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Abstract

Today’s Web browsers provide a platform for the development of complex, richly interactive
user interfaces. But, with this complexity come additional challenges for Web develop-
ers. The complicated behavioural relationships between user interface components are often
stateful, and are difficult to describe, encode and maintain using conventional programming
techniques with ECMAScript, the general-purpose scripting language embedded in all Web
browsers. Furthermore, user interfaces must be performant, reacting to user input quickly;
if the system responds too slowly, the result is a visible Ul “lag,” degrading the user’s
experience.

Statecharts, a visual modelling language created in the 1980’s for developing safety-
critical embedded systems, can provide solutions to these problems, as it is well-suited to
describing the reactive, timed, state-based behaviour that often comprises the essential com-
plexity of a Web user interface.

The contributions of this thesis are then twofold. First, in order to use Statecharts
effectively, an interpreter is required to execute the Statecharts models. Therefore, the
primary contribution of this thesis is the design, description, implementation and empirical
evaluation of the Statecharts Interpretation and Optimization eNgine (SCION), a Statecharts
interpreter implemented in ECMAScript that can run in all Web browsers, as well as other
ECMAScript environments such as Node.js and Rhino.

This thesis first describes a syntax and semantics for SCION which aims to be maximally
intuitive for Web developers. Next, test-driven development is used to verify the correct
implementation of this semantics. Finally, SCION is optimized and rigorously evaluated
to maximize performance and minimize memory usage when run in various Web browser
environments.

While SCION began as a research project toward the completion of this master thesis, it
has grown into an established open source software project, and is currently being used for
real work in production environments by several organizations.

The secondary contribution of this thesis is the introduction of a new Statecharts-based
design pattern called Stateful Command Syntax, which can be used to guide Web user
interface development with Statecharts. This design pattern can be applied to a wide class
of Web user interfaces, specifically those whose behaviour comprises a command syntax that
varies depending on high-level application state. Its use is illustrated through detailed case
studies of two highly interactive, but very different applications.
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Abrégé

Les navigateurs web modernes permettent la création d’interfaces utilisateur complexes et
extrémement interactives. Mais cela engendre également des difficultés additionnelles pour
les développeurs web. Les relations complexes qui existent entre les différentes composantes
des interfaces utilisateur sont souvent a états, et sont difficile & décrire, encoder et entretenir
en utilisant les techniques de programmation conventionnelles qu’offre ECMAScript, un lan-
gage banalisé que 'on retrouve dans tous les navigateurs. De plus, les interfaces doivent
étre performantes et répondre rapidement aux actions de l'utilisateur; un systeme trop lent
engendre un décalage perceptible qui nuit a l’expérience d’utilisation.

Statecharts, un langage de modélisation visuelle créé dans les années 80 pour assurer
la sécurité des systemes embarqués, peut offrir des solutions a ces défis: il est adapté a
la description du comportement réactif, chronométré, et fondé sur ’état, qui représente en
somme ce qui est le plus difficile avec les interfaces utilisateur sur le web.

L’apport de ce mémoire est double. Tout d’abord, I’exécution des modeles Statecharts,
pour étre efficace, nécessite un interprete. La premiere contribution de cet article consiste
donc en le design, I’élaboration, I'implémentation et 1’évaluation empirique du Statecharts In-
terpretation and Optimization eNgine (SCION), un interpréte en ECMAScript qui peut étre
exécuté dans tous les navigateurs web ainsi que dans d’autres environnements ECMAScript,
comme Node.js et Rhino.

Notre these décrit en premier lieu une syntaxe et une sémantique pour SCION qui se veut
la plus intuitive possible pour les développeurs web. De nombreux tests sont ensuite effectués
pour en assurer le bon fonctionnement. Enfin, SCION est rigoureusement optimisé afin de
maximiser la performance et de minimiser 1'utilisation de la mémoire vive dans différents
navigateurs web.

Bien que SCION ait débuté comme un projet de recherche personnel en vue de I'obtention
du diplome de matrise, il est devenu un logiciel libre bien établi et utilisé par plusieurs
organisations dans leurs environnements de travail.

La deuxieme contribution de ce mémoire est la présentation d’un nouveau patron de con-
ception créé a partir de Statecharts nommé Stateful Command Syntax, qui peut étre utilisé
pour guider la création d’interfaces utilisateur sur le web. Ce patron de conception peut étre
employé sur une grande variété d’interfaces, notamment celles dont le comportement inclut
une syntaxe de commande qui varie selon le degré d’abstraction de ’application.

Son utilisation est illustrée a travers quelques études de cas ainsi que deux logiciels tres
différents mais hautement interactifs.
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Chapter 1

Introduction

There are many challenges that software developers face during the development of complex
User Interfaces (Uls). Desired behaviour may be autonomous or reactive, and possibly real-
time. Each Ul component may be required to exhibit a radically different behaviour from
that of any other component, and the behaviour of components may be interrelated. These
complex behavioural relationships are often difficult to express, and are even more difficult
to encode and maintain.

A solution may be found in Statecharts[Har87], a formalism for describing complex,
reactive, timed, state-based behaviour, which is highly suited to modelling richly interactive
user interfaces.

At the same time, Open Web technologies, including HTML, SVG and CSS, in combi-
nation with ECMAScript, are becoming increasingly popular as a platform for application
development. As ECMAScript is used to implement interactivity and dynamic behaviour in
Web pages, a Statecharts interpreter optimized for ECMAScript would facilitate user inter-
face development for the World Wide Web by allowing Web developers to specify the inter-
active behaviour of complex Web Uls using high-level, declarative, executable Statecharts
models. Therefore, the initial contribution of this thesis is the design, careful description,
implementation and empirical evaluation of the Statecharts Interpretation and Optimization
eNgine (SCION), a Statecharts interpreter library implemented in ECMAScript that can run
in all Web browsers.

SCION is a tool that allows web developers to use Statecharts for Web user interface
development, but it is not always clear how Statecharts may best be applied to this task.
Therefore, the second contribution of this thesis is the description of a technique to guide
the development of Web user interfaces with Statecharts. This technique takes the form
of a new Statecharts-based design pattern called Stateful Command Syntax (SCS). SCS
can be applied to user interfaces whose behaviour comprises a command syntax that varies
depending on high-level application state. This design pattern is illustrated through two
detailed case studies.



1.1 Background

1.1.1 State Machines for User Interface Development

Statecharts and other state machine formalisms have a long history of use in Human Com-
puter Interaction research. The notion of Ul command syntax can be found in [Bux86],
[Wel89], and [WNG68], and in the latter, it is proposed that state machines be used to parse
UI commands. In [Sam02], the “Ultimate Hook” is described as a Graphical User Interface
(GUI) design pattern, whereby events bubble from inner GUI components to outer GUI
components, which is directly supported by the Statecharts syntax of hierarchical states.
State machines have also been used to directly synthesize working user interfaces, thus
facilitating rapid prototyping of UI behaviour during development [ABL0S, JB09].

1.1.2 Interactive Web-based User Interfaces
Scripting in the Web Browser Client

A Web browser is a hypermedia applications designed to allow navigation of hypertext
documents, written in the Hypertext Markup Language (HTML), over the Internet[BL].
The first Web browser clients, including WWW, Mosaic, and the original Netscape Web
browsers, did not support UI scripting on the client. This means that the behaviour of Ul
components in a Web browser could not be extended by code executed in the Web browser
client.

