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This document describes some issues which must be considered while adding Computer Algebra capabilities to AToM3.

1 Introduction

We would like to do the following in AToM3: to take sets of equations - these could be just algebraic, or differential
algebraic equations (DAEs), and manipulate them symbolically before invoking a solver. These manipulations include:
first doing dependency analysis on the equations and variables, followed by causality assignment so that it is clear what
equation must be used to solve for which variable. Next, cycle detection and sorting is performed, so that the order in
which the equations must be solved is determined, and sets of coupled equations are identified. These manipulations
should together be implemented as a ‘preliminary transformation’ in AToM3.

To do this we must first of all be able to create meta-models of sets of algebraic expressions and equations, and then the
objects that appear in these expressions. Typically algebraic expressions are made up ofnumerical constants(numbers)
such as 9,2.3; variables representing unknowns, which are denoted by symbols such asx,y; and arithmetical operators
such+,∗. In addition, in the simulation context there are known quantities orparameters, which are denoted by symbols
(such as an elastic constantη, a refractive indexµ), which are given certain values for a particular simulation. We could
also extend the ‘basic entitites’ we deal with to include vectors, matrices, intervals, and so on; the set of operators to
include non-arithmetical operators such as logical, Boolean, differential, and possibly other operators. There are universal
constants such asπ,e, the speed of lightc, which are denoted by symbols but have a fixed value, which should also be
taken into account.

Possible entities in the meta-model for algebraic expressions and their constituent relationships could be (the symbol⇓
indicates the relation ‘contains’):

Sets of Equations
⇓

Equations
⇓

Expressions
⇓

Terms
⇓⇓⇓⇓

Constants, parameters, variables, operators.

It is helpful at this juncture to look at how Computer Algebra Software (CAS) systems like Mathematica, Maple and
MuPAD work. MuPAD ([Fucssteiner et al., 1996]) is freely available for researchers, and the source code is also included
in the distribution. The recent versions of MuPAD work in an object-oriented way. The most important objects in MuPAD
aredomains, which are used to define abstract algebraic structures such as rings and fields, and also the‘basic type’of
an object. There are fundamental domains such as the domainZ of integers, the fieldR of real numbers, etc. Other
domains are constructed which inherit properties of the basic domains - thus there is a hierarchy of domains. A domain
is constructed using a set of pre-definedaxiomsandconstructors. Example domains are the domain of expressions, the
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domain of polynomials, the domain of matrices, etc. The operations within a domain are interpreted in its own context.
Thus for instance, the action of the operator ‘+’ (or ‘plus’) depends on the objects being added. Domains with common
features are further grouped intocategories, which are in turn constructed using category constructors and axioms.

The various CAS systems differ in the way the basic objects are represented and stored. A major concern in all of
these is the important problem ofsimplificationandevaluation. Simplification involves manipulation andcomparison
of expressions, at one level. The only way to compare expressions is to ‘reduce them to a standard unique form’, or
canonical form. We discuss these ideas further in subsequent sections.

I have succeeded in taking a small set of algebraic equations, doing dependency analysis and causality assignment, and
sorting them (using the built-in network flow algorithms) in MuPAD. (See Appendix 1 for the details.) We could in
principle use MuPAD to do all these operations instead of AToM3. However, we then do not have a handle on the sim-
plification. Although the source code for all the methods used in MuPAD is available, basic things such as the canonical
representation used, are not transparent, because they are part of the system kernel. (Note that future versions of MuPAD
are planned to have ‘modular’ simplification). Also, the network flow algorithms used are not the most efficient ones. Of
course, one could write better algorithms using the MuPAD language itself.

Another important question for us is: what level of description do we use to model algebraic quantities ? Do we start
from the axiomatic number theory level, or just model basic objects and operators without worrying about their algebraic
structure ?

Here are some more ideas leading to the question of simplification and canonical representation. These are taken from
[Geddes et al., 1992].

2 Levels of Abstraction

While we mentioned above that integers, polynomials, etc. are basic objects in their respective domains with operations
such as{+,∗} suitably defined, these mathematical, abstract definitions cannot be implemented in a simple manner.
The data structures required to represent polynomials or series are far more complicated than those for integers, for
example. Also, at the machine level the algorithms used to implement ring operations depend on the ring elements
being considered, and so vary in complexity. We see that there are different levels of abstraction in dealing with abstract
mathematical objects. In [Geddes et al., 1992] three levels of abstraction are identified:

1. Theobject level: this is the abstract mathematical level where the elements of a domain are considered to be
primitive objects.

