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We present a new, rule-based method for the simplification of expressions. This
will be the basis for the si npl i fy function in future versions of MuPAD.

The goal

MuPAD provides many functions that rewrite expressions in an equivalent form, such as expand, rewrite,
conbi ne, normal , si npl i fy, radsi np, and many more. While this helps the user to obtain many different
expressions equivalent to his input, it still forces the user to try many of these functions manually until some output
seems acceptable to him. Some automated search would be nice.

Simplification functions have to find a compromise between strength and running time. It is a pity if MuPAD does
not find out that a given input is equivalent to zero; but it is also a pity if a call to si npl i f y does not return for
two days. The user should be able to tell MUPAD how much time he wants to spend waiting for a result.

Many users find it hard to foresee what functions like cormbi ne or si npl i fy will do to the input. A good
simplification function must provide complete control, letting the user select what rules to apply.

Sometimes users may want to have a list of equivalent expressions, in order to be able to choose on their own.
Sometimes users may want a mathematical proof that the expressions are equivalent.

Summing up, some intelligent, highly configurable search is needed.

Some theory

We may consider different-looking expressions equivalent if we find a proof that they are equivalent. An equiva-
lence proof consists of finitely many steps; each step is the application of a rule (axiom, theorem, ...) to the result
of the previous step. Two expressions are equivalent if one is the input to the first step and the other is the output
of the last step of an equivalence proof.

Finding an equivalence proof is difficult (in fact, undecidable). We might apply all rules we know to the input to
obtain all expressions the equivalence of which can be proved in just one step; then apply all rules to all of these
to obtain all expressions that have an equivalence proof of length two; and so on. In fact, this is how to prove that
the problem is recursively enumerable. If we have a definition of complexity, the same argument works in order to
show that we are able to find the simplest expression that can be proved to be equivalent to the input in at most n
steps, with n fixed.

We may visualize the problem as a graph where the vertices represent expressions, and an edge between two
vertices indicates that one expression may be derived from the other in one step.

All of these statements are true in a well-known context, the theory of formal languages and grammars. Formal
grammars are a standard concept of computer science: they consist of an initial word and a set of replacement rules.
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Sequences of symbols that can be obtained, starting from the initial word, by successive application of replacement
rules, are called words of the language defined by the grammar. Our problem can then be rephrased as searching
for the shortest word in a formal language defined by a grammar.

Some ideas for heuristics

So far, we have learnt that we are searching a vertex in an infinite graph, but no idea how to do it. This is no surprise
since we have talked about general grammars, using no knowledge about arithmetical expressions.

Let us start with symmetry: we have not used it, should we try to use it somehow? In principle, the converse of
every rule will hold: we will rewrite sin(z)2 4 cos(z)? as 1, and we would be allowed to do it the other way around
as well. Intuitively, we feel that this is a bad idea: we should not use all rules that are mathematically valid, and the
set of rules we actually use will not be closed under exchanging left and right hand side. This means that we are
walking in a directed graph.

Now suppose that we can assign a “valuation” to every expression which we want to minimize. How can we
search?

One idea would be to go from a vertex to its “best” neighbour, and continue this until some vertex is reached that
is a local minimum. However, good results in mathematics are often achieved through complicated intermediate
results.

Should we then select a neighbour vertex at random, with the probabilty weighted by valuation, and allow increase
in valuation during the early steps, in a simulated—annealing manner? But since we are in a directed graph, we can
never correct a false decision.

Just the contrary idea is to follow our theoretical proof from above (width-first search), stop the enumeration after a
while, and return the best result found so far. The drawback to this approach is (of course) that only shallow depths
can be reached within a reasonable amount of time.

We have chosen to do a best-first search instead, as we will describe below.

Local vs. global simplification

We have not yet discussed another point that is important both in general grammars as well as in our special case
of mathematical expressions. Grammar rules (or mathematical rules) say that a given substring (or subexpression,
respectively) may be replaced by another one.

