and precise-type

Filter the set of matched tuples based on associationbuwttrvalues, and other
criteria

Establish associations between source and target modetete

Handle recursive structure with arbitrary levels of negtin

4.1.5 The current situation of model transformation standadization in MDA

Although the importance of model transformation in MDA isgeally recognized,
there’s no well-established foundation to rely in descrgdiow we take an instance of
the source model and transform it to produce an instanceedftiget model. A lot of
experiments have been carried out and some solutions hangdbeposed as the
approaches to define the model transformation definitiohes& can be grouped into
two categories:

e Procedural definition of the transformation, with expl&iurce model traversal
and target object creation and update. Graph Transformigtian example in
this category. In next section, we will provide a MDA implemt&tion powered
by Graph Transformation.

e Declarative definition of the transformation, with imptisource model
traversal and implicit target object creation. Generat&i Kis an example in
this category.

MOF2.0 QVT, which is still in revision, is supposed to prowid standard framework
and language for defining model transformations in MDA.

4.2 Graph Transformation and its application in MDA

Models in MDA are described by visual modeling languages (ikass Diagram.
Since most established techniques for language definitmbased on abstract syntax
tree, yet visual languages usually have a graph-like stractve need a special
mechanism to deal with them. With its established mathemé&tiundation and its
competency in processing visual models, graph transfaomegcently draw much
attention of the research society for its potential as a d@proach for defining
model transformations in MDA.

4.2.1 Concepts of Graph Transformation

Some basic concepts of Graph transformation is given ing3jedow:

e Graphs
A graph consists of a set of vertices V and a set of edges E hatkach edge e
in E has a source and a target vertex s(e) and t(e) in V, regplyct
In object-oriented modeling, we often consider graphs atlevels: the type
level (a class diagram) and the instance level(all the ¢obj@grams), where

12

classes and objects are described as the vertices whilegiatssos and links are
described as the edges. Typed and attributed graphs argnusetdr that the
attributes of the classes and values of the objects can Ipepyspecified
Figure 7 shows an example of a class diagram and its objegtaaia[3]

sre 1| Account

Transfer be to Bill
Al:Account | has - number
T C:Client amaunt 1 otal
balance = 10 "'“"‘ type dest 1 | balance

paYS —_—
has

A2:-Account | to | BBl
balance =2 tolal = & Client | 1 pays

narme

Figure7. A Class Diagram and its object diagram

e Graph transformation rule
A graph transformation rule p: L-¢ R consists of a pair ofanses of the type
graph (class diagram), where left-hand side L represeatprig-conditions of
the rule while right-hand side R describes the post-coorukiti

e Graph transformation rule application
The application of a graph transformation rule consisthde consecutive
steps:
Stepl. Find an occurrence o—L of the left-hand side L in tireetu object
graph G
Step2. Remove all the vertices and edges from G which arehedtzy L/R
Step3. Glue the remaining structure of G with R / L An exam(flihe
transformation application is given in [3] by Figure 8

balance = b1 |Gl | pomie) | betnee bt Lk |

Aocaunt Account
balance = b2 toi=a balance = hi24a

@

has

| a2 has |
pavBiB) | palance= 4 EiClent

Figure8. A transformation rule application

13

4.2.2 Graph Transformation applications in processing vigal modeling
language

[3] discusses the application of Graph Transformation otpssing visual modeling
languages, especially how it can be used to specify mappietygeen concrete syntax
and abstract syntax and between abstract syntax and semdfigure9, given in [8],
illustrates the three layer of a visual modeling languagé=igure 9, each mapping
indicated by the arrows can be depicted by a set of graphftnamation rules

Concrete Syntax

scanning and
parsing

layout

oparational
semantics
Abslract Synlax O

cenotalional
I semantic
semantics y feedback

Semantic Domain

Figure 9. A layered view of a visual modeling language

4.2.3 Graph Transformation applications in MDA model transformation

If we consider the environment of target model as the deipot@tsemantic domain
of the source model, the model transformation processighjesapplication we've
already mentioned in 4.2.3. In section 5, we give an examfdlaplementing MDA.
The model transformation is powered by a set of graph tramsfton rules.

4.3 MOF2.0 QVT proposed solution

The MOF2.0 QVT, which is still under revision, is supposegtovide a
comprehensive solution to transformations in MDA.

4.3.1 The layers of transformation definitions

The proposal provides a two-layer framework to define tramsétions

e Infrastructure
This is the low-level specification which is useful for to@ndors. It contains
the core language to precisely define transformations.

e Superstructure
This is the high-level language for end users. The semaotitse
superstructure are given by its translation into the infradure.