The JavaScript language (later standardized as ECMAScript) was invented in 1995 and
embedded in the Netscape browser[Net95]. EMCAScript, and the associated Document
Object Model (DOM) API, allowed executable content to be added to a Web page, such
that developers were able to attach event listeners to individual HTML elements, and react
to Ul events with arbitrary behaviour written in ECMAScript. This facilitated the creation
of rich, client-side Web applications with custom behaviour.

Microsoft followed Netscape with their own implementation of JavaScript, which they
called JScript and embedded in their Internet Explorer web browser. Today, all modern
Web browsers support scripting through ECMAScript and DOM.

Scalable Vector Graphics and Canvas

In addition to HTML, modern Web browsers support two other technologies which may be
used to render rich graphical user interfaces: Scalable Vector Graphics (SVG) and HTMLS5
Canvas.

SVG is a technology for rendering vector graphics from XML documents [DFFT10].
XML nodes in an SVG document may represent primitive graphical objects, for example,
the <rect> tag is rendered as a graphical rectangle, and the <ellipse> tag is rendered as
an ellipse. SVG also includes support for text, images and complex paths made up of bézier
curves. Web user interfaces based on ECMAScript and SVG can be developed in the same
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manner as those based on HTML, such that event listeners can be attached to individual
SVG elements, which can then execute arbitrary ECMAScript code in response to Ul events.

HTMLS5 Canvas provides a low-level 2D graphics API [HH10]. Unlike HTML and SVG,
Canvas is not DOM-based. Whereas SVG provides a “retained mode” API, and event
listeners can be registered on individual, primitive graphical objects, Canvas simply exists
as a single object in a Web page, which exposes a low-level API that JavaScript can use to
“paint” vector graphics to the canvas surface.

The case studies described in Chapter 5 were both developed using SVG and EC-
MAScript.

1.1.3 Statecharts for Web User Interfaces

Statecharts have long been used to model behaviour of hypermedia applications [DOTMO1],
and after the creation of the World Wide Web, Statecharts were used to model the behaviour
of Web browser clients as hypermedia applications, including for Web navigation[LHYT00],
and client-side behaviour of built-in Web browser Ul controls, such as hyperlinks and frames
[WPO03].

There are two examples where Statecharts have been embraced to model the behaviour of
richly interactive Web applications based on HTML and ECMAScript, namely the Sproutcore
and EmberJS libraries. Sproutcore is an open source ECMAScript framework for developing
rich Web user interfaces, which includes an implementation of Statecharts called Ki, devel-
oped by Michael Cohen (@frozencanuck on Twitter)[ki]. EmberJS is another ECMAScript
framework, derived from Sproutcore, which also includes a state machine implementation,
called StateManager [emb].

1.2 Contributions

Like Ki and StateManager, SCION is an implementation of Statecharts in ECMAScript,
designed to be used in the Web browser for user interface development. The first contribu-
tion of this thesis, then, is the description of the syntax and semantics of SCION, followed
by a rigorous empirical evaluation of the performance of SCION’s implementation of this
semantics.

The second contribution of this thesis is the description of a new design pattern, Stateful
Command Syntax, that illustrates how SCION can be effectively used to develop complex,
interactive Web user interfaces.

SCION and the case studies in Chapter 5 were written from scratch, and have been
released as open source. I am the founder and primary author of SCION. Matt Oshry at
[24]7 inc., a consumer experience company, has also contributed patches. The case studies
were developed entirely by me.



1.3 Thesis Outline

The first half of this thesis describes SCION, a Statecharts interpreter optimized for EC-
MAScript. Chapters 2 and 3 specify the syntax and semantics of SCION models, and chapter
4 describes how the implementation of this semantics has been optimized for ECMAScript
and the World Wide Web.

Chapter 5 presents Stateful Command Syntax, and provides two case studies which il-

lustrate its use.



Chapter 2

SCION Syntax and Semantics

Statecharts is a visual language invented in 1987 by David Harel as a formalism for describ-
ing complex, timed, reactive, state-based behaviour [Har87|. Since then, many variants of
Statecharts have been developed. SCXML is a Statecharts variant developed by the W3C,
and is described in a W3C working draft specification [BAAT10]. SCXML specifies a textual
syntax for Statecharts based on eXtensible Markup Language (XML), a document format
developed by the W3C.

StateCharts Interpretation and Optimization eNgine (SCION) is a Statecharts variant
based on SCXML, and this chapter describes its syntax and semantics.

2.1 Motivation for Using SCXML

There were several pragmatic reasons why SCXML was chosen as a core technology for
SCION.

First, in SCXML, Statecharts are written as human-readable and human-editable XML
documents, which means that complex tooling is not needed to develop SCXML. Developers
can use their preferred text editor to author SCXML documents, and do not need to rely on
a complex graphical environment. Furthermore, as hand-edited XML documents are plain
text files, they can be easily managed using an off-the-shelf version-control system, such as
Subversion or Git.

Next, XML documents are easy to generate programmatically using a variety of well-
supported tools. For example, all of the test cases described in Chapter 4 were generated
programmatically using lrml2, an XML library for the Python programming language.

Next, there exists a suite of standards for querying and transforming XML documents,
as well as excellent free and open source implementations of these standards. For example,
XPath is a W3C standard which describes a notation for navigating the hierarchical struc-
ture of XML documents [CD%99]. In the context of SCXML, XPath can be used to analyze
the static properties of a Statecharts model. Likewise, the W3C standard XSLT provides
a language for transforming XML documents [CT99], and in the context of SCXML, can
be used to implement model transformations. For example, the transition flattening opti-
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mization that is described in Section 4.3.3 relies on a model transformation implemented in
XSLT.

Finally, XML integrates well with other Web technologies, such as XHTML and SVG.
SCXML documents can be embedded into Web pages, or parsed individually, using technol-
ogy built into all modern Web browsers.

An additional reason why SCXML was chosen as a core technology for SCION; is that the
SCXML specification states that ECMAScript should be used as an embedded action lan-
guage. This had two main advantages. First, I felt that use of ECMAScript for this purpose
would make SCXML more familiar to Web developers, who are likely already skilled users
of ECMAScript. Second, the Web browser environment already includes an ECMAScript
interpreter, and this made developing a browser-based SCXML implementation easier, as it
was possible to delegate execution of action code to the Web browser environment.

2.2 Syntax

For completeness, this section provides an overview of the textual, XML-based syntax for
SCXML, described in the W3C draft specification [BAAT10]. Furthermore, this section
describes a visual syntax for SCXML, which is not described in the SCXML specification.

The visual syntax described in this section is based on the syntax that is implemented
in the AToM3 DCharts modelling environment [Fen04], which was used to create all of the
visual Statecharts examples in this thesis. Variations on the visual syntax presented in this
section are possible, and depend on the Statecharts editor that is used.

Most examples in this chapter include figures and code listings that illustrate both the
XML and the visual syntaxes. Examples in Chapter 4 primarily use the XML syntax, while
examples in Chapter 5 primarily use the visual syntax.

2.2.1 States

A Statecharts model is composed of states and transitions. There are three types of states:
OR states, AND states, and basic states. Each state has a name. In the visual syntax,
OR and AND states are represented by dark blue rectangles, with their name in the upper
left-hand corner; basic states are represented by gray circles, with a text field containing the
value of the name located graphically under the circle. OR and AND states can contain other
states, such that there is a hierarchical, parent-child relationship between parent states and
child states, also called sub-states. This hierarchical, or ancestral, relationship is represented
in the visual syntax by making the graphical rectangle associated with the parent state
surround the graphical objects associated with its substates.