2. Theform level: this is intermediate between the abstract and the data structure levels. Here we are concerned with
how to represent (or express) an object symbolically, keeping in mind that this representation may not be unique.
For example, there are different, but equivalent, representations for the same bivariate polynomial in the domain
Z[x,y] (bivariate polynomials with integer coefficients):

a(x,y) = 10x2y−2xy+5x−1;

a(x,y) = (5x−1)(2xy+1);
a(x,y) = (10y)x2 + (−2y+5)x−1. (1)

In the first of these,a(x,y) is in thedistributed form, that is,x andy are treated at the same level; it is also in
expanded form, without factors. In the second,a(x,y) is left in factored form. In the last form,a(x,y) is expressed
in a recursive way- that is, it is considered to be a polynomial inx with coefficients which are polynomials iny.
More on this below.

3. Thedata structurelevel: here we are concerned with what data structures to use to represent particular objects. For
example the polynomiala(x,y) in the first form in (1) above can be represented by a linked list consisting of four
elements (one for each term), or we can store the coefficients and exponents in separate arrays.

The important questions of simplification and evaluation are related to the form level of abstraction.
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3 The Simplification Problem

Which is thesimplestform of a(x,y) in (1) ? The answer depends on what we mean by ‘simplest form’ for a given
expression. This is not obvious, however, and it is a very difficult problem to specify simplification algorithmically.
Consider polynomials again. For instance, suppose we encounter:

(x2 +3x+2)− (x+1)(x+2). (2)

We would like the above expression to be replaced by 0. Suppose we specify that to simplify a polynomial expression,
we first multiply out all factors term by term (that is, expand all factors) and collect like terms. Then we ensure that the
expression in (2) will be automatically replaced by 0. Also, an expression such as:

xn−yn, (3)

for n large, is definitely ‘simpler’ in this expanded form than in its factored form where(x− y) has been factored out.
However, if we have the expression:

(x+y)1000−y1000, (4)

the expanded form would contain a thousand terms. From both human and resource points of view, the expression in (4)
would be considered ‘simpler’ as it is, unexpanded.

Other examples of simplification include reducing rational expressions to their irreducible form; taking account of
trigonometric identities (so thatsin2(x) + cos2(x) would be replaced by 1, for example); factorization, etc. Thus sim-
plification is essential for the following reasons:

1. large amounts of computer resources (both memory and execution time) may be consumed simply storing and
manipulating unsimplified expressions;

2. for better readability, expressions must be in their simplest possible form.

The example in (2) leads us to thezero equivalence problem.

4 Zero Equivalence

The zero equivalence problem is a special case of the general simplification problem. Here we are interested in recogniz-
ing when an expression is equivalent to zero. This case is treated specially because it is a well-defined problem, and also
because an algorithm for determining zero equivalence is considered to be a sufficient ‘simplification’ algorithm in many
practical cases. It is not easy however. For example, if we have to simplify:

ln(tan(
x
2
)+sec(

x
2
))−sinh−1(

sin(x)
(1+cos(x)

), −1≤ x≤ 1; (5)

this can be recognized to be zero only after non-trivial transformations. At this level of generality, the zero equivalence
problem is known to be unsolvable by any algorithm in a ‘sufficiently rich’ class of expressions. However it can be done
for the simpler cases of polynomials, rational expressions and power series.

5 Normal and Canonical Transformations

In the general case of simplification, and in order to compare expressions, it is necessary to impose an ordering on the
terms. We are then led to considernormal andcanonicalrepresentations for expressions. Acanonical transformation
renders every expression in a form that is unique. When all expressions are expressed in a canonical form, comparison
and simplification become easier.
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Formally, the simplification problem can be expressed as follows. LetE be a set of expressions. Let∼ be an equivalence
relation onE. Then∼ partitionsE into equivalence classes and the quotient setE/ ∼ denotes the set of all equivalence
classes. The simplification problem is then stated by specifying a transformationf : E → E such that for any expression
a∈E, the transformed expressionf (a) belongs to the same equivalence class asa in the quotient setE/∼. We desire that
f (a) be simpler thana. We obviously choose equality(=) as the equivalence relation. We note that all the expressions
for a(x) in (1) areequalto each other (and hence belong to the same equivalence class), but are notidentical(≡) in form.