14

4.3.2 Implementation language

A standard language MTL(Model Transformation Languaged)ictvcomes in both
graphical and textual form, is provided in the proposal. TEmguage uses pattern
matching as its mechanism to create transformations.

5 Implementing MDA in ATOM3

In this section, we implement a web-based information syste an example to show
how to develop software systems in MDA applications. Théwaused for the
implementation is ATOM3(A Tool for Multi-formalism Meta-btelling), which is
developed in Modelling, Simulation and Design Lab at McGilliversity.

5.1 The necessary tools for supporting MDA development prass

As a new approach to build software systems, MDA require$ afsgeveloping tools
totally different from those used in a traditional develanhprocess. Below is the list
of tools that are indispensable in the MDA development pssce

5.1.1 The environments to build the meta-models and models

As we have discussed in Section 3, both PIMs and PSMs are ddfyneertain
meta-models. These meta-models are models in their owtsrigim the view of the
meta-meta models. In the MDA development process, we nestbtihs that support
the meta-model of PIM, so that we can create and edit the rmduéie environment.
Sometimes, instead of using separate tools supportingif@PPSM meta-model,
we can use the tools that support their common meta-metaimnodhat case, we can
build the meta-models of both PIM and PSMs in this environtyemd use these
meta-models to generate tools for building correspondiadets.

5.1.2 The environments to specify the transformation rules

Another very important issue in developing a MDA applicatis prescribing the
transformation specifications. To fulfill this task, toote aeeded which provides a
user-friendly interface to accept the input and modificatibthe transformation rules.

5.1.3 The environments to execute the model transformatian

For the processing of the models in the development, we wélithe tools that can
execute the model transformations. These tools take thesowdels and the
transformation rules as inputs and generate the targetimas®utputs.

The above mentioned environments are necessary for dévgIbDA applications.
They can be either implemented as separately tools, or adegrated tool, which is
exemplified by ATOM3. We will discuss it in more details in tbeming sub-section.

15

5.2 Introduction to ATOM3

ATOMS3(A Tool for Multi-formalism Meta-Modelling),whichs developed in
Modelling, Simulation and Design Lab at McGill, can be usedéscribe different
formalisms, as well as to generate custom tools to proceselnexpressed in the
corresponding formalism[4]. It also includes graph remgttechniques as the
mechanism to perform the transformations between formaliSo, we can use this
tool to specify the PIM and PSM meta-models, build the PIM] prescribe the
transformation rules from PIM to PSM.

5.2.1 The layers of meta-modeling framework in ATOM3

AtoM3 has a meta-modelling layer in which different fornsatis (PetriNet, Class
Diagram, State Chart,etc.) are modelled graphically. &hethree layers of the
meta-modeling framework in ATOM3.

e Meta-meta model layer
The ER(Entity-Relation) formalism extended with consitsiis available at
this layer. In the concrete syntax of ER formalism in ATOMBites are
represented by rectangulars while relations are depiceibanonds.
Constraints can be specified by the cardinalities or as prgest- conditions of
certain events (creating, modifying or deleting an entita oelation, for
example).

e Meta-model layer
This layer includes the formalisms depicted by ER formaligime formalisms
that are available in ATOM3 now includes Petri Net, Finitat8tAutomata,
Sequence Diagram, State Chart, GPSS, etc. ATOMS3 also ravid
environment for users to build their own meta-models. FégLO shows the
State Chart formalism depicted as a model in ER formalism.

Ao =1 2.2 uviner By Arkatiambio ald =
Fis Flodd Treceforetion Grephic
ety icoa e T el k| | i Jt4]
p Venidin | St | Wt g | Drebets i | Chawe st
iy =
&

] 1 LIT

[Eing " taL kel entants Mol py’ ot raad ded) [Ecting et Hemamad [act mocdind] in s Hararad
D] | 8l G 7| R | W | B | Epee | mie | T [[Riares Wl | |0 Stk LB OO R mame

16

Figurel0. State Chart meta-model depicted by ER meta-model

e Model layer
The models built in a certain meta-model exist in this layer.

5.2.2 Graph Grammar in ATOM3

In ATOMS3, Graph Grammar is used both for concrete syntax disfimand model
transformation definition.

e For the concrete syntax definition, Graph Grammar specliappearance of
each entity in the formalism and the mapping to Abstract &ynt

e For the model transformation definition, Graph Grammar gieadow the
constructs in the source model (LHS) should be mapped tdremts in the
target model (RHS)

5.3 Background of the information system in the project
5.3.1 Business background

To illustrate the process of developing a MDA applicatioe,will build an ordering
system for a breakfast shop. The business background istddn [8].

