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It is shown that a system of smart preys and predators exhibits irreversible phase transitions between a
regime of prey-predator coexistence and an state where predator extinction is observed. Within the coexistence
regime, the system exhibits a transition between a regime where the densities of species remain constant and
another with self-sustained oscillations, respectively. This transition is located by means of a combined treat-
ment involving finite-size scaling and Fourier transforms. Furthermore, it is shown that the transition can be
rationalized in terms of the standard percolation theory. The existence of an oscillatory regime in the thermo-
dynamic limit, which is in contrast to previous findings of Boccara et al. @Phys. Rev. E 50, 4531 ~1994!#, may
be due to subtle differences between the studied models.
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I. INTRODUCTION

The understanding of far from equilibrium irreversible
dynamical systems with many degrees of freedom is a topic
of great interest in many branches of science such as Physics,
Biology, Sociology, Economy, Chemistry, Ecology, etc.
Within this context, very recently, the study of cooperative
phenomena in multicomponent systems of biological and
ecological interest has been addressed by physicists using
powerful and well-established techniques already developed
in the fields of condensed matter physics, statistical physics,
and computational physics @1–3#.

Some of these studies were aimed to describe, e.g., the
formation and development of complex spatiotemporal struc-
tures involving cell cultures @4#, living organisms ranging
from primitive ones such as bacteria @5#, fungi colonies @6#,
and swarms of insects to more sophisticated species such as
herds of wildebeest, schools of fish, flocks of birds @7#, etc.
Within this context the classical Lotka-Volterra ~LV! @8# ap-
proach is the archetype model for the description of a two-
species competition system such as in the case of preys and
predators. The main result of the standard mean-field ap-
proach for the LV model is the occurrence of oscillatory
behavior of population densities with a well-determined pe-
riod. Natural populations of plants and animals frequently
exhibit various patterns of fluctuations about long-term peri-
ods @9#. Some species have roughly a constant population
density while others exhibit large fluctuations with cyclic or
quasicyclic behavior. These deviations from the mean-field
predictions may be due to the stochastic nature of the system
or, on the other hand, could correspond to chaotic behavior.
Very recently, it has been shown that adding a noise term to
the equation of a symmetric two-species composition LV
model, one could drastically change its behavior. An inter-
esting effect is, e.g., the observation of stochastic resonance
@10#.

In the present work we study a lattice gas model for a
prey-predator system with smart pursuit and escape, which is
a variant of the cellular-automata early proposed by Boccara
et al. @11#. The main finding of the present work is the oc-
currence of a transition between a regime where the density
of species remains constant and another where it exhibit self-
sustained oscillations, respectively. In order to identify this
transition we have developed a combined treatment involv-
ing finite-size scaling and Fourier analysis. It is also shown
that the transition can be rationalized in terms of the standard
percolation theory.

II. DESCRIPTION OF THE MODEL

The prey-predator model with smart pursuit and evasion
is defined as follows: a lattice site can be either empty or
occupied by a prey or a predator, respectively. Double occu-
pancy of sites is forbidden. The system evolves according to
consecutive cycles: ~i! coexistence of species and ~ii! escape-
pursuit dynamics.

The rules of coexistence are as follows. ~a! Preys give an
offspring occupying an empty next neighbor site with prob-
ability BH ~birth probability of preys! in case of absence of
predators within their VH ~visual range of preys!. ~b! Preda-
tors can eat a prey that exist in their M P ~movement range of
predators! with probability DH ~death probability of preys!.
~c! Predators that previously have eaten a prey can give an
offspring in the site occupied previously by the eaten prey,
with probability BP ~birth probability of predators!. ~d!
Predators can suddenly die with probability DP ~death prob-
ability of predators!.

In order to formulate the rules for a smart escape-pursuit
process we have to note that predators ~preys! can feel the
presence of an attractive ~repulsive! potential gP ,H (gH ,P)
generated by the density of preys ~predators! in their VP
(VH) respectively. Furthermore, they are able to calculate the
gradient of this potential in their M P (M H), namely,

ga ,b~XW ,t !5 (
XW 8e[VaùEb(t)]

uXW 2XW 8u21, ~1!
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where XW points to the possible next selected position, XW 8

runs through the subspace occupied by the species b inside
the visual space of the species a, Va is the visual range of the
species a, and Eb is the total space occupied by the species b.

