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1 General form of the PDEs 1

In this note, we describe the general form of the PDEs and boundary conditions which can be imple-
mented and solved within WEST++ using orthogonal collocation, combined with matrices. Details of
the orthogonal collocation method, and the use of corresponding matrices, have been presented in [1].

1 General form of the PDEs

Currently within WEST++, it is possible to handle second order one-dimensional PDEs defined over
a certain spatial domain €. For simplicity, we consider a single PDE for the present discussion. Let
X (z,t) denote the physical quantity for which the PDE is written in the space co-ordinate z and time ¢.
Then the following general form of the PDE can be discretized and solved within WEST++:

0X(z,1)

0?X (z,t)
ot
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0X(z,t)

= A(X(2,1),2,1) %

+ B(X(2,1), 2,1) + C(X(2,1), 1) + D(z,t) + E.

1)
As can be seen above, the PDE must be linear in the partial derivatives: that is, powers of derivatives
higher than one are not allowed. But these linear derivatives can have non-linear coefficients, however:
{A(X (z,1),2,t), B(X(z2,1),2,t), C(X(z,1t),2,t)} can be any (non-linear) functions of (X (z, ), z,t).
D(z,t) is any function of (z,t), and in particular can depend on only one of them. E is a constant
independent of both z and ¢. We can write the above equation in a more compact form as follows, by
writing the right hand side simply as a function F:

0X(z,1) _p 0?X(z,t) 0X(z,t)
ot 022 7 0z

,X(z’t)7z’t> * (2)

Now, instead of the single PDE (2) being defined over the entire domain €2, the PDE could have different
right hand sides over n different sub-domains {1, Qo,...,Q,}. We could therefore have:

,
Py (E5G0 XD X(z.1),2,1), €

%:< Fz(%,%,X(z,t),z,t), z € o, 3)

) 2
Fn(%f_ytl’%;_,tl,)((z,t),z’t) z € (.

\

1.1 General form of the boundary conditions

In order to solve a given PDE, appropriate boundary conditions need to be specified. For second order
PDEs, we need two boundary conditions. These boundary conditions are incorporated into the solution
procedure within WEST++, along with the (linear) finite element boundary conditions, in matrix form.

As detailed in [1], we define U, a vector of the unknown quantity X (z,¢) evaluated at the (Ng + 1)
nodes (where Ng is the number of finite elements chosen for the discretization of the PDE) by U =
(u1,uz, ..., ung41))- Similarly we define a vector W = (w1, ws, ..., wn.), Which is a vector of
X (z,t) evaluated at the N interior collocation points. In the matrix method, we can relate U and W
through a matrix equation, whose general form is given by:

PW=QU+C. 4)

The elements of the first and last rows of the matrices (P, @, C) are obtained from the boundary con-
ditions specified for the PDE. The elements in the intermediate rows of (P, Q) are extracted from the
element boundary conditions. The intermediate rows of C will contain zeroes.
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Eq.(4) is solved for U
U=Q 'PW-Q'C. (5)

Defining R=Q ! Pand S = Q ' C, we have:
U=RW —8. (6)
Finding U from the above matrix equation, we can substitute for the {w;} in the DAE, and go on to solve

it using an integrator. In order to use this method of matrices, however, it is obvious that the boundary
conditions must be linear.

The most general linear form of the boundary conditions at either of the two boundaries zp, which we
denote by {zg,, 28, }, is therefore given by:

0X(z,t
a1(z,t) X(z = zp,,t) + bi(2,1) 7(9(2 ) +ci(zt)+dp = 0;
Z:ZBl
0X(z,t
az(z,t) X(z = zB,,t) + ba(2,1) 8(2 ) +ca(z,t)+da = 0. (7
22232

Here {a1(z,t), a2(z,t), bi(z,t), ba(z,t), c1(2,t), ca(2,t)} are any functions of (z,¢), and in particu-
lar can depend on only one of them. {d;,d>} are constants independent of (z,t). Different kinds of
boundary conditions are obtained by setting one or more of these coefficients to zero.