In the visual syntax, an AND state is differentiated from an OR state in that its child
OR states, also called orthogonal components, have light gray rectangles.

An OR state must have exactly one child which is marked as an initial state. In the
visual syntax, this is represented by making the stroke color of the graphical object green.



Finally, there exists a state that is the ancestor of all other states. This state is called
the root state, and, like the OR state, one of its substates must be marked as an initial
state. The root state does not have a graphical representation in the visual syntax; instead
its presence is implied.

Figure 2.1 shows an example of a simple Statecharts model containing a top-level OR
state, A, with two substates, A1 and A2, and a top-level AND state, B, with two sub-states,
Bl and B2. A and A1l are initial states.

Bl B2

Figure 2.1: A Statecharts model with AND, OR and basic states, arranged hierarchically

In SCXML, AND, OR and basic states are all written using XML tags. State names
are encoded using the @id attribute on the XML tag. AND states are encoded using the
<parallel> tag, and OR and basic states are both written using the <state> tag. XML
documents describe tree structures, so hierarchical relationships between states are directly
encoded by hierarchical relationships between XML nodes. As basic states and OR states use
the same tag (<state>), basic states are distinguished from OR states in SCXML implicitly
by their lack of sub-states.

There are three ways to represent initial states in SCXML. The first option is to use
an @initial attribute on the parent state. In this technique, the node associated with
the parent state may have an @initial attribute with the value set to the initial state’s
name. The second option is to use create an <initial> element as a child of the parent
OR state. In the third technique, the first sub-state in document order is implicitly used
as the initial state. Document order is a total ordering on the nodes in an XML document,
which is defined as the order in which the first character of each node occurs in the serialized
XML representation of the document [CD99]. This third technique is used in the SCXML
examples throughout this chapter.

The outer root state is written using the <scxml> tag. The SCXML root element normally
includes an XML namespace declaration, but for the sake of brevity, this is omitted from
examples of SCXML documents in this thesis.

Listing 2.1 shows an XML representation of the example from Figure 2.1.

2.2.2 Transitions

Transitions represent possible flows of between states. Transitions are associated with one
source state, zero-to-many target states, zero-to-many triggers, zero-or-one conditions, and
zero-to-many actions. A transition is graphically depicted in the visual syntax as an arrow
originating from the source state and targeting the target state. A transition that targets
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<scxml>
<state id="A">
<state id="A1"/>
<state id="A2"/>
</state>
<parallel id="B">
<state id="B1"/>
<state id="B2"/>
</parallel>
</scxml>

\S

Listing 2.1: An SCXML Document with AND, OR and basic states, arranged hierarchically

multiple states is represented as a hyperedge targeting multiple states, however this is only
a legal syntax when the states being targeted are orthogonal. Two states are defined as
orthogonal if they are not ancestrally related, and their closest mutual parent is an AND-
state.

In the visual syntax, triggers, conditions, and actions are shown in a textual label that
floats near the transition arrow. The visual syntax uses the following transition label for-
mat: trigger! trigger2[condition()]/action(). Conditions can contain arbitrary ECMAScript
expressions, and actions can contain arbitrary executable ECMAScript code. An example
of this is shown in Figure 2.2.

6 e2[condition()]/action()

O

BasicO Basicl

Figure 2.2: An example of a transition with two triggers, a condition and an action

In SCXML, a transition is represented using the <transition> tag. The source state of
the transition is the parent of the <transition> node, and the target is written using the
@target attribute on the node, where the attribute value is a space-separated list of ids of the
target states. The transition triggers are encoded using the @event attribute, whose value
is a space-separated list of triggers. The @cond attribute is used to encode the transition
condition, and can contain an arbitrary ECMAScript expression as its value. SCXML also
defines a special In() function, that returns true if the system is in a particular state.

The SCXML representation of the example from Figure 2.2 can be seen in Listing 2.2.

2.2.3 Actions

A transition can be associated with some action that executes when the transition is taken.
In the XML syntax, actions are encoded as child nodes of the transition node. The SCXML
specification describes several tags for actions. SCION currently implements the following:

e <log> computes a string from an ECMAScript expression, and prints it to the console.
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<scxml >
<state id="A">
<transition target="B" event="el e2" cond="condition()">
<script>
action();
</script>
</transition>

</state>
<state id="B"/>
</scxml>
S
Listing 2.2: An example of a transition with two triggers, a condition and an action
<scxml>
<datamodel >
<data id="x" expr="1"/>
<data id="y" expr="’hello’"/>
<data id="z"/>
</datamodel >
</scxml>
S

Listing 2.3: SCXML Datamodel

e <script> can contain arbitrary ECMAScript code to be executed

e <assign> assigns a value derived from the evaluation of an ECMAScript expression
the system’s datamodel

e <raise> and <send> are described later, in Section 2.5.4.

In SCXML, the set of variables visible to the system is explicitly declared using a
<datamodel> tag. This is illustrated in Listing 2.3. In this example, the system would
declare three variables: x, y and z, where x would be initialized to ECMAScript Number
value of 1, y would be initialized to ECMAScript String value "hello", and z would be
undefined. The datamodel can be manipulated using the SCXML <assign> tag, or via
ECMAScript assignment statements in the <script> tag.

SCXML also has a notion of a default transition, which is a transition without a @target
attribute. This is similar to a static reaction, described in [HK04], and indicates that on an
event, the actions associated with the transition may be executed, but the system will not
change state.

States can also be associated with actions, of two types: entry actions and exit actions.
In the visual syntax, entry and exit actions are not explicitly shown, although they can be
displayed in a dialog in the AToM3 editor. In SCXML, entry and exit actions are placed in
<onentry> and <onexit> tags, respectively, which are children of the XML node associated
with the state. Listing 2.4 shows an example of entry and exit actions in SCXML.




\S

<scxml >
<state id="A">
<onentry>
<log expr="’entered A’"/>
</onentry>
<onexit>
<log expr="’exited A’"/>
</onexit>

<transition target="B" event="t" cond="’foo’ === ’bar’">
<log expr="’taking transition from A to B’"/>
</transition>
</state>
<state id="B"/>
</scxml>

Listing 2.4: An SCXML document with entry, exit and transition actions

2.2.4 History

Finally, a Statecharts model may contain special history pseudostates, which can be of two
types: deep and shallow. In terms of syntax, history is treated like a basic state, in that it
can be the source and target of transitions, and be the child of an OR or AND state. In
DCharts, shallow history is drawn as a blue circle with an “H” character inside, and deep
history is drawn as a blue circle with an “H*” string inside. In SCXML a history state is
written using the <history> tag, and the deep/shallow property is captured using the @type
attribute on the history node. An example of history can be seen in Figure 2.3 and Listing

2.5.
O—o

h B

¢ @

A

Figure 2.3: An example of a deep history state

2.3 Common Basic Semantics

At a high level, a Statecharts model describes an event machine, which executes big-steps
in response to input events. A big-step is composed of a possibly infinite sequence of small-
steps, where each small-step moves the system between snapshots. A snapshot is defined as
tuple consisting of three elements:
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<scxml >
<state id="A">
<state id="A1"/>
<state id="A2"/>
<history id="h" type="deep"/>
</state>
<state id="B">
<transition target="h" event="t1"/>
</state>
</scxml>

\S

Listing 2.5: An example of a deep history state

1. The basic configuration, which is the set of basic states in which the model resides. A
full configuration, which is the set of basic, AND and OR states in which the model
resides, can be derived from a basic configuration by unioning the states in the basic
configuration with their ancestors.