Based on these definitions we formulate the escape-
pursuit rules as follows.

~a! Preys move into an empty site in the direction of the
calculated gradient, the new selected position XW * minimizes
the potential gH ,P in M H , XW *5Arg MinXW e[M PùE0(t)]gH ,P

(XW ,t).
~b! Predators move into an empty site in the direction of

the gradient, the new selected position XW * maximizes the
potential gP ,H in M P , XW *5Arg MaxXW e[M PùE0(t)]gP ,H

(XW ,t).

In this context, if we define the spatiotemporal density of
the species ‘‘s’’ as

rs~XW ,t !5H 1
N s~ t !

, if XW eE s

0, otherwise,
~2!

then ga ,b(XW ,t)5(XW 8eVa
uXW 2XW 8u21rb(XW 8,t) and the exis-

tence of a force inversely proportional to the squared dis-
tance becomes evident. It should be noted that this kind of
repulsion-attraction forces between animals have already
been used for the theoretical study of the collective motion
of self-driven individuals @12#.

We have restricted ourselves to investigate the depen-
dence of the system on the predator birth (BP) and death
(DP) probabilities, respectively. The remaining parameters
are kept constant, namely, M P5VP5VH51. The model is
studied by means of Monte Carlo simulations on the square

lattice of side L, measured in lattice units ~L.U.! with peri-
odic boundary conditions. During a Monte Carlo time step
~mcs! all sites of the sample are update once on average. The
model is also studied using a set of mean-field equations. In
this case the time is measured in arbitrary units.

III. RESULT AND DISCUSSION

Starting from a random distribution of prey and predators,
the system may evolve towards two different states or phases
@see Fig. 1~a!#: i! For DP→0 ~but DP.0) and BP→1 ~but
BP,1), the final state of the system is a stationary regime
with coexistence of preys and predators @13#; ii! For DP
→0.5 and BP→0 ~but BP.0), predators die out and surviv-
ing preys cover the whole lattice. This phase is an absorbing
state where the system becomes irreversibly trapped since
the spontaneous birth of predators is not allowed. At the
boundary between these two phases a critical curve in the
@DP ,BP# plane can be located.

It is well known that the determination of the critical
points and critical exponents characterizing irreversible
phase transitions ~IPT’s! using simulations of the stationary
state in finite lattices is heavily hindered by fluctuations ef-
fects that may irreversibly drive the system into the absorb-
ing state. In order to overcome this difficulty we have per-
formed standard epidemic studies @14#. Starting from a
configuration very close to the absorbing state, namely, a
lattice covered by preys except by one predator in the center
of the sample, the dynamics of the predator’s spreading is
followed as a function of time measuring ~i! the average
number of predators N P(t), ~ii! the survival probability of
predators, namely, the probability that at time t there is still a
predator alive, PP(t), and ~iii! the average spreading dis-
tance R2(t). At criticality, these quantities obey power law
behavior, i.e., N P(t);th, PP(t);t2d, and R2(t);tz. Using
this technique we have precisely determined the critical

FIG. 1. ~a! Plot of the critical points of the
irreversible phase transition between the coexist-
ence regime of prey and predators and the ab-
sorbing state with predator extinction. ‘‘Full line
’’ mean-field results obtained using Eq. ~5!. n

results from Monte Carlo epidemic studies.
‘‘Dashed line’’ critical curve at the fixed point
~FP! - oscillatory behavior ~OB! transition ob-
tained by means of Monte Carlo simulations
~mean-field calculations!, respectively. ~b! and
~c! are plots of predator density versus prey den-
sity showing the FP and OB regimes, respec-
tively. Densities are measured in units of number
of species per unit area.
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points shown in Fig. 1~a! and for the critical exponents we
get h'0.2160.02, d'0.4560.02, and z'1.1260.02. So,
the second order IPT’s between the coexistence regime and
the absorbing state can be placed within the universality
class of directed percolation, with h50.21460.008, d
'0.46060.006, and z'1.13460.004 @14#.