A normal functionfor [E;∼] is a computable functionf : E → E and satisfies the following properties:

1. f (a)∼ a for all a∈ E;

2. a∼ 0⇒ f (a)≡ f (0) for all a∈ E.

A canonical functionfor [E;∼] is a normal functionf : E → E which satisfies the additional property of uniqueness:

3. a∼ b⇒ f (a)≡ f (b) for all a,b∈ E.

If f is a normal function for[E;∼] then an expression ˜a∈ E is said to be anormal formif f (ã) ≡ ã. If f is a canonical
function for[E;∼] then an expression ˜a∈ E is acanonical formif f (ã)≡ ã.

Thus if we are able to define a normal function in a setE of expressions, the zero equivalence problem is solved. There is
no unique normal form for all expressions in a particular equivalence class unless this class contains 0. A canonical form
however provides a unique representative for each equivalence class. This is proved by the following theorem:

Theorem: If f is a canonical function for[E;∼] then the following properties hold:

1. f is idempotent:f ◦ f = f , where◦ denotes composition of functions;

2. f (a)≡ f (b) iff a∼ b;

3. in each equivalence class inE/∼ there exists a unique canonical form.

We will not prove this here however.

Normal and canonical forms can be constructed for polynomials, rational expressions and power series fairly easily. Once
the canonical form or canonical representation has been determined, appropriate data structures have to be constructed.

6 Evaluation

Evaluationis closely intertwined with simplification. In all CAS systems, evaluation can be controlled by the user. For
example, if we have:

y = 3

x = y+5

z = x3−5x+1; (6)

shouldeval(z) lead to the ‘simplified’ expression iny, or should the value ofy be further substituted ? Obviously in a
very complex expression, the result of evaluation depends on the substitution depth of its variables.

7 Representation, normal and canonical forms for polynomials

For multivariate polynomials, there are different choices to be made for their representation, at the form level of abstrac-
tion: whether to use arecursiveor distributiverepresentation, and whether to use asparseor denserespresentation.
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7.1 Recursive and distributive representations

In the recursive representation, a polynomial in several variablesa(x) = a(x1,x2, . . . ,xm) (in the domainD[x1,x2, . . . ,xm]
of polynomials ofm variables ) is represented as:

a(x1,x2, . . . ,xm) =
deg1(a(x))

∑
i=0

ai(x2, . . . ,xm)xi
1. (7)

Here deg1(a(x)) is the degree ofa(x) as a polynomial inx1. That is,a(x) is written as an element ofD[x2, . . .xm][x1],
where, recursively, the polynomial coefficientsai(x2, . . . ,xm) are represented as elements of the domainD[x3, . . . ,xm][x2],
and so on. Finally, the polynomial is viewed as an element of the domainD[xm][xm−1] . . . [x1]. An example of a polynomial
in three variables with integer coefficients written recursively is:

a(x,y,z) = (3y2 +(−2z3)y+5z2)x2 +4x+((−6z+1)y3 +3y2 +(z4 +1)). (8)

In the distributive representation, however, the polynomiala(x) (in the domain of multivariate polynomialsD[x]) is
represented as:

a(x) = 3x2y2−2x2yz3 +5x2z2 +4x−6y3z+y3 +3y2 +z4 +1. (9)

7.2 Sparse and dense representaions

In the sparse representation of polynomials, only the terms with non-zero coefficients are represented, while in thedense
representation, each and every term that can possibly appear in a polynomial of a given degree is represented (even if
some coefficients are zero). This depends to some extent on the data structures used. The dense representation is unwieldy
for large degrees, however. Most CAS systems use the sparse representation.

Another choice is whether to write constant terms as terms with exponents all equal to zero.

7.3 Normal and canonical forms

Normal and canonical forms can be defined for polynomials in theirexpandedor factoredforms.