2. The datamodel, which is the set of variables visible to the Statecharts model.

3. The present events, which is the set of events that can be sensed by the system.
Events can be generated internally (internal events), or received from the environment
(interface events). The difference between internal and interface events in SCION
semantics is elaborated in Section 2.5.5.

More specifically, in order to move the system between snapshots, the following tasks are
performed in a small-step:

1. An event is sensed by the system and zero or more transitions are enabled.
2. From this set of enabled transitions, a subset of priority enabled transitions are selected.

3. For each state in the set of states to exit, ordered hierarchically from inner to outer,
the exit actions associated with each state are executed.

4. The transition actions of each priority enabled transition are executed in document
order.

5. For each state in the set of states to enter, ordered hierarchically from outer to inner,
the entry actions associated with each state are executed.

6. The configuration is updated so that states in the set of states to exit are removed,
and the states in the set of states to enter are added.

A big-step will continue executing small-steps until the Mazimality constraints of its
semantics are satisfied, which is described in Section 2.5.3.

The remainder of this section describes the conditions under which a transition becomes
enabled, and the method of computing the set of states to enter and set of states to exit in
a small-step.
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2.3.1 Enabled Transitions

A transition is enabled if all of the following conditions are satisfied:
1. The transition’s source state is in the model’s full configuration.
2. The transition’s trigger is satisfied, which is defined as the following disjunction:

(a) The transition does not have a trigger (i.e., it is a default transition), or

(b) The set of events that can be sensed is nonempty, and the transition has a wildcard
trigger, which in SCXML is encoded as the special string “*”, or

(c) One of the transition’s triggers matches an event in the set of events that can be
sensed.

3. The transition’s condition is satisfied, which is defined as the following disjunction:

(a) The transition does not have a condition, or

(b) The transition has a condition and the condition evaluates to true.

A transition is considered priority enabled if it is has higher priority than other transi-
tions that can be executed instead of it. Section 2.5.7 describes the semantic aspect that
determines transition priority.

2.3.2 Selecting States to Enter and States to Exit in a Small-Step

Informally, an AND state expresses an AND relationship between its sub-states, such that
when the full configuration contains an AND state, it also contains all of the AND state’s
children. Likewise, an OR state expresses an XOR relationship between its substates, such
that when the full configuration contains an OR state, it contains exactly one of the OR
state’s children. These constraints are captured in the following descriptions of the set of
states entered and set of states exited, given a set of priority enabled transitions and the cur-
rent configuration. Section 3.9 provides pseudocode implementations of these descriptions,
and they are illustrated in the following section with examples.

The set of states to exit can be defined as follows. First, define S to be the set of states
in the basic configuration that satisfy the following condition: the ancestor of the state or
the state itself is the source state of a priority enabled transition. Then, the set of states to
exit is defined as the union of each state in S with its ancestors, up to but not including the
arena of the priority enabled transition that caused that state to be exited. The arena of
a transition is the least common ancestor (LCA) of its source and destination states, which
is the state lowest in the state hierarchy that is an ancestor of the source and destination
states.

The set of states to enter is defined to be the set of states in the hierarchy between each
priority enabled transition target and that target’s ancestors, up to but not including the
transition arena. If the target of a priority enabled transition is an AND or OR state, then
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<scxml >
<state id="A">
<transition target="B" event="t"/>
</state>
<state id="B"/>
</scxml>

(\

Listing 2.6: A simple SCXML document

its children must be recursively added to the set of states to enter, according to the following
rules:

e If the state to be entered is an OR state, then its initial state should be recursively
added to the set of states to enter.

e If the state to be added is an AND state, then its substates should be recursively added
to the states to be entered.

e If the state to be added is a basic state, then it should simply be added to the states
to be entered.

e If the state to be added is a history state, then its history value should be recursively
added to the set of states to enter.

The history value of a history state is defined as follows:

e If history is of type shallow, the history value is the sub-state of history’s parent state
which the system was in the last time it was in history’s parent.

e [f history is of type deep, the history value is the basic configuration relative to the
history state’s parent which the system was in the last time it was in history’s parent.

2.4 Examples of Common Basic Semantics

2.4.1 Basic States

To clarify the above definitions, consider the following example model in Listing 2.6 and
Figure 2.4.

O——0

A B

Figure 2.4: A simple Statecharts model
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<scxml >
<state id="A">
<onexit>
<log expr="’foo’"/>
</onexit>
<transition target="B" event="t">
<log expr="’bar’"/>
</transition>
</state>
<state id="B">
<onentry>
<log expr="’bat’"/>
</onentry>
</state>
</scxml>

\S

Listing 2.7: A simple Statecharts model with entry, exit, and transition actions

The system starts in basic configuration {A}. When event t is sent to the system, the
transition from state A to B is priority enabled. The arena of the transition from A to B is
the root state. The set of states to exit is defined to be A’s ancestors and A itself, up to but
not including the transition arena (the root state), therefore the set of states to exit is {A}.
Likewise, the set of states to enter is defined to be the target of the transition (B), up to but
not including the transition arena (root), therefore the set of states to enter is {B}. The exit
actions of A would then be fired, followed by the transition actions of the transition from A
to B, followed by the entry action of B. Lastly, the basic configuration would be updated to
{B}.

The example in Listing 2.7 adds state entry, exit, and transition actions to the previous
example. This example would print “foo bar bat” to the console.

2.4.2 OR States
The example in Listing 2.8 and Figure 2.5 illustrates a basic scenario using OR states.

A

(:> tl ; [:)
Al A2 t o *)( )

B

Figure 2.5: A Statecharts model illustrating OR states
The system starts in basic configuration {A1}. When event t1 is sent to the system,

the transition from A1 to A2 is priority enabled. The arena of this transition is A. The set
of states to exit is defined to be Al’s ancestors and A1l itself, up to but not including the
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<scxml >
<state id="A">
<state id="A1">
<transition target="A2" event="t1"/>
</state>
<state id="A2"/>

<transition target="B" event="t2"/>
</state>
<state id="B"/>
</scxml>

(\

Listing 2.8: An SCXML document illustrating OR states

transition arena (A), therefore the set of states to exit is {A1}. The set of states to enter is
defined to be the target of the transition (A2) and its ancestors, up to but not including the
transition arena (A), therefore the set of states to enter is {A2}. The exit actions of A1 would
then be fired, followed by the transition actions of the transition from A1 to A2, followed by
the entry action of A2. Lastly, the basic configuration would be updated to {A2}.

When event t2 is sent to the system, the transition from A to B would be priority enabled.
A2 is a basic state in the configuration whose ancestor (A) is a source state of a priority enabled
transition (from A to B), and so A2 and A2’s ancestors are added to the states to exit, up to
but not including the transition arena (root). Therefore, the set of states to exit is {A2,A}.
The set of states to enter is the target of the transition (B), up to but not including the
transition arena (root), therefore the set of states to enter is {B}. The exit actions would
be fired in order of increasing hierarchy, so A2’s exit actions would fire followed by A’s exit
actions. The transition actions would then fire, followed by the entry actions for B.