The mean-field equations for the system can be derived
considering all events causing changes in the population den-
sity of both species. So, one has

]rP

]t
5rP~B2D !, ~3!

]rH

]t
5rH$A2~B1C !@12~12rP!(2M P11)2

21#%, ~4!

where rP and rH are the predator and prey densities, respec-
tively. A5BH(12DP) (2VH11)2

21@12(rP1rH)8# is the
birth probability of a prey in a neighboring empty site @15#,
B5(12DP)BPDH@12(12rH) (2M P11)2

21# is the probabil-
ity of a predator to catch a prey and have an offspring in the
site previously occupied by the prey, C5(12DP)(1
2BP)DH@12(12rH) (2M P11)2

21# is the probability of a
predator to catch a prey, and D5DP is simply the dying
probability of a predator. Solving Eqs. ~3! and ~4!, requiring
]rP /]t5]rH /]t50 at the critical edge we get

BP*5

DP

DH~12DP!
. ~5!

The location of the critical edge using Eq. ~5! is also
shown in Fig. 1~a! for the sake of comparison with Monte
Carlo results. The observed agreement is ~surprisingly! ex-
cellent considering that in most cases the mean-field ap-
proach fails close to second-order transitions. This agree-
ment could be due to the fact that the high density of preys
close to the critical point almost inhibits the displacement of
predators.

Solving numerically the set of mean-field equations we
observed that close to the IPT’s critical edge and after a short
transient period, the system reaches a constant density of
both preys and predators, as is shown in Fig. 2. So, plots of
rP versus rH show closed loops ending in a fixed point ~FP!
as is shown in Fig. 1~b!. Within the FP regime @see Fig. 1~a!#
the density of predators ~preys! steadily increases ~decreases!
upon increasing BP . This behavior is also observed in Monte
Carlo simulations. However, it should be noticed that within
this FP regime preys are the majority species and clusters of
preys always percolate across both directions of the sample
as, e.g., is shown in the snapshot configuration of Fig. 3.
Moving away from criticality, when BP is further increased,
the system starts to exhibit a self-sustained oscillatory behav-
ior ~OB! with a well-defined period ~see Fig. 1!. Therefore a
curve can be drawn at the boundary between the FP and OB
as is shown in Fig. 1~a!.

The location of the boundary between FP and OB regimes
using Monte Carlo simulations deserves a careful task. In
fact, due to the stochastic nature of the simulation procedure

one always observes a quasiperiodical signal as is shown in
Fig. 4. This quasioscillatory behavior could be, on the one
hand, a finite-size effect whose amplitude AP vanishes in the
thermodynamic limit or, on the other hand, simply noise. In
order to clarify these points we have first performed a finite
size analysis. It is found that the amplitude of the oscillations
behaves as AP5A`1BL2g where B is a constant, A` is the
amplitude in the thermodynamic limit, and g is an exponent.
As it is shown in the inset of Fig. 4, it is found that close to
the critical edge, AP vanishes with g54/3 (A`;0) while,
far from criticality, one has A` positive with the same value
of g . So, our finite size analysis of the Monte Carlo data
allows us to distinguish between the FP and OB regimes in
agreement with the mean-field results. Furthermore, we have
performed a Fourier analysis of the temporal signals as is
shown in Fig. 5. Within the FP regime we observed a pure
‘‘1/f ’’ white noise, but crossing to the OB state the spectra
shows a peak corresponding to the characteristic frequency
of the system f *.331022 mcs21. Fourier analysis of time
series measured using samples of different size (100 L.U.
<L<1000L.U.) shows that f * is independent of L, so it can
truly be identified as the natural frequency of the system.