An expanded normal formfor multivariate polynomials in a domainD[x1,x2, . . .xm] can be specified by the following
normal functionf1, whose rules are:

1. multiply out all products of polynomials;

2. collect terms of the same degree.

We can arrive at anexpanded canonical formusing a canonical functionf2: apply f1 above; then:
3. rearrange the terms into some particular order (ascending or descending) of their degrees.

A factored normal formand afactored canonical formfor polynomial expressions can also be defined by specifying
corresponding functions. (See [Geddes et al., 1992] for details).

However, the functions{ f1, f2} and those for the factored forms, are not all easy to implement practically. Especially the
factored canonical form, is rarely used because polynomial factorization is relatively expensive. Usually variants off2,
the expanded canonical form, and the factored normal form, are used, with some control over the ‘simplification’ of the
resulting expressions. Thus in practical implementations, the transformation functions which are most convenient may be
neither normal nor canonical !

8 Normal and canonical forms for rational expressions

A field of rational expressionsD(x1,x2, . . .xm) can be considered to be the quotient field of a polynomial domain
D[x1,x2, . . .xm]. Therefore normal and canonical forms for rational expressions depend on the polynomial forms used.
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If we assume that GCDs exist in the domainD of rational expressions, and assuming the expanded canonical form for
polynomials, anexpanded canonical formfor rational expressions is defined byf3:

1. (form common denominator): put the expression into the forma/b where(a,b) are polynomials inD[x1,x2, . . .xm];

2. (remove GCD): compute g = GCD(a,b), which is also a polynomial inD[x1,x2, . . .xm]. Replace the expressiona/b
by a′/b′ wherea = a′g andb = b′g;

3. (normalize): replace the expressiona′/b′ by a′′/b′′ where the denominatorb′′ is the ‘normalized’ form ofb′ - that
is, with the leading coefficient positive.

4. (make polynomials canonical): replace the expressiona′′/b′′ by f2(a′′)/ f2(b′′) where f2 is the expanded canonical
form for polynomials defined above.

In f3 above, it is not explicitly stated if the numerator and denominator polynomials(a,b) must be first put into some
normal or canonical form before the GCD is found. As a practical point, if(a,b) are in factored normal form, the GCDs
of the various factors can be computed separately and multiplied.

There are other normal forms possible for rational expressions, which are more useful in a practical implementation.
Some of these are:

• factored/factored: the numerator and the denominator are both in factored normal forms;
• factored/expanded: the numerator is in factored normal form and the denominator is in expanded canonical form;
• expanded/factored: the numerator is in expanded canonical form and the denominator is in factored normal form.

It can be seen that the canonical formf3 would be theexpanded/expandedform. Theexpanded/factoredform has been
found to be particularly useful, along with an efficient computation of GCDs. Again, however, sometimes other simplifi-
cation procedures may have to be employed in a practical situation, so that the representation corresponds to neither the
canonical nor normal forms.

9 Computer Algebra in AToM 3

In the sections above we have reviewed some important issues in CAS systems. The idea of transforming an algebraic
expression into a unique, canonical form, is an important one, and it is noteworthy that different algebraic objects need
different normal and canonical representations.

We would like to be able to symbolically manipulate expressions and equations in AToM3. However we certainly should
not aim to incorporate all the capabilities in available CAS systems. We identify the following transformations that we
should be able to do in AToM3:

• A ‘canonicalize’ transformation should be able to render any expressions or equations (algebraic, DAEs) into
their unique, canonical form. This implies collecting terms, rearranging them in a particular order, and performing
constant folding.

• Given a set of equations to solve, a ‘preliminary solver’ must do the following:

1. dependency analysis;

2. causality assignment;

3. cycle detection;

4. sorting.

We must be able to handle both purely algebraic objects and DAEs as well. (Note: The meaning of all the above
operations w.r.t DAEs is to be further investigated).

In order to implement all of the above in AToM3, we need to resolve some things:
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• The canonical representation to be used to represent algebraic objects. From the discussion in the preceding sec-
tions, we must in principle define different canonical forms for different objects, such as polynomials and rational
expressions. However, rather than following the standard procedure, it may be best to choose aconvenientandprac-
tical representation to begin with, wherein simplification will be performed to a limited extent. One such possible
set of rules for purely algebraic expressions and equations is presented in the following section.