If the left/right hand sides of the rules are small compared to the word size, much of the previous word remains.
If some other substitution step applying to another part of the word was possible before, it might still be possible
NoOw.

On the other hand, we might try to find a rule that only replaces new parts of the word. In this way, we may hope
to be able to manipulate different parts of the word in a nearly context-free way.

A good algorithm should try to do this, and collect information how every subword can be locally transformed. We
do this, storing all derivations we have made in a large table.
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The algorithm

Let an expression A be given. The main part of our algorithm can be described in a very simple way:

e create a toDo-list of simplification steps for the simplification of A
e while no stopping criterion is reached
o do the next simplification - step for A
e return the simplest expression found so far
Now this tells almost nothing, we have to explain what a simplification step is, how the next step is determined,
what our stopping criteria are, and what the simplicity of an expression is.

A simplification step produces an equivalent expression, and/or it produces new tasks that have to be done.
Possible steps are:

fi ndRul es. Given an expression, find out which rules can be applied. This is the only item in every newly
created toDo-list. It returns nothing, and creates one appl yRul e task for every rule found. It also initializes
to-do lists for every operand, and creates one r ecur seOnQper and task for every operand of the expression.

appl yRul e. Given an expression and a rule, apply the rule to that expression. This returns an equivalent expres-
sion, and creates a f i ndRul es task for that new expression.

r ecur seOnOper and do a local simplification step on a given operand; replace the operand by the equivalent
expression found. We explain this on page 38.
We will explain below on page 39 how rules are organized and what applying a rule exactly means.

The tasks are sorted according to the expected complexity of the output they are going to produce. On page 39, we
will explain how the priority of tasks is computed. Stopping criteria are explained on page 40. We will describe on
page 40 how the complexity of an expression is measured.

The recursion step

Suppose we want to simplify an expression with many operands (for simplicity, let us consider asum) a; +. . .+a.,.
Itis clear that we may apply rules with n-element sums on their left hand side. On the other hand, we may substitute
some a; by an equivalent one; or apply some rule for sums with two summands to a; + a;, for some ¢, j.

Some optimization must be done here: since simplified versions of the same subexpression are needed many times,
we have to store them. Now suppose that for each a;, some equivalent expressions a; ;, 1 < j < m,, are already
available. One might suspect that trying all m; - - - m,, possible substitutions was too much effort. Experiments
show that this is not the case; therefore we form all combinations involving a particular a;; and a’s obtained earlier
as soon as we compute a; ;.

Technically, a recursion step for simplifying one a; looks as follows:

e Do one simplification step for a;

e Combine the expression obtained thereby with all ay, k # 4, and expressions equivalent to them, in all possible
ways.
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o Store the results as expressions equivalent to the original sum of a;’s.
e For each newly obtained result, put the task to simplify it on the to-do list. Put the task to simplify a; another
time on the to-do list.
A recursion step for a partial sum a;, + ... + a;, looks similarly.

The first step means that our simplifier must be able to call itself in that way that only one step is done, but the
to-do list is not lost afterwards. However, MUPAD has no static variables; we discuss this problem in a separate
article.

Rules

A rule is a prescription how to rewrite an expression into another expression and consists of three parts:

1. the left hand side: a pattern
2. the goal or right hand side: an expression to substitute

3. some conditions for the pattern variables (not necessary)

If the pattern matches a given expression, then we say that the rule is applicable to that expression.
An example foraruleis: Rule(sin(X)"2 + cos(X)"2, 1)

The pattern (part 1) is the expression Rule(sin(X)"2 + cos(X)™2 where X matches every MuPAD expres-
sion (because no conditions for X are given), the second part 1 is the goal of this rule. In this case no conditions
for the pattern variable X are necessary.

A more complex ruleis: Rule(X"p, hold(1"p * op(X, 2)7p),
{type(X) = DOM_COMPLEX and op(X, 1) = 0 and op(X, 2) > 0})

The rule rewrites powers when the base is an imaginary number with positive imaginary part. To prevent evaluating
the right hand side of a rule, one should use hold.