5.3.2 MDA specification of the system

We will implement the system as a web-based application.syetem takes the form
of a typical three-tier framework which is already illuged in sub-section2.4.

To build the complete system, we should implement the taansdtions from PIM to
all the three technology platforms. In this project, we dntplemented the
transformation to Relational Database, which is enougthemunderstanding of the
MDA developing process.

5.4 The elaborated developing process in ATOM3
5.4.1 Defining the PIM meta-models

The most appropriate formalism to describe the businesehwlass Diagram. We
can describe the Class Diagram formalism in ER formalisnATI®OMS3, this
description is implemented as a model built by ER meta-madtfélat we should do is
to build the model according to Class Diagram definition im BR meta-model
environment. Figure11 shows the model of Class Diagram imref-model.

17

= o P P
Lot | | S|
B -

T

T T orl ot o = e B o T
Fuw| SG 06 ¢ o |go (e | Se e (mewe | ae [RED (B seka e LAEE

Figurell Class Diagram meta-model depicted in ER formalism
We can infer from this figure: in the Class Diagram meta-model

e The only entity in the formalism is AtomClass, which is sgied by
ClassName, ClassAttribute,etc.

e There're two kinds of relations among AtomClass entitiesogiation and
inheritance.

We can also specify the concrete syntax and semantics ofitiss Diagram
formalism.

e Concrete syntax is given by specifying the appearancesdiltities and
relations when editing the model. Figure12 shows the eglitimdow for
assigning appearance to the AtomcClass entity. Similaryassign a line as the
appearance of the association relation and a line with agigain the end as the
appearance of the inheritance relation.

_— _I;‘-_:I | |

T

i T]
. : - e

—

e _I'__""L |

-

. =
| _--¢—.—

==

Fi J o | il

e 7 T o e] A e

Figure12. The attribute editing window of AtomClass

e We can give the semantic meaning of the entities and relbgrspecifying the
attributes. In this example, we specify that each AtomCéasaild have a
String attribute ClassName, a List attribute ClassAttilsuetc. Constraints are

18

also used to define the semantics. For the AtomClass enttgive several
constraints that will be triggered when creating, deletingpdating the entity.

After defining the formalism by building the model in ER met@del, we can save
this model for future modification. ATOM3 also generatesa to support the
models being depicted by Class Diagram. This is implemeasgddcluding the new
formalism as a meta-model which can be launched for buildargesponding models.

5.4.2 Defining the PSM meta-models

Since our target technology platform is Relational Datal#&gstem, the PSM
meta-model should be clear and specific enough to depictrinetsre of the database
tables in the system. Although traditionally ER formalisasibeen used to depict the
database tables, in our project we use a meta-model withredifeatures of ER
formalism. We name this meta-model Table Diagram. Althotlggmeta-model is
very simple, it can fulfill the work of elaborating the Retatal Database PSM.
Figurel3 shows the Table Diagram described as a model in E& medel

c]

e Lm0 1 o8 Freare e e e e
o] e | | e 6| | G [(@ e b SUDE

Figure13. Table Diagram meta-model depicted in ER formalim
We can infer from Figurel3, in the Table Diagram formalism:

e The only entity in the formalism is Table which is specifiedeb$tring attribute
TableName and a List attribute TableFields

e No relation is applicable in the formalism.

In the attribute editing window, we choose the appearanciéh&Table entity

19

Benr s Cusann H- e e e e
T

e le E

— e]
=C= e
T | e
o — =] =
==l
=
s o
=
= .
|
o —
e S =
=
L a fafd B L]
E— = | o L =
o] e 50 |8 | i | 6 | | Driie [y, (P SR b SO nor

Figure14. The attribute editing window of Table
After saving this model and generating corresponding metdel, Table Diagram
can be used later for building models in this formalism.

5.4.3 Building the PIM of the system

The only model we should build manually in the MDA processis PIM. This

model should include all the business logics in the systarpréactice, PIMs are
depicted as class diagrams. In our project, to build the Ridshould first launch the
Class Diagram meta-model in ATOM3. In Figure15, the laudaneta-model listed
in the left column, is MyClassDiagram instead of Entity Rielaship in previews
figures. Then, we can build the model by dragging the Classtizthe canvass,
assigning values to the attributes of the classes and congéwo classes by
inheritance or association relationship links.