Snapshot configurations of the system within the OB re-
gime are quite different from those characteristic of the FP
regime already shown in Fig. 2. In fact, as is shown in Fig. 6,
when the density of preys is maximum there is at least a
‘‘percolating cluster ’’ of preys spanning the whole lattice
@see, e.g., Fig. 6~a!# while small ‘‘colonies ’’ of predators are
placed almost at random. However, this configuration favors
the reproduction of predators that causes the density of preys
to decrease @Fig. 6~b!#. Here, small ~nonpercolating! clusters
of preys are surrounded by predators. So, the OB can be
thought as a sequence of alternating percolation events. For
details on the percolation theory see, e.g., @16#.

In order to perform a quantitative analysis of the transi-
tion we have evaluated the percolation probability (Ppr)
measured for clusters of preys as a function of BP keeping
DP50.25, BH50.5, and DH50.99 as is shown in Fig. 7.
Inside the FP regime one has Ppr51 and the population of

FIG. 2. Plots of the density of prey and predators, measured in
units of number of species per unit area, versus time, measured in
arbitrary units, as obtained solving the mean-field equations for
DP50.25 and BP50.45. The attainment of the FP regime after a
short transient regime can be observed.
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both prey and predators is almost constant. However, just at
the onset of the OB regime one observes for the first time
no-percolating clusters of preys. From Fig. 7 it follows that
increasing the lattice size, the Ppr vs BP plots approach a
stepped function with a sharp edge close to BP;0.5. In or-
der to determine the critical percolation edge in the thermo-

dynamic limit, let us first define L-dependent thresholds
BP(L) as a fixed point such that Ppr$BP(L)%[const. Using
this method @16# we have evaluated three sets of L-dependent
edges taking three values of the constant, namely, 0.2, 0.4,
and 0.6. According to the finite-size scaling theory @16#,

BP~L !5BP`1ML21/n, ~6!

where BP` is the percolation threshold in the thermodynamic

FIG. 3. Snapshot configuration of the system
taken within the FP regime for DP50.25 and
BP50.45. Predators are shown as black points
and preys are gray. Within this regime the biggest
cluster of preys always percolates across both di-
rections of the sample.

FIG. 4. Plot of the predator density, measured in unit of number
of predators per unit area, versus time, measured in mcs, as ob-
tained from Monte Carlo simulations. ‘‘Full line ’’ DP50.25, BP

50.4 ~noise in the fixed point regime!, ‘‘dashed line ’’ DP50.25,
BP50.6 ~oscillatory regime!. The inset shows plots of the ampli-
tude of the oscillations of predator density versus L2g (g54/3),
where L is measured in L.U. d DP50.25 and BP50.4, h DP

50.25 and BP50.7.

FIG. 5. Fourier spectra of temporal series of the prey density
obtained for different values of BP. The amplitude is measured in
arbitrary units and the frequency in mcs21. The vertical full line
shows the location of the natural frequency f *.0.03 mcs21. The
dashed line in ~a! has slope ‘‘-1 ,’’ i.e., 1/f noise, and has been
drawn for the sake of comparison.
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limit, M is a constant, and n is the correlation length expo-
nent. The best fit of the data ~Fig. 8!, which is obtained
taking n5

4
3 as in the standard percolation ~SP! problem in

two dimensions @16#, gives BP`>0.52560.005. Just at criti-
cality, prey density is close to rH.0.47. This figure is
smaller than the critical occupation probability of the SP
model, namely, pc>0.592 75, suggesting the existence of
‘‘attractive’’ interactions between preys that may be a con-
sequence of both, the operation of the smart escape rule and
the fact that the prey’s offsprings are born at nearest-
neighbor sites. The fractal dimension of the incipient perco-
lating cluster DF is given by

m}lDF, ~7!

where m is the ‘‘mass’’ ~number of preys! within a charac-
teristic length l ~measured in L.U.!. Using the box counting
method we obtain DF>1.9060.02 ~see the inset in Fig. 8! in
excellent agreement with the fractal dimension of the SP
incipient cluster, namely, DF>1.89 @16#. Considering the
scaling relationship @16# DF5d2b/n , where b is the order
parameter critical exponent, we conclude that the percolation
transition associated with the FP-OB transition belongs to
the same universality class as the SP model.