It’s also possible to use a special function to simplify an expression:
Rule(X, hold(rewrite(X, In)), {hold(has(X, exp))})

A rule base is a collection of rules, e.g., a list. For large collections of rules, it is useful to split the list into several
smaller ones, one per pattern type. The selection of rules is done by the function Simplify: :selectRules
which is called with an expression and returns all rules that could be applicable the given expression.

This select function can be replaced by a user defined function to consider user defined rule bases (see p. 41).

The priority of tasks

We use the convention that small numbers stand for high priorities. The priority of a step equals the expected
complexity of its output. In principle, one should multiply this by the exponential of some constant times the
expected running time. Since it is difficult to foresee both complexity of the output and running time, we have to
enter some arbitrary estimates anyway. In detail, we assign the following priorities:
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o To find applicable rules for a given expression has the priority given by the complexity of the expression, times
a constant factor smaller than one which represents the self-estimate of the simplifier (the average factor by
which an expression gets better per simplification step).

e The priority of applying a given rule to a given expression equals the complexity of the expression times a factor
specified inside the rule; by default, the ratio between the complexity of the right hand side and the complexity
of the left hand side is used.

e The priority of doing a simplification step for a subexpression is determined based on a guess how much the
given subexpression will be simplified in that step, and how much the valuation of the whole expression will
change thereby. Here, the expected valuation of the result of simplifying the subexpression can be read off from
the priority of the first element of the to-do list for that subexpression. It is assumed that the decrease of the
complexity of the subexpression will cause the same amount of decrease of complexity of the whole expression.

Stopping criteria

It may happen that no tasks are left at some point, such that all equivalent expressions have been found. Mathema-
tically, it cannot happen that there are only finitely many expressions equivalent to a given one; but a sensible rule
base will have no rule e.g. with left hand side 0, such that trying to simplify 0 will immediately return.

Except for this case, several stopping criteria can be imagined. We may do a fixed number of simplification steps;
or stop if the next step has a too bad priority; or stop if a given goal has been reached.

In our current implementation, we use 150 simplification steps. The user may customize this value using the
option MaxSteps = n, where n is a positive integer. The user may define a particular expression as goal using
the option Goal = expression. The simplification stops until the goal is reached and the number of steps is
shown. We did not implement a priority-based stopping criterion yet.

Complexity

One important point is to find a measure to compare expressions and find out the simplest expression.

Unfortunately, there exists no generally useful solution, although most users have a certain opinion what simplicity
means. Therefore, we allow the user to set his valuation (measure of complexity) by an option.

We define a default valuation recursively. Atomic MuPAD objects get a constant valuation only depending on their
type, e.g., rational numbers are more complicated than integers, and complex numbers are even more complicated.
An expression gets the sum of the valuation of its operands plus a value for the operation as valuation. Thus
operations gets different values for their complexity, e.g., + and * are simple operations, and cot and arcsin
are more complex.

Let us look at some examples:

Expression valuation Expression valuation Expression valuation
0] 1 x + 1 5 PIT(1/72)*(2*x)"(1/2) 29
-1523 1 X +y 6 sin(x) 32
174 2 2 + 1*7.1 10 sin(2*x) 36
X 2 x"2 10 int(sin(2*x)"2, x) 146

With the recursive definition it cannot happen, that parts of expressions get a greater valuation than the expression
itself.
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Configurability

One of our goals is to give the user maximum control over the simplification. Our implementation has many
optional arguments to achieve this:

e sel ect Rul es: the user may provide a function that returns rules possibly matched by a given expression
e Val uat i on: the user may provide a function that assigns a complexity to each expression
e Max St eps: the user may limit the number of steps and thereby the running time

e Goal : the user may choose to stop when a given goal expression is found

The user may also specify the kind of output he wants; currently, there are three kinds of output.

o By default, one expression equivalent to the input is returned.

o If the option Qut put Type = * * Proof’’ is given, the return value is a proof of the equivalence between
the input and the expression that it would return by default.

e With option Al | , a list of all equivalent expressions and their valuations is returned.