Figurel5 shows the PIM built in ATOM3.

T e e e | |

%Tm;r:a_q mm'ﬂlﬂlm] e

] | -
e] [Erg 1aeil ot ot sl in o P

| 5T o
Stan| [Sip @ | Can B | R | B | S | @ @] ma[were | B Ebe L% o AS 0N nam

Figurel5 PIM of the system

e There are eight classes in the model each is specified bydssSame and
ClassAttributes as defined by Class Diagram meta-model

20

e There are two association classes in the model: MyChange iagsociation
class of Breakfast and Comestible, Part is the associati@s of Comestible
and StandBreakfast

e VIP is inherited from Customer

5.4.4 Defining the PIM to PSM transformation rules

In our project, the mapping from PIM to PSM is a typical ObjBefation Mapping.
The transformation rules are quite straightforward. Sofite@rules are listed below
in plain English:

e Each class should be mapped to a table

e Each simple data type attribute should be mapped to a field

The rules should also includes the data type mapping (fanple a UML string
should be mapped to a SQL VARCHAR), the multiplicity of theadations, the
navigability, etc.

To automate this transformation process in ATOM3, we cartra@a set of graph
grammar. The transformation is then implemented by spiegjfthe source model
constructs and the corresponding target model constradisl§ and RHS of the
rules.

Since Graph Transformation is a procedural definition ottaesformation, the
execution order of the rules is very important. The problémomcurrency should
also be taken into account-which occurrence should be ahibseore than one were
found to matched the LHS in a certain execution step? In Atali8 execution order
is implemented as the priority of each rule. As to the coreney, when more than
one occurrence matched the LHS in a step, we can either cipagakel executing all
the qualified occurrences, or we can manually select one.

To implement the transformation in our project, severarmediate transformation
models are necessary. Our basic idea is to handle the reddietween classes first by
adding the navigation and inheritance information to edasscas class attributes,
then mapping each class to a corresponding RDBMS table.

Below are the four sequential graph transformation rulgsated in AtoM3.

Rulel: Handling the association classes

LHS specifies the situation of a class(Class 3 in the figuregoen association class
of two other classes(Class 1 and Class 2). In this case, waddlthe Key attribute
of Class1 and Class 2 to the attribute list of Class 3. Thisii@émented by editing
the attribute of Class 3 in the RHS. Also, in the RHS, the liekd®een the classes
disappears. This is just a mechanism to keep track of theias®ms having been
handled

21

i
H
i
Ui
i
|
£
H
i
eTte

A L3

=
L
-
T

£
]

o e T R

2 35}

§ oy e =
LS B E R BT R R THT THE R TH Erae il

Figurel6 The LHS and RHS of Rulel

Rule2: Handling the associated classes

LHS specifies the situation when one class (Class 1) is agsodaivith another
class(Class 2). In RHS, we add the Key attribute of ClassRaa@ttribute list of Class
1 by editing the attribute of Class 1.

= i

b

]

T

=

[

b oo T AT .
e | e g e B e

Figurel7 The LHS and RHS of Rule2

Rule3. Handling inheritance between classes

LHS specifies the situation when one class (Class 1) is itdtefiiom another
class(Class 2). In RHS, we add the whole attribute list o6€240 that of Class 1 by
editing the attribute of Class 1.

== i 18]
T R e & :]
2 o e e o R | £+ = o el
B 1 H |J e |J
B I i
I s 1) il
L e — T 2 0 e U] o= o by
it il 1]
e e T e s G T 1 7 W T HI T T [R e S 5
el AR A LSl e 1 Dt R U ol e | b e e e e

Figurel8 The LHS and RHS of Rule3

Rule4. Handling mapping from classes to tables

After finishing executing Rule1-Rule3, we get an intermesliaodel which includes
all the navigation and inheritance information in the claggbute lists. The last step
is to transform each class to a table. Type mapping is alsdlédin this step.

22

Figure19 The LHS and RHS of Rule4
LHS is a single class, in RHS, we specify the TableName anteFaddds attributes of
the target table by the following rules

e Map the ClassName of LHS to the TableName of RHS
e Map the attributeName of each LHS attribute to a fieldNaméeRHS

o If the attributeType of a LHS attribute is String, map it tordaar in the RHS,
etc.