• The appropriate data structures and algorithms to be used to manipulate different algebraic objects.
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Appendix 1

* Here is an example from MuPAD. This text file was generated from a
* MuPAD session. In this session, I have taken a set of four
* equations, performed dependency analysis and causality assignment
* by finding a maximal flow on a bipartite graph defined over the equation numbers and the
* unknown variables. After we know which equation is to be used to
* solve for what variable, the equations are sorted in order to find
* the correct order of solution.
-------------------------------------------------------------

* Here are the four equations:
-----------------------------

>> eq1 := x+y+z =0;

x + y + z = 0
>> eq2 := x+3*z+u*u =0;

2
x + 3 z + u = 0

>> eq3:= z -u -16 =0;

z - u - 16 = 0
>> eq4 := u -5 = 0;

u - 5 = 0
>> eqlist:= [eq1,eq2,eq3,eq4]

2
[x + y + z = 0, x + 3 z + u = 0, z - u - 16 = 0, u - 5 = 0]

* Here we define a procedure which collects all the variables in a given
* equation (or expression) by looking at the type of the operands of
* the expression. If the operand is of type IDENTIFIER, it is added to
* the set of variables, var_set.

>> collect_vars := proc(expression) begin operands := op(expression):
if expression = operands then if type(expression) = DOM_IDENT
then var_set := var_set union {expression} end_if
else map(operands,collect_vars) end_if end_proc;

proc collect_vars(expression) ... end

* Below we initialize two sets: total_var_set is the union of all the
* variables in all the equations, each_var_list is a list which
* contains the set of variables for each equation, where the position
* of each set in the list corresponds to the equation number.

>> total_var_set := {}

{}
>> each_var_list := []

[]
* Building the two objects....

>> for elem in eqlist do var_set :={}: collect_vars(elem):
total_var_set:= total_var_set union var_set: each_var_list:= append(each_var_list,var_set):end_for:

>> each_var_list
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[{x, y, z}, {u, x, z}, {u, z}, {u}]
>> total_var_set

{u, x, y, z}

* Now we need to define the directed (bipartite) graph. This is done by forming a graph whose
* vertices are the equations, together with all the variables. To use the Networks package of
* MuPAD, we need to supply a list of vertices and a list of edges.
* I have chosen [1,2,3,4] to refer to the members of
* eqlist = [eq1,eq2,eq3,eq4] above, and the other vertices are given by the set of all the
* variables, total_var_set. The edges are defined as follows.
* There is an edge from the equation number to a variable whenever the variable occurs in
* the equation. Note that we could have also directly used the equations themselves,
* or their labels such as ‘eq1’.

* Generating the vertices corresponding to the equations:

>> conlist:= [i $i = 1..nops(eqlist)]

[1, 2, 3, 4]

* Making a list of all the variables:

>> varlist:= [op(total_var_set)]

[y, u, x, z]

* Building the vertex list:

>> vertex_list := conlist.varlist

[1, 2, 3, 4, y, u, x, z]

* Initializing the list of edges:

>> edge_list := []

[]

* Building the edge list:

>> for mem in each_var_list do for elem in op(mem) do edge_list :=
append(edge_list, [contains(each_var_list,mem), elem]): end_for: end_for:

* This is what edge_list looks like:

>> edge_list

[[1, z], [1, x], [1, y], [2, u], [2, x], [2, z], [3, u], [3, z], [4, u]]

* We need to define a list of vertex weights. This particular list of
* values is chosen so that the graph can be converted to a
* single-source single-sink network. More on this below.

* Building the list of vertex weights:

>> vw := [1,1,1,1,-1,-1,-1,-1]
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[1, 1, 1, 1, -1, -1, -1, -1]

* Creating our directed graph G by invoking the Networks
* package. Since we have not assigned edge weights and edge
* capacities, these are all set to the default value 1 :

>> G:= Network(vertex_list, edge_list, Vweight = vw);

Network()

* Displaying the details of the graph G:

>> Network::printGraph(G):

Vertices: [1, 2, 3, 4, y, u, x, z]

Edges: [[1, z], [1, x], [1, y], [2, u], [2, x], [2, z], [3, u], [3, z], [4\
, u]]