2.4.3 AND States
The example in Listing 2.9 and Figure 2.6 illustrates a basic scenario for AND states.

P

A B

o—0 | O—0

Al A2 Bl B2

Figure 2.6: A Statecharts model illustrating AND states

The system starts in configuration {A1,B1}. When event t1 is sent to the system, the
transition from A1 to A2 is priority enabled. The arena of this transition is A. The set of
states to exit is defined to be A1’s ancestors and A1 itself, up to but not including the arena
(A), therefore the set of states to exit is {A1}. The set of states to enter is defined to be
the target of the transition (A2), up to but not including the arena (A), therefore the set of
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<scxml >
<parallel id="P">
<state id="A">
<state id="A1">
<transition target="A2" event="t1"/>
</state>
<state id="A2"/>
</state>
<state id="B">
<state id="B1">
<transition target="B2" event="t2"/>
</state>
<state id="B2"/>
</state>
</parallel>
</scxml>

\S

Listing 2.9: An SCXML document illustrating AND states

states to enter is {A2}. The exit actions of A1 would then be fired, followed by the transition
action of the transition from A1 to A2, followed by the entry action of A2. Lastly, the basic
configuration would be updated to {A2,B1}.

When event t2 is sent to the statechart, the small-step would start and the transition
from B1 to B2 would be priority enabled. The arena of the transition from Bl to B2 is
state B. The set of states to exit is defined to be B1’s ancestors and B1 itself, up to but not
including the arena, which is B, therefore the set of states to exit is {B1}. The set of states
to enter is defined to be the target of the transition (B2), up to but not including the arena
(B), therefore the set of states to enter is {B2}. The exit actions of B1 would then be fired,
followed by the transition action of the transition from B1 to B2, followed by the entry action
of B2. Lastly, the basic configuration would be updated to {A2,B2}.

2.4.4 History

The example in Listing 2.10 and Figure 2.7 illustrates a basic scenario for shallow history.

The system starts in basic configuration {A1}. When event t1 is sent to the system, the
transition from A1 to A2 is priority enabled. The arena of the transition from A1 to A2 is
state A. The set of states to exit is defined to be A1’s ancestors and A1 itself, up to but not
including the arena, which is A, therefore the set of states to exit is {A1}. The set of states
to enter is {A2}. The exit actions of A1 would then be fired, followed by the transition action
of the transition from A1l to A2, followed by the entry action of A2, and the configuration
would be updated to {A2}.

When event t2 is sent to the system, the transition from A to B would be priority enabled.
A2 is a basic state in the configuration whose ancestor (A) is a source state of a priority enabled
transition (from A to B), and so A2 and A2’s ancestors are added to the states to exit, up to
but not including the arena of the transition (root). Therefore, the set of states to exit is
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<scxml>

<state id="A">
<state id="A1">
<transition target="A2" event="t1"/>
</state>
<state id="A2">
<transition target="B" event="t2"/>
</state>

<history id="H" type="shallow"/>
</state>

<state id="B">
<transition target="h" event="t3"/>
</state>
</scxml >

Listing 2.10: An SCXML document illustrating History states

t1
Al A2 £2

20O

t3 B

Figure 2.7: A Statecharts model illustrating History states

{A2,A}. The set of states to enter is the target of the transition (B), up to but not including
the arena (root), therefore the set of states to enter is {B}. The exit actions would then
be fired in order of increasing hierarchy, so A2’s exit action would fire, followed by A’s exit
action, followed by the transition action, and entry action for B. The configuration would
then be updated to {B}.

When event t3 is sent to the system, the transition from B to H would be priority enabled.
The history value of shallow history state H is defined to be the sub-state of history’s parent
(A) which the system was in the last time it was in history’s parent, therefore the history
value is A2. {A2, A} are therefore added to the set of states to enter. The set of states to
exit would be {B}, and the final basic configuration would be {A2}.

Deep History The example in Listing 2.11 and Figure 2.8 illustrates a basic scenario for
deep history.
The system starts in basic configuration {A11}. When event t1 is sent to the system,
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<scxml >
<state id="A">

<state id="A1">

<state id="A11">
<transition target="A12" event="t1"/>

</state>
<state id="A12"/>

</state>

<transition target="B" event="t2"/>

<history id="H" type="deep"/>
</state>

<state id="B">
<transition target="h" event="t3"/>
</state>
</scxml>

\

Listing 2.11: An SCXML document illustrating deep History states

the transition from A11 to A12 is priority enabled. The arena of the transition from A11 to
A12 is state A1l. The set of states to exit is defined to be A11’s ancestors and A11 itself, up
to but not including the arena, which is A1, therefore the set of states to exit is {A11}. The
set of states to enter is {A12}. The exit actions of A11 would then be fired, followed by the
transition action of the transition from A11 to A12, followed by the entry action of A12, and
the configuration would be updated to {A12}.

When event t2 is sent to the system, the transition from A to B would be priority enabled.
A12 is a basic state in the configuration whose ancestor (A) is a source state of a priority
enabled transition (from A to B), and so A12 and A12’s ancestors are added to the states to
exit, up to but not including the arena of the transition (root). Therefore, the set of states
to exit is {A12,A1,A}. The set of states to enter is the target of the transition (B), up to but
not including the arena (root), therefore the set of states to enter is {B}. The exit actions
would then be fired in order of increasing hierarchy, so A12’s exit action would fire, followed
by A1l and A’s exit actions, followed by the transition action, and entry action for B. The
configuration would then be updated to {B}.

When event t3 is sent to the system, the transition from B to H would be priority enabled.
The history value of deep history state H is defined to be the basic configuration relative to
the history state’s parent (A) which the system was in the last time it was in history’s parent,
therefore the history value is A12. {A12, A1, A} are therefore added to the set of states to
enter. The set of states to exit would be {B}, and the final basic configuration would be
{A12}.
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Figure 2.8: A Statecharts model illustrating History states

2.5 Semantic Aspects

The previous sections define a basic semantics for SCION, but leave many unanswered ques-
tions regarding semantic edge cases. This section enumerates those questions using the
framework described in “Big-Step Semantics”, by Esmaeilsabzali, Day, et. al [EDAN09].
“Big-Step Semantics” defines a set of semantic aspects that describes the executable be-
haviour of a range of Statecharts variants. SCION chooses one configuration of the set of
possible choices for each of these semantic aspects. Each semantic aspect is summarized here
and illustrated with meaningful examples.

This section simplifies some of the work presented in “Big-Step Semantics.” In certain
cases, some semantic choices that would be out of scope for this thesis are excluded. For
example, this chapter does not discuss the notion of “combo-steps”, and therefore semantic
choices that rely on this concept are excluded. Additionally, the syntax and semantics
presented in this section extends the work of “Big-Step Semantics” in some ways, such as
adding support for history states and default transitions, which are described in the previous
sections.

2.5.1 General Influences on SCION Semantics

There were several general motivating factors that influenced SCION’s semantics.

First, the W3C SCXML draft specification had a large influence on the semantic choices
that were made. The SCXML specification provides the “Algorithm for SCXML Interpreta-
tion,” which is a canonical algorithm for executing SCXML documents. A choice was made
early in SCION’s development not to reuse this algorithm directly for SCION’s semantics,
as at the time development on SCION began, the “Algorithm for SCXML Interpretation”
contained a serious bug regarding the execution of parallel states, such that the algorithm
would lead to illegal system configurations for certain simple test cases [Bea]. However, cer-
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tain semantic decisions made by the “Algorithm for SCXML Interpretation” were found to
be useful and intuitive, and were thus incorporated into SCION’s semantics. Two examples
of this are the Memory Protocol and Event Lifeline semantic aspects, which are described
in Sections 2.5.2 and 2.5.4.