5.4.5 The execution of the transformation from PIM to PSM

ATOMS3 provides an environment both for inputting the graggmsformation rules
and executing them. After launching the transformationndkgdin illustrated in
previous sub-section, ATOM3 also allows for choosing thecetion style. To
demonstrate the whole procedure of the model transformé&tion PIM to PSM , we
choose to execute the rules step-by-step with sequenti@iahaontrol. Figure 20
shows the transformation procedure with each intermediaidel shown in the model
window.

The execution steps are explained as follows:

e Stepl: Executing Rulel, the two occurrences which weredaonatching with
the LHS were Highlighted

e Step2: Manually choosing an occurrence to be executed{dmiémonstration,
we chose MyChange, Breakfast and Comestible)

e Step3: Executing Rulel, the left occurrence matching th8 dre replaced
by RHS

e Step4: Executing Rule2, the three occurrences which wenmedfonatching with
the LHS were highlighted

e Step5: Manually choosing an occurrence to be executed (drdémonstration,
we chose Breakfast and StandardBreakfast)

e Step6: Executing Rule2, the two occurrences which weredanatching with
the LHS were highlighted

23

e Step7: Manually choosing an occurrence to be executed (drdémonstration,
we chose Breakfast and BreakfastOrder)

e Step8: Executing Rule2, the left occurrence matching th8 dre replaced
by RHS

e Step9: Executing Rule3, only one occurrence was found nmaf¢he LHS, it
was executed immediately

e Stepl0-Stepl7: Executing Rule4 8 times until all the oanwes were
executed.

24

Figure20 The execution procedure of the transformation

5.4.6 Transforming PSM to Source Code

In most cases, the technology information included in PSkldaborated. So, the
transformation from the PSM to the source code is not a difflagk compared with
the one from PIM to PSM. In our project, the Relational DatsbBSM that we get
from the transformation is a set of table descriptions wittbherated information of
the names and types of all the fields.

In ATOM3, all the models are stored as an Abstract Syntax @PG) in a certain
data structure. Thus, in our Relational Database PSM, aeébdhis a node in the ASG.
ATOMS also provides a mechanism allowing for user-definedipwdation on the
model. By adding an action button to the meta-model with doedbcode, we can get
access to the ASG data structure of the current model andomate the model data.
Figure 21 shows the meta-model of our PSM viewing as a modeRifiormulism.

We add an entity named "Generate SQL”" to the model and thentediAction”
attribute of the button by binding Python code to the button.

25

. AToM0 .22 using: Buktens

Butlans Nmeu Eulrrm‘- ;Dlnntl Dedevs | [rreai recded | Evpuaned receced
i+ | [l Semsch | st st | Do e | hargs ot |
Futton

Takile

Dt TaklEs

Contissrl name: [=ation
EDI
4 S
erierate SO0 B I e i e
F DL 7 POSToondion |Ciif
CEL
¥ The pasameters of this method are:
& - wherex
¥ -wherey
T = mpisit DUMP_madc)
(7 " SeestAtibue Ted —ll DUMP_madel.dump_E0L{selparent seliASGroog)
Tesd Gaveizle SOL
Actin ol
Dy Modle [~
ok Cancel

Figure21 meta-model of PSM and the editing window for "Actian” attribute

Since our intention here is to transform the PSM to SQL sociocke , we can write
code biding to iterate over the ASG data structure and apglyie following
transformation rules(given in [2]).

e For each table generate a "Drop Table if exists ” text folldvag the name of
the table, a "CREATE TABLE" text followed by the name of thélka, and a”
”. Then execute rule 2, followed by rule3, and end with ”;”

e For each column in the table, generate the name of the coliothmwed by the
name of the type and size of the column, then generate "NOf&ifcolumn
may not have the NULL value and end with "NULL”

e Generate a "PRIMARY KEY ” text, followed by a comma-sepaddist of the
names of the columns of the primary key, and end with ™

After applying these transformation rules on our PSM bykitig the "Generating
SQL” button, we got output file named createTable.sql withftilowing source code:
createTables.sql

Drop Table if exists MyChange ;

Create Table MyChange(

quantity Integer NOT NULL,

BreakfastID Integer NOT NULL,

ComestiblelD Integer NOT NULL,

MyChangelD int(3) not null PRIMARY KEY

)i

Drop Table if exists Comestible ;

Create Table Comestible(

name varchar(40) NOT NULL,

price Real NOT NULL,

26

ComestiblelD int(3) not null PRIMARY KEY
)i

Drop Table if exists Breakfast ;

Create Table Breakfast(

number Integer NOT NULL,
StandardBreakfastID Integer NOT NULL,
BreakfastOrderID Integer NOT NULL,
BreakfastID int(3) not null PRIMARY KEY
);