Vertex weights: table(z=-1,x=-1,u=-1,y=-1,4=1,3=1,2=1,1=1)

Edge capacities: table([4, u]=1,[3, z]=1,[3, u]=1,[2, z]=1,[2, x]=1,[2, u]\
=1,[1, y]=1,[1, x]=1,[1, z]=1)

Edge weights: table([4, u]=1,[3, z]=1,[3, u]=1,[2, z]=1,[2, x]=1,[2, u]=1,\
[1, y]=1,[1, x]=1,[1, z]=1)

Adjacency list (out): table(z=[],x=[],u=[],y=[],4=[u],3=[u, z],2=[u, x, z]\
,1=[z, x, y])

Adjacency list (in): table(z=[1, 2, 3],x=[1, 2],u=[2, 3, 4],y=[1],4=[],3=[\
],2=[],1=[])

* After defining the directed graph, we convert it into a
* single-source single-sink network by adding the source node ‘q’ and
* sink node ‘s’ to the graph G. The call:
* Network::convertSSQ(G,q,s)
* converts a graph G into a single-source
* single-sink network by adding the nodes ‘q’ and ‘s’. These are
* connected to the other nodes (or vertices) in the network as follows:
* A new edge [q,i] is added for every vertex i with a positive weight.
* A new edge [i,s] is added for every vertex i with a negative weight.

* We obtain G1, the single-source single-sink network formed from G:

>> G1:= Network::convertSSQ(G,q,s);

Network()

* Showing details of G1:

>> Network::printGraph(G1)

Vertices: [1, 2, 3, 4, y, u, x, z, q, s]

Edges: [[1, z], [1, x], [1, y], [2, u], [2, x], [2, z], [3, u], [3, z], [4\
, u], [q, 1], [q, 2], [q, 3], [q, 4], [y, s], [u, s], [x, s], [z, s]]

Vertex weights: table(s=-4,q=4,z=0,x=0,u=0,y=0,4=0,3=0,2=0,1=0)

Edge capacities: table([3, z]=1,[2, z]=1,[1, z]=1,[2, x]=1,[1, y]=1,[4, u]\
=1,[1, x]=1,[3, u]=1,[2, u]=1,[q, 4]=1,[q, 3]=1,[q, 2]=1,[q, 1]=1,[z, s]=1\
,[y, s]=1,[x, s]=1,[u, s]=1)
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Edge weights: table([3, z]=1,[2, z]=1,[1, z]=1,[2, x]=1,[1, y]=1,[4, u]=1,\
[1, x]=1,[3, u]=1,[2, u]=1,[q, 4]=0,[q, 3]=0,[q, 2]=0,[q, 1]=0,[z, s]=0,[y\
, s]=0,[x, s]=0,[u, s]=0)

Adjacency list (out): table(s=[],q=[1, 2, 3, 4],z=[s],x=[s],u=[s],y=[s],4=\
[u],3=[u, z],2=[u, x, z],1=[z, x, y])

Adjacency list (in): table(s=[y, u, x, z],q=[],z=[1, 2, 3],x=[1, 2],u=[2, \
3, 4],y=[1],4=[q],3=[q],2=[q],1=[q])

* We now compute the maximal flow f from the source to the sink in the
* graph G1, with the default edge capacity values set to 1 for all
* edges. The result is a sequence containing the flow value (the
* inflow at s which equals the outflow at q), and the flow value
* which is in the form of a table, t, where the flow from node i to
* node j is given by t[[i,j]].
* The algorithm used by MuPAD is the preflow-push algorithm of
* Goldberg and Tarjan (‘ A new approach to the maximum-flow problem’,
* Journal of the ACM, 35 (4), 1988), with the FIFO selection strategy
* and an exact distance labelling. The running time is O(nˆ3), where
* n is the number of vertices in the network.
* Note : Here is a limitation of using MuPAD, since the above
* algorithm is not very efficient. It has been shown that
* Dinic’s algorithm for maximal flow is the most efficient.