Examples

The new mechanism maintains most results of the standard si npl i fy function. Differences are due to another
normal form and notion of simplicity. We do not give a list of expressions that can be simplified; rather, we want
to show some ways to influence simplification.

Strength vs. speed

Our current version happens to find out that cos(x) tan(z) = sin(z) in the 12th simplification step (expanding tan
makes an expression more complicated, therefore it is not chosen as the very first option). 11 steps do not suffice:

r“'MuPAD
>> Simplify(cos(x)*tan(x), MaxSteps = 11)

Output

cos(z) tan(x)

but 19 steps do:

r“'MuPAD

>> Sinplify(cos(x)*tan(x), MaxSteps = 12)

Output

sin(z)

Hence the default (150 steps) would suffice but take more time than necessary.
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Controlling the valuation

To many people, expanding means to minimize the number of brackets in the output. Hence, let us define
NumberOfBrackets:=
proc(ex)
begin
nops(stringlib: :contains(expr2text(ex), "(', IndexList))
end_proc

Suppose we want to use the default valuation, but impose an additional penalty of 2 for each bracket in the output:

valuation:= Simplify::valuation + 2*NumberOfBrackets:

To look at the difference, it is best to choose the output type AI'L:

r“'MuPAD

>> Simplify(x*(y + z), All)

Output

[[x ¢y + 2), 13], [xy + x z, 14]]

such that by default, the expression is not expanded because the input is simpler. With the penalty, the order is
reversed:

r“'MuPAD

>> Simplify(x*(y + z), Valuation = valuation, All)

Output

[Ix y + x z, 14], [x (y + 2), 15]]

It seems a matter of personal taste indeed which result is better.

Using the new simplify to write special simplification modules

One could wish to simplify powers “unsophisticated” as described in school books, however, none of the many
rewriting procedures of MuPAD can do it.

Here the new simplification project used with an own rule base leads to the desired “simplification modul”:

PowerRules:=
[Rule(A"m*A"n, hold(A~(m + n))), Rule(A"m/A"n, hold(A~(m - n))),
Rule(A"n*B"n, hold((A*B)"n)), Rule(A"n/B"n, hold((A/B)"n)),
Rule(A™n/B"n, hold((B/A)"-n)), Rule(A"m™n, hold(A"n"m))]

We have defined a small rule base to simplify powers as learned in school. We need also a selection procedure; it
simply returns the whole rulebase, independently of expression.

powerRules:= () -> PowerRules:
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Now we can use the new Simp 1 i fy with our own rulebase to simplify powers as expected:

r“'MuPAD

>> a 1= T (1/2)*(R*T)"(-1/2)

Output

VT
VRT

>> Simplify(a, SelectRules = powerRules)

Output

=i~

Equivalence proofs

For many reasons, it may be interesting to get the result together with a proof that it is correct.

In the example before, one obtains

r“'MuPAD

>> Simplify(a, SelectRules = powerRules, OutputType = Proof'")

Output

Input was T~(1/2)/(R*T)"(1/2).
Applying the rule A™n/B"™n -> (A/B)"n
to T (1/72)/(R*T)"(1/2) gives (1/R)"(1/2)
Applying the rule (Am)™n -> (A™n)"m
to (1/R)"(1/2) gives 1/R™(1/2)
END OF PROOF

Future perspectives

The new simplification package is still under development; because of its modular structure, many parts of it can
be fine-tuned independently of each other, and this fine-tuning has still to be done. We did not talk about running
times in this article; in fact, analysing the connection between the different input parameters and the resulting
running time has still to be done, too. We are going to present the final version in a future version of MuPAD.
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