It should be noticed that our claim of the occurrence of an
OB in the thermodynamic limit is in contrast to the conclu-
sions stated by Boccara et al. @11# using a similar prey-
predator model. In fact, they have found that the oscillatory
regime is restricted to finite samples only. The different be-
havior observed may be due to the fact that Boccara et al.
@11# have used a cellular automata update rule for the dy-
namics of coexistence of species while the escape-pursuit
dynamics is updated sequentially. In contrast, in the present
work both types of dynamics have been performed sequen-

FIG. 6. ~a! and ~b! are snapshot configurations of the system
taken within the oscillatory regime. Predators are shown as black
points and preys are grey. Notice that ~a! and ~b! correspond to
percolating and nonpercolating stages, respectively. More details in
the text.

FIG. 7. Plots of the percolation probability (Ppr) versus BP for
lattices of different size d L5100 L.U., h L5200 L.U., , L
5400 L.U., L L5800 L.U. In order to guide the edges, data were
fitted using a Boltzmann sigmoid ~full line!. The dashed line at
BP50.525 shows the location of the critical edge.

FIG. 8. Plot of the L-dependent critical thresholds BP(L) versus
L21/n with n54/3, where L is measured in LU. Data evaluated at:
d Ppr50.2, h Ppr50.4, and L Ppr50.6. The inset shows a plot
of the number of preys ‘‘m ’’ versus ‘‘l’’ —measured in L.U.—
obtained at criticality, which gives a straight line with slope DF

51.90 @see Eq. ~7!#. More details in the text.

CRITICAL AND OSCILLATORY BEHAVIOR OF A . . . PHYSICAL REVIEW E 63 061907

061907-5



tially. It is known that in some cases both types of updating
display essentially the same physical properties, while in
other examples, they lead to different results as in the present
work.

Finally, it is worth discussing the differences between the
present model with smart escape-pursuit rules ~SEP! and a
simpler one that only considers random diffusion ~RD!.
From the qualitative point of view the major difference arises
on the structure of the spatial patterns generated. Let us first
consider an epidemic study, suitable for the location of the
irreversible transition between prey extinction and coexist-
ence of both species. In this case few predators are released
in the center of a lattice fully covered by preys. It is observed
that for SEP, the predators tend to form a ring with a well-
defined predator-prey interface. The ring propagates out-
wards keeping empty sites inside it and the interactions be-
tween species is favored. In contrast, for RD the ring of
predators is much fuzzy and preys can escape crossing it.
Consequently, the interface between preys and predators at
the expanding ring is not well defined as in the previous
case. The probability of predators to catch a prey decreases
and the effective probability for the predators to die increases
due to smaller reproduction chances. This qualitative picture
has quantitative consequences since the location of the
extinction-coexistence transition becomes shifted toward
larger values of BP , e.g., we get BP

E-C.0.36 and BP
E-C

.0.38 for the SEP and the RD cases, respectively. Consid-
ering the transition between the FP and the OB states, the
observed patterns are consistent with the previous discus-
sion. Compact clusters of preys surrounded by predators are
observed for SEP. This configurations favor the prey-

predator interaction. However, for RD the interface between
clusters of different species is not so well defined and the
interaction is less effective. Due to this effect, for the case of
RD the onset of the OB takes place at lower values of BP ,
e.g., we get BP

FP-OB.0.50 and BP
FP-OB.0.47 for the SEP and

the RD cases, respectively. Summing up, the overall effect of
RD is to reduce the width of the FP regime that occurs in a
narrow interval of BP values. It should also be mentioned
that well inside the coexistence regime, the introduction of
an error when selecting the escape-pursuit direction gener-
ates the onset of spiral patterns that currently are under study
@17#.

IV. CONCLUSIONS

In summary, we have studied a model of competitive
population dynamic. The system displays absorbing states
and active regimes. The former can be either nonequilibrium
steady states or oscillatory states, respectively. The onset of
oscillations at global scale is triggered by a dynamic perco-
lation process. It is worth mentioning that there exist numer-
ous systems that can be described in terms of competitive
and cooperative interactions. So, our study is not simply re-
stricted to population dynamics but can be extended to a
variety of situations emerging from different scientific fields.
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