>> f:= Network::maxFlow(G1,q,s)

table(
[3, z] = 1,
[2, z] = 0,
[1, z] = 0,
[2, x] = 1,
[1, y] = 1,
[4, u] = 1,
[1, x] = 0,

4, [3, u] = 0,
[2, u] = 0,
[q, 4] = 1,
[q, 3] = 1,
[q, 2] = 1,
[q, 1] = 1,
[z, s] = 1,
[y, s] = 1,
[x, s] = 1,
[u, s] = 1

)

* Extracting the table of flows:
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>> table1:=op(f,2)

table(
[3, z] = 1,
[2, z] = 0,
[1, z] = 0,
[2, x] = 1,
[1, y] = 1,
[4, u] = 1,
[1, x] = 0,
[3, u] = 0,
[2, u] = 0,
[q, 4] = 1,
[q, 3] = 1,
[q, 2] = 1,
[q, 1] = 1,
[z, s] = 1,
[y, s] = 1,
[x, s] = 1,
[u, s] = 1

)

* We are interested in the table entries which have non-zero flow
* values, and which are not flows to or from the source or sink. The
* edges which correspond to this are those which ‘optimally match’
* equations and variables. That is, we have now assigned causality, by
* determining which equation must be used to solve for a particular variable:

>> table2 := select(table1, _not@has, {0,q,s})

table(
[3, z] = 1,
[2, x] = 1,
[1, y] = 1,
[4, u] = 1

)

* From the table above, we see that eq3 must be used to solve for the
* variable z, eq2 for x, eq1 for y and eq4 for u. We next have to sort
* these equations in the order that they must be solved. This is done
* by building a ‘dependency graph’ as follows: we take the edges
* identified above which assign causality, and reverse them. We then
* replace the four original edges in the graph G by their reversed
* versions, yielding the dependency graph G_dep:

* forming a list of the edges which assign causality:

>> causal_edge_list := []

[]

>> for elem in op(table2) do causal_edge_list := append(causal_edge_list,lhs(elem)): end_for:

>> causal_edge_list

[[3, z], [2, x], [1, y], [4, u]]

* We create a list of their reverses:

>> reverse_edge_list := []
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[]

>> for elem in causal_edge_list do reverse_edge_list := append(reverse_edge_list, revert(elem)):end_for:

* We have the edges reversed:

>> reverse_edge_list

[[z, 3], [x, 2], [y, 1], [u, 4]]

* The original edge list:

>> edge_list

[[1, z], [1, x], [1, y], [2, u], [2, x], [2, z], [3, u], [3, z], [4, u]]

* We build an intermediate list which consists of all the edges in the
* original graph, but excluding the edges in the causal list.

>> temp_edge_list := []

>> temp_edge_list := select(edge_list, _not@has, causal_edge_list):

>> temp_edge_list

[[1, z], [1, x], [2, u], [2, z], [3, u]]

* We build the new edge list by combining the intermediate list and
* the list of reversed edges:

>> new_edge_list := temp_edge_list. reverse_edge_list

[[1, z], [1, x], [2, u], [2, z], [3, u], [z, 3], [x, 2], [y, 1], [u, 4]]

* Building the dependency graph:

>> G_dep := Network(vertex_list, new_edge_list)

Network()

* Showing details of the dependency graph:

>> Network::printGraph(G_dep)

Vertices: [1, 2, 3, 4, y, u, x, z]

Edges: [[1, z], [1, x], [2, u], [2, z], [3, u], [z, 3], [x, 2], [y, 1], [u\
, 4]]

Vertex weights: table(z=0,x=0,u=0,y=0,4=0,3=0,2=0,1=0)

Edge capacities: table([u, 4]=1,[y, 1]=1,[x, 2]=1,[z, 3]=1,[3, u]=1,[2, z]\
=1,[2, u]=1,[1, x]=1,[1, z]=1)

Edge weights: table([u, 4]=1,[y, 1]=1,[x, 2]=1,[z, 3]=1,[3, u]=1,[2, z]=1,\
[2, u]=1,[1, x]=1,[1, z]=1)

Adjacency list (out): table(z=[3],x=[2],u=[4],y=[1],4=[],3=[u],2=[u, z],1=\
[z, x])

Adjacency list (in): table(z=[1, 2],x=[1],u=[2, 3],y=[],4=[u],3=[z],2=[x],\
1=[y])
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* Finally we perform a topological sort on the dependency graph. The
* call Network::topSort(H) computes a topological sorting of the graph
* G. That is, we obtain a numbering N of the nodes such that
* N(i) < N(j) whenever there is an edge [i,j] in the graph. The result
* is a table of nodes and their numbering. This ordering is not unique
* however. The routine returns an error when there is a cycle.