Another way that SCXML influenced SCION semantics was through the document order
property of XML, which defines a total ordering on SCXML elements. This can be used
to resolve what would otherwise be nondeterministic behaviour. Two examples of seman-
tic aspects influenced by this are Transition Priority and Order of Transitions, which are
described in Sections 2.5.7 and 2.5.8.

The intended target environment of the Web browser also had an impact on SCION’s
semantics, particularly External Event Communication, which is described in Section 2.5.5.

Finally, several semantic choices, in particular Memory Protocol Semantics, were based
on what I felt would be most intuitive for Web developers, the intended users of SCION.

Another general influence on SCION semantics was the notion that supporting the syn-
chrony hypothesis was not a desirable feature for SCION. The synchrony hypothesis is the
assumption that a big-step takes zero time, and is often used for Statecharts semantics
targeting hardware, where a big-step may execute during a single clock cycle. SCION is de-
signed such that arbitrary ECMAScript code may be executed in a single small-step, which
may take non-zero time, and thus the synchrony hypothesis would not have been a good fit
for SCION semantics.

The remainder of this chapter discusses various semantic aspects from “Big-Step Seman-
tics”, and describe how they apply to SCION.

2.5.2 Memory Protocol

The Memory Protocol semantic aspect describes when changes to the datamodel are sensed.
There are two possible choices for this:

e Next Big-Step: variables retain the same value throughout the big-step, and are up-
dated at the end of the big-step.

e Next Small-Step: variables retain the same value throughout the small-step, and are
updated at the end of the small-step.

SCION supports two semantic choices: the Next Small-Step semantics, and an EC-
MAScript assignment semantics. This decision was motivated by SCXML, which embeds
ECMAScript as a scripting language. ECMAScript can be used to manipulate the data-
model in action code inside of <script> tags. Next Small-Step Memory Protocol semantics
then clash with ECMAScript assignment semantics, as in ECMAScript, like most procedural
languages, the value of a variable is expected to change immediately after the execution of
an assignment statement.

Furthermore, the ability to enforce Next Small-Step semantics is limited in the browser
environment, as variable assignment in ECMAScript is, by default, performed in the global

20



scope. Therefore, a user of SCION would be able to side-step Memory Protocol semantics if
they so chose simply by assigning to a global variable inside a <script> tag.

For these reasons, SCION supports both ECMAScript-style assignment semantics, such
that result of an assignment action is detected in the same small-step, and optional Next
Small-Step memory protocol semantics, in which assignment to variables in the datamodel
is detected in the next small-step. This is managed as follows:

e In ECMAScript action code, ECMAScript assignment statements use ordinary EC-
MAScript semantics to perform assignments to variables in the datamodel. This means
that the datamodel will be updated immediately, after the ECMAScript assignment
statement finishes executing, and these changes to the datamodel will be detectable in
the same small-step.

e Assignment performed by the SCXML <assign> tag uses ECMAScript assignment
semantics as well.

e To use Next Small-Step semantics, a “getter” and “setter” API is provided to EC-
MAScript action code:

— setData(String variableName, Object value)
— getData(String variableName)

Examples

Same Small-Step Memory Protocol Semantics Consider the example in Listing 2.12.

In this example, when the system is started, datamodel variable foo would be initialized
to value 0, and the system would begin in initial state a. Upon receiving event t, the
system would transition to state b, and the transition <assign> actions would be executed
in document order. foo would be updated so that changes are detected in the same small-
step. This means that in the first <assign>, foo + 1, would assign the value 0 +1 =1 to
variable foo. In the second assign, foo — 1, would assign the value 1 — 1 = 0 to foo. The
same would be repeated in the next small-step, in the default transition from b to c. Thus,
foo would end with value 0.

The example in Listing 2.12 is equivalent to the following example in Listing 2.13, which
uses <script> instead of <assign>.

Next Small-Step Memory Protocol Semantics Listing 2.14 illustrates how Next
Small-Step assignment may be used in SCION.

Like the first two examples in Listings 2.12 and 2.13, the system will begin in state
a, variable foo will be initialized to value 0, and upon receiving event t, the system will
transition to state b. Because the expression “setData(’foo’,getData(’foo’) - 1)” is executed
after the expression “setData(’foo’,getData(’foo’) + 1)”, at the end of the first small-step
foo will be assigned the value foo —1 =0 — 1= —1. The system would end the small-step
in state b. In the next small-step, the default transition to state ¢ would be taken. The
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<scxml>

<datamodel >
<data id="foo" expr="0"/>
</datamode >

<state id="a">
<transition target="b" event="t">
<assign location="foo" expr="foo + 1"/>
<assign location="foo" expr="foo - 1"/>
</transition>
</state>

<state id="b">
<transition target="c">
<assign location="foo" expr="foo + 1"/>
<assign location="foo" expr="foo - 1"/>
</transition>
</state>

<state id="c"/>
</scxml>

\

Listing 2.12: SCXML document illustrating Same Small-Step Memory Protocol

same actions would be performed, and so at the end of the small-step, variable foo would
be updated to value foo—1=—-1—-1= —2.

2.5.3 Maximality

A big-step consists of a possibly infinite sequence of small-steps, and the Maximality semantic
aspect defines the conditions in which the system reaches a stable state and ends a big-step.
There are three possible semantic choices for this aspect:

e Syntactic: a special syntax is used to specify a state which, when entered, should end
the big-step.

e [mplicit, of which there are two varieties:

— Take-One: A big-step should end after all priority enabled transitions are taken
in the first small-step.

— Take-Many: The system should take multiple small-steps, until it reaches a stable
state in which no transitions have been enabled.

SCION uses the Take-Many semantic aspect. Listing 2.15 and Figure 2.9 provide an
example of this.
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<scxml>

<datamodel >
<data id="foo" expr="0"/>
</datamode >

<state id="a">
<transition target="b" event="t">
<script>
foo = foo + 1;
foo = foo - 1;
</script>
</transition>
</state>

<state id="b">
<transition target="c">

<script>
foo = foo + 1;
foo = foo - 1;

</script>
</transition>
</state>

<state id="c"/>
</scxml>

Listing 2.13: A second example illustrating Same Small-Step Memory Protocol semantics
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<scxml>

<datamodel >
<data id="foo" expr="0"/>
</datamode >

<state id="a">
<transition target="b" event="t">
<script>

setData(’foo’,getData(’foo’) + 1);
setData(’foo’,getData(’foo’) - 1);
</script>
</transition>
</state>
<state id="b">
<transition target="c">
<script>
setData(’foo’,getData(’foo’) + 1);
setData(’foo’,getData(’foo’) - 1);

</script>
</transition>
</state>

<state id="c"/>
</scxml>

\S

Listing 2.14: An SCXML document illustrating Next Small-Step Memory Protocol Semantics

000

A

Figure 2.9: An example of Maximality semantics

In this example, after the event t1 is sent to the system, a big-step would be initiated,
and in the first small-step, the transition from A to B would be taken. Because of the Take-
Many semantics, the default transition from B to C could be taken in a subsequent small-step.
Finally, the system would be in a state where no transitions are selected, and the big-step
would end, finishing the big-step in basic configuration {C}.

If Take-One semantics were used, then after the event t1 is sent to the system, a big-
step would be initiated, and in the first small-step, the transition from A to B would be
taken. Take-One semantics specifies that the big-step should end after all priority enabled
transitions are taken in the first small-step, and so the big-step would end, leaving the system
in configuration {B}. In a subsequent big-step, the transition from B to C would be selected,
as described above, leaving the system in configuration {C}.