Drop Table if exists BreakfastOrder ;
Create Table BreakfastOrder(

delivaryTime Date NOT NULL,
delivaryAddress varchar(40) NOT NULL,
CustomerID Integer NOT NULL,
BreakfastOrderID int(3) not null PRIMARY KEY
)i

Drop Table if exists StandardBreakfast ;
Create Table StandardBreakfast(

name varchar(40) NOT NULL,

price Real NOT NULL,
StandardBreakfastID int(3) not null PRIMARY KEY
)i

Drop Table if exists Part ;

Create Table Part(

quantity Integer NOT NULL,
StandardBreakfastID Integer NOT NULL,
ComestiblelD Integer NOT NULL,

PartID int(3) not null PRIMARY KEY

)i

Drop Table if exists VIP ;

Create Table VIP(

account Integer NOT NULL,

name varchar(40) NOT NULL,

address varchar(40) NOT NULL,

VIPID int(3) not null PRIMARY KEY

);

Drop Table if exists Customer ;

Create Table Customer(

name varchar(40) NOT NULL,

address varchar(40) NOT NULL,
CustomerlD int(3) not null PRIMARY KEY
);
To test the effectivity of the generated source code , we ead the createTable.sql
into MySQL. Figure22 shows the interactions with the MySQBNJS.

27

varchar{48

28

&% Command Prompt - niysgl best 1

| Key | Default |
1
i a

i i 8
H ia
! PRI | @

4 rows in set (B.B81 sec)

Figure22. Interactions with MySQL

6 Conclution

As the initial prospect of OMG, MDA is supposed to provide aibaechnical
framework for information integration and tools interogéon based on the
separation of Platform Specific Models from Platform Indegent Models. In this
report, we looked through the basic concepts of MDA. Althotlteoretically perfect,
some technical issues are still open for sound solutions.fiilfillment of MDA
requires the mechanisms for strictly describing the modkeésdata in the system) and
the transformations between models(the behavior of thies)sso that the tools can
be provided to support the automated process of model tranation. This paper
looked into some technical details of these two most immbitsues in MDA.
Meta-modeling is an extensible framework to define modelshiks framework
Jdifferent formalisms can be modeled by a common meta-mtues facilitates the
generation of domain-specific formalisms and the definitibmansformation
between different formalisms. There have been some rdssaoarried out to solve
the problems in the current MOF meta-modeling frameworkn&gartly solution

29

have been proposed. The UML2.0 is supposed to provide aoppate framework
as the MDA's new meta-modeling standard. An equally impdrissue as
meta-modeling in MDA is model transformation. Currenthete’re no standards yet
either as to how to specify the transformation or how to eteeituTwo methods are
mentioned in this paper-one based on the Graph transfamidtory and the other
based on OCL and MOF. To illustrate the process of MDA devaleqt, we give an
implementation in ATOM3. This tool provides the environrhfar describing
formalisms based on ER meta-model and using graph rewtgicignology for
processing model transformations. MOF2.0QVT, which isistrevision, will
probably provide a standard for model transformation in MDA

References

[1] Colin Atkinson and Thomas Kilhne. The essence of mukilenetamodeling. In
Martin Gogolla and Cris Kobryn, editorsML 2001 - The Unified Modeling
Language. Modeling Languages, Concepts, and Tools. 4¢hriational
Conference, Toronto, Canada, October 2001, Proceedivaame 2185 of
LNCS pages 19-33. Springer, 2001.

[2] Colin Atkinson and Thomas Kithne. Rearchitecting thd infrastructure ACM
Trans. Model. Comput. Simull2(4):290-321, 2002.

[3] Luciano Baresi and Reiko Heckel. Tutorial introductiorgraph transformation:
A software engineering perspective.lRGT, pages 402-429, 2002.

[4] Juan de Lara and Hans Vangheluwe. Atom3: A tool for midtimalism and
meta-modelling. IFFASE '02: Proceedings of the 5th International Conference
on Fundamental Approaches to Software Engineeniages 174—188.
Springer-Verlag, 2002.

[5] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Woodafsformation: The
missing link of mda, 2002.

[6] Object Management Group. Meta object facility(mof) sifieation version 1.4,
2002.

[7] Object Management Group. Mda guide version 1.0.1, 2003.

[8] Anneke Kleppe, Jos Warmer, and Wim BaBtDA Explained. The Model Driven
Architecture: Practice and Promiséddison-Wesley, 2003.

30