If there are non-linear functions in the boundary conditions, for example:

OXEY | (X = 2,t), 2,1) ®

where G(X (z,t), z,t) isanon-linear function of X (z, ), then, as a first approximation, the function can
be linearized (by retaining the first term in its Taylor expansion). However, this may not be such a good
approximation always. In order to determine the usefulness of Taylor expanding G(X, z, t), it is a good
idea to plot the function G(X) and G¢(X), the first term in its Taylor series, vs. X, treating (z,t) as
fixed parameters. One can then accept or reject this simple linearization procedure, depending on how
well both curves agree.

If Taylor expansion indeed proves unsatisfactory, it might be a better idea to select a suitable piecewise-
linear approximation scheme to render G(X) as a curve made up of several polygons. Therefore, if there
are m such polygons corresponding to m linear segments {L;}, we have:

c1 X +di, X e Ly,
G(X) = ca X + da, X € Lo, (9)

em X +dm, X € L.

where {c1,co,...,cn} and {di,ds, ... dy } are all constants. In this way, the constraint of linear bound-
ary conditions can still be maintained, and the matrix method can be used.
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2 Specification of PDEs and boundary conditions in MSL-USER

The PDEs can be coded in MSL-USER directly in the form presented in Egns.(1, 3), and the boundary
conditions in Eq.(7) above. As an example, consider the two test case PDEs discussed in [1], which
describe batch and continuous sedimentation of suspended solids in a 1-D clarifier.

The PDE describing the concentration of suspended solids during batch sedimentation in a 1-D clarifier
has a form similar to that in Eq.(1), and is defined over the domain [0, L]:

0X (z,1) n X 0X(z,t) 02X (2,t)
3 - _ 1—nX nX(zt) | 22\ Y Dy ——17, 10
o (Q-nX(z0)we ) o Do (10)
where {wvg,n, Dy} are constants. This can be coded directly as it is, in MSL-USER.
The corresponding boundary conditions at the boundaries (z = 0, z = L) are given by:
'er_nX(ZZO’t) —_ DO M 0
aZ 2=0
,er*n X(z=L,t) _ -DO 8X(Z, t) - 0. (11)
0z z=L

These nonlinear boundary conditions are linearized to a first approximation, by replacing the exponential
functions by 1, the first term in their Taylor expansions. We then have:

0X(z,t) _
Vo — Lo Bz o = 0
oo — Do 22X 1) 0. (12)
82 2=L

In this form, the boundary conditions can be coded directly as they are given above.

As a second example, we consider the PDE for continuous sedimentation in a 1-D clarifier, to illustrate
the form of the PDE in Eq.(2). We consider the case when the effluent overflows. The domain [0, L] is
divided into three sub-domains, with corresponding PDEs. These are given by:

lLfor{0 <z<z—o}

0X(z,t) CnX(e) 0X(z1)
= —[(1—nX(z,t))’er +(J1(t)] oz
0?X (z,t)
+ DOT; (13)
2.for{zf—0o <z < zp+o}
aX(Z, t) B 7nX(Z,t) aX(Z, t)
EEED — [(1-nX(50) we +a(t)] =
1
+ X5(t) e2(t) o
X (z,t
+ 0, 220, 19
3.for{z;+0 <z < L}
0X(z,t) —n X(z,t) 0X(zt)
222D~ [(1-nX(e1) we talt)] =
2
4 p, PXED (15)

92>



REFERENCES 4

In the above, {q:1(t),q2(t), X(t)} are functions only of time, or they can be constants. {zy,o} are
parameters which define the three subdomains.

The PDE can also be specified in MSL-USER directly as above, by defining it as a set of three PDEs.

As for boundary conditions, they can also be specified in their original form:

0X (z,t) — 0
BZ 2=0 o

9X(z1) = 0. (16)
aZ =1
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