If Syntactic semantics were used, then a special syntax would need to be invented and
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<scxml >
<state id="A">
<transition target="B" event="t1"/>
</state>
<state id="B">
<transition target="C"/>

</state>
<state id="C"/>
</scxml>
\S
Listing 2.15: An SCXML document illustrating Maximality semantics
<scxml>
<state id="A">
<transition target="B" event="t1"/>
</state>
<state id="B">
<transition target="B"/>
</state>
</scxml>
S

Listing 2.16: An SCXML document illustrating a big-step that will never complete, assuming
Take-Many semantics

applied to state B or state C in order to signify that the big-step should stop after entering
one of these states.

The reduced example in Listing 2.16 and Figure 2.10 illustrates how, when Take-Many
semantics are used, a big-step may never complete:

O——=

A B

Figure 2.10: An example of a big-step that will never complete, assuming Take-Many se-
mantics

In this case, the system starts in configuration {A}. When event t1 is sent, a big-step is
initiated, and in the first small-step, the transition from A to B is enabled, and the system
transitions to B, leaving the system in configuration {B}. In the next small-step, the default
transition from B to itself is enabled, and the system exits and re-enters B, leaving the system
in configuration {B}. The execution of the previous small-step would continue infinitely.
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2.5.4 FEvent Lifelines

The FEwvent Lifeline semantic aspect describes when internal events can be sensed after the
are generated.
There are four possible semantic choices:

Whole big-step: a generated event can be sensed from the beginning of the current
big-step, regardless of the small-step in which it has been generated, and persists until
the end of the big-step.

e Remainder of the current big-step: a generated event can be sensed after the small
step in which it is generated, and persists during the remainder of the big-step.

e Next Small-Step: a generated event can be sensed only in the small-step after it is
generated.

e Same Small-Step: a generated event can be sensed only in the small-step in which it
is generated.

SCION uses Next Small-Step Event Lifeline semantics. This decision was motivated by
the SCXML step algorithm. In the SCXML step algorithm, a queue is kept for internal
events, and in each small-step, a single event is dequeued and can be sensed during that
small-step. I felt this would be an intuitive approach for Web developers.

Before describing an example of Event Lifeline semantics, an explanation of SCXML’s
<raise> and <send> elements is required. SCION uses these tags to generate internal and
interface events, respectively.

SCXML <send> and <raise>

SCXML provides two tags for generating events: <send> and <raise>. <raise> is the
simpler of the two, having a single attribute @event which specifies the event to be generated.
<send> is designed to be more general, and is able to send events after a delay, for example “10
minutes”, or “5 milliseconds”, which is specified using the @delay attribute. Like <raise>,
the event to generate is also specified for <send> using the @event attribute. In SCION
semantics, <send> is used to generate interface events, and <raise> is used to generate
internal events. Section 2.5.5 discusses <send> and interface events in more detail.

Example

For the example in Listing 2.17, assume that the Maximality semantic aspect is Take-Many,
and the Memory Protocol constraint is Next Small-Step.

In this example, the system would begin in configuration {A}. When event t1 is sent,
a big-step would be initiated, and in the first small-step, the transition from A to B would
be enabled. The system would transition to state B, raising internal event t2 as its entry
action, and ending the first small-step in configuration {B}.
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<scxml >
<state id="A">
<transition target="B" event="t1"/>
</state>
<state id="B">
<onentry>
<raise event="t2"/>
</onentry>
<transition target="C" event="t2"/>
</state>
<state id="C">
<transition target="D" event="t2"/>
</state>
<state id="D"/>
</scxml>

\S

Listing 2.17: An SCXML document illustrating Event Lifeline semantics

Assuming Whole Big-Step or Remainder of Current Big-Step Event Lifeline semantics,
event t2 could then be sensed in the second small-step, which would enable the transition
from B to C, ending the second small-step in configuration {C}. Event t2 could then continue
to be sensed in the third small-step, enabling the transition from C to D, ending the third
small-step in configuration {D}. At this point, no more transitions would be enabled, thus
ending the big-step in configuration {D}.

Like Whole Big-Step and Remainder of Current Big-Step semantics, assuming Next
Small-Step Event Lifeline semantics, event t2 would be sensed in the second small-step,
which would enable the transition from B to C, ending the second small-step in configuration
{C}. However, it would not be possible to sense t2 in the subsequent small-step, hence, the
transition from C to D would not be enabled, and the big-step would end in configuration
{C}.

Assuming the Same Small-Step semantic option, event t2 would be sensed in the same
small-step in which it is raised, but not the one after. Hence, in the second small-step, the
transition from B to C would not be enabled, and the big-step would end in configuration

{B}.

2.5.5 External Event Communication

The External Event Communication semantic aspect describes what happens if an event is
received from the environment while a big-step is executing.
There are three possible choices for this semantic aspect:

e Strong Synchronous: An interface event is either present throughout a big-step from
the beginning, or is absent throughout the big-step.

o Weak Synchronous: An interface event need not be present from the beginning of a
big-step, and would be sensed during the execution of the big-step.
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package org.eclipse.swt.snippets;
import org.eclipse.swt.widgets.x*;
public class Snippetl {

public static void main (String [] args) {
Display display = new Display ();
Shell shell = new Shell(display);
shell.open ();
//this starts the main event loop
while (!shell.isDisposed ()) {
//this rTeads and dispatches events
if (!display.readAndDispatch ()) display.sleep Q);
}
display.dispose ();

Listing 2.18: Java SWT Event Loop

e Asynchronous: An interface event would be sensed in the big-step after the big-step
in which it is generated.

SCION implements Asynchronous External Event Communication semantics. Further-
more, SCION treats events generated internally and externally as identical with respect to
their event lifelines. This means that interface events are sensed for a single small-step in a
big-step, rather than, e.g. throughout the entire big-step.

In order to provide an example of what this means for SCION, a further explanation
must be provided of the execution model of the Web browser environment.

Web Browser Environment

Event Loop Abstraction An event loop is a programming construct which is widely used
in graphical user interfaces (GUIs), where most GUI applications have a top-level event loop,
known as the main event loop, which waits for and dispatches events, such as user interface
events (e.g. mouse and keyboard events) and network events. An example of this can be
seen in Listings 2.18 and 2.19, which show GUI programs containing main event loops in
Java and Python for the SWT and Tkinter GUI toolkits, respectively.

The Web browser environment is also a GUI application that uses a main event loop
to dispatch events. Furthermore, the Web browser environment embeds a scripting lan-
guage, ECMAScript, in such a way that the main event loop is abstracted from executing
ECMAScript code. This means that when a Web page is loaded, and a script tag is encoun-
tered, the ECMAScript code in the script tag is evaluated, and the thread of control is passed
from the main event loop (the embedding context), to the executing ECMAScript code (the
embedded context). When the ECMAScript code finishes executing, control returns to the
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from Tkinter import *
root = Tk ()

w = Label(root, text="Hello,_ world!'")
w.pack ()

#this starts the main event loop,
#which reads and dispatches events
root.mainloop ()

Listing 2.19: Tkinter Event Loop

document . documentElement . addEventListener (" keypress” ,function (event){
console.log(”received” ,event );
1)

Listing 2.20: Registering a keypress event listener from ECMAScript

embedding context. This flow of control back to the embedding context happens transpar-
ently to the executing ECMAScript code.