* The table whose entries give a sorted order of the nodes:

>> table_sorted := Network::topSort(G_dep)

table(
4 = 8,
u = 7,
3 = 6,
z = 5,
2 = 4,
x = 3,
1 = 2,
y = 1

)

* If we write out the sorted nodes in their ascending order (that is,
* the LHSs of the table entries), replacing the equation numbers by
* their labels, we get the sequence:
* y eq1 x eq 2 z eq3 u eq4.
* We read this as saying : solve y from eq1, then x from eq2, z from
* eq3, u from eq4. In other words, we must solve the equations in the
* sequence (eq1, eq2, eq3, eq4).
*
* However, from examining the equations themselves it is obvious that
* we need the equations to be sorted in exactly the opposite way,
* in the order (eq4, eq3, eq2, eq1). We have run up against the
* limitations of MuPAD, and the fact that the topological sorting
* algorithm is not unique.
* Another limitation is that cycles, if they exist, are not detected,
* but MuPAD just raises an error and aborts.
*
* We would like to be able to identify sets of equations which form cycles
* in the dependency graph (and which then have to be solved
* separately), and be able to sort the remaining equations. One
* argument is that we must detect cycles first of all, before
* embarking on causality assignment and the rest.

* Just for the sake of completion, I obtained the correct sorted order
* by simply reversing all the edges in the dependency graph:

* Forming the edge list with all the edges reversed in G_dep:

>> rev_list := map(new_edge_list, revert)

[[z, 1], [x, 1], [u, 2], [z, 2], [u, 3], [3, z], [2, x], [1, y], [4, u]]

* A new graph, with the edges reversed in G_dep:

>> G2 := Network(vertex_list, rev_list);

Network()
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* Topologically sort this graph:

>> table_2 := Network::topSort(G2)

table(
y = 8,
1 = 7,
x = 6,
2 = 5,
z = 4,
3 = 3,
u = 2,
4 = 1

)

* This yields the correct order :
* (eq4 u eq3 z eq2 x eq1 y).
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Appendix 2

** Here are some examples of the internal tree representation of expressions
** in MuPAD. The representation is also canonical. The command
** prog::exprtree(expression)
** displays the tree structure of ‘expression’.

>> ex1 := (a-b)/c

a - b
-----

c

>> prog::exprtree(ex1)

_mult
|
+-- _power
| |
| +-- c
| |
| ‘-- -1
|
‘-- _plus

|
+-- a
|
‘-- _mult

|
+-- b
|
‘-- -1

Tree1

>> ex2 := (a-b)/(c+d) : prog::exprtree(ex2)

_mult
|
+-- _power
| |
| +-- _plus
| | |
| | +-- c
| | |
| | ‘-- d
| |
| ‘-- -1
|
‘-- _plus

|
+-- a
|
‘-- _mult

|
+-- b
|
‘-- -1

Tree2
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>> ex3 := x*sin(x) + exp(x) + 3ˆb

b
exp(x) + x sin(x) + 3

>> prog::exprtree(ex3)

_plus
|
+-- exp
| |
| ‘-- x
|
+-- _mult
| |
| +-- x
| |
| ‘-- sin
| |
| ‘-- x
|
‘-- _power

|
+-- 3
|
‘-- b

Tree3
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>> ex4 := 1/x - 1/y + exp(-2*x) + ln(y) = 5

1 1
ln(y) + - - - + exp(-2 x) = 5

x y

>> prog::exprtree(ex4)

_equal
|
+-- _plus
| |
| +-- ln
| | |
| | ‘-- y
| |
| +-- _power
| | |
| | +-- x
| | |
| | ‘-- -1
| |
| +-- _mult
| | |
| | +-- _power
| | | |
| | | +-- y
| | | |
| | | ‘-- -1
| | |
| | ‘-- -1
| |
| ‘-- exp
| |
| ‘-- _mult
| |
| +-- x
| |
| ‘-- -2
|
‘-- 5

Tree4
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