The embedded ECMAScript code may register callback functions to listen for events
asynchronously, which are passed to it from the main event loop in the embedding context.
For example, Listing 2.5.5 illustrates how to register from ECMAScript an event listener so
that an anonymous callback function is called on the user interface keypress event.

Time GUI toolkits that rely on an event loop also often provide a scheduling mechanism,
so that a specified callback may be invoked after a delay. Examples of this include Tkin-
ter’s Widget.after [Lun], Adobe Flash’s flash.utils.setTimeout [fla], and the Web browser’s
window.set Timeout [Net].

SCION uses this mechanism to delegate scheduling of delayed events to the Web browser
environment. This means that SCION does not manage time internally, and instead relies
on the environment to schedule sending of delayed events.

Semantic Implications SCION is designed primarily to be executed in the ECMAScript
embedded context, so that the main event loop is abstracted. What this means first of
all for SCION semantics is that interface event are events that are generated by the Web
browser embedding context and passed into the ECMAScript embedded context via callback
functions. Events from the embedding context are generated discretely, one at a time, such
that a single event is passed to the embedded context via a callback. In order to execute
a big-step, the Web browser’s single thread of execution must be passed from the main
event loop to the embedded context. While the embedded context has the thread, the
embedding context may continue to queue events to send into the embedded context when
the thread of control returns. Because of this queuing mechanism, and the single-threaded
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nature of the Web browser environment, SCION can be said to implement Asynchronous
External Event semantics. SCION only processes one interface event per big-step, because
to do so requires passing the thread of execution from the Web browser environment into the
embedded context; however, events may be queued by the environment until after the thread
returns from the embedded context, at which point these queued events can be subsequently
sent.

Note that while the Web browser environment can and does queue events asynchronously
while the embedded context is executing a big-step, and thus SCION’s Event Lifeline seman-
tics are technically Asynchronous, a Statecharts model designed to implement user interface
behaviour should not rely on this queuing mechanism, as queued Ul events can result in a
noticeable Ul “lag”, or delay between an event dispatch and its perceived results. For that
reason, SCION is designed for fast execution, such that it should be able to process Ul events
as they are dispatched, and without causing them to be queued.

Example

An example of SCION semantics regarding External Event Communication semantics is
provided in Listing 2.21.

In this example, upon entering state A, the system requests that the environment send
interface events t1, t2 and t3 to the system after 10 milliseconds. The environment is
responsible for scheduling events t1, t2 and t3, and in this example, it is assumed that
the environment is implemented in such a way that the events are sent in the order t1, t2,
t3. This example also assumes a Next Big-Step option for the Memory Protocol semantic
aspect.

Assuming an Asynchronous External Event Communication semantics, t1, t2 and t3
would each be handled in separate big-steps. As the datamodel would be updated at the
end of each big-step, this means that variable x would be incremented three times, once for
each transition taken in each big-step (from A to B, B to C, and C to D), so its resulting value
would be 3.

Strong Synchronous and Weak Synchronous External Event Communication semantics
would not be possible to implement in SCION given the architectural constraints mentioned
above.

2.5.6 Transition Consistency

This section describes two semantics aspects concerning Transition Consistency, which refers
to the conditions under which a pair of transitions can be taken together in a small-step.

Small-Step Consistency

The first semantic aspect is Small-Step Consistency. There are two choices for this:

e Arena Orthogonal: Two transitions may be included in the same small-step only if
their arenas are orthogonal.
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<scxml>
<datamodel >
<data id="x" expr="0"/>
</datamodel >

<state id="A">
<onentry>
<send delay="10ms" event="t1"/>
<send delay="10ms" event="t2"/>
<send delay="10ms" event="t3"/>
</onentry>

<transition target="B" event="t1">
<assign location="x" expr="x + 1"/>
</transition>
</state>
<state id="B">
<transition target="C" event="t2">
<assign location="x" expr="x + 1"/>
</transition>
</state>
<state id="C">
<transition target="D" event="t3">
<assign location="x" expr="x + 1"/>
</transition>
</state>

<state id="D"/>

</scxml>

Listing 2.21: An SCXML document illustrating External Event Communication semantics
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<scxml >
<state id="A">
<state id="A1">
<transition target="B" event="t1"/>
</state>
<transition target="C" event="t1"/>
</state>
<state id="B"/>
<state id="C"/>
</scxml>

\S

Listing 2.22: SCXML document illustrating Small-Step Consistency

e Source/Destination orthogonal: Two transitions may be included in the same small-
step only if their their sources and destinations are pairwise orthogonal, which, more
explicitly, entails the following three conditions: 1) their sources are orthogonal; 2) their
destinations are orthogonal; and, 3) the first transition’s source state is orthogonal with
the second transition’s destination state, and vice versa.

These semantic aspects can be illustrated in the examples in Listings 2.22 and 2.23.

0/1/>CB)

t

1 >0
t1

C

Figure 2.11: A trivial example of Small-Step Consistency semantics

The example in Listing 2.22 and Figure 2.11 presents a trivial case, because it does
not involve orthogonality, and both Arena Orthogonal and Source/Destination Orthogonal
semantics would produce the same outcome. However, this example illustrates a common
scenario in Statecharts development, where two transitions are enabled, such that their source
states are ancestrally related. Neither Arena Orthogonal nor Source/Destination Orthogonal
semantics would permit the two transitions, from Al to B and A to C, to be taken together
in the same small-step. For Arena Orthogonal semantics, the arena of both transitions is
the root state, and a state by definition cannot be orthogonal to itself, therefore taking
both transitions in the same small-step would not be permitted. For Source/Destination
Orthogonal semantics, neither the sources nor destinations of the transitions are orthogonal
to one another, and taking both transitions together would therefore not be permitted in
the same small-step.

In the example in Listing 2.23, Arena Orthogonal and Source/Destination Orthogonal
semantics would produce different outcomes. Arena Orthogonal semantics would not permit
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<scxml >
<parallel id="P">

<state id="A">

<state id="A1">
<transition target="A2" event="t1"/>

</state>
<state id="A2"/>

</state>

<state id="B">
<state id="B1">

<transition target="C2" event="t1"/>

</state>
<state id="B2"/>

</state>

<state id="C">
<state id="C1"/>
<state id="C2"/>

</state>

</parallel>
</scxml>

(S

Listing 2.23: A second SCXML document illustrating Small-Step Consistency

the transitions from A1 to A2 and B1 to C1 to be taken together in the same small-step, as the
arena of the first transition is the state A, and the arena of the second transition is the state P,
which are ancestrally related, and therefore not orthogonal. Source/Destination Orthogonal
semantics, on the other hand, would permit the two transitions to be taken together in the
same small-step, as the source states of the two transitions are orthogonal (A1 and B1), the
destination states are orthogonal (A2 and C1), and the source and destination states are
orthogonal (A1 and C1, and A2 and B1).

SCION uses Arena Orthogonal semantics, because I felt this option would be more intu-
itive for Web developers. More precisely, I reasoned that because developers must already
think in terms of transition arena, which is used to compute the set of states to exit and
the states to enter, then determining whether a pair of transitions are consistent would be
a single mental operation (i.e., compare the arenas of the two transitions to determine if
they are orthogonal), as opposed to four operations (compare the two transitions’ source
states; compare the destination states; compare the first transition’s source state and sec-
ond transition’s destination state; and compare the first transition’s destination state and
second transition’s source state). Ideally, a developer should be able to glance at a graphical
Statecharts model, and very quickly mentally simulate it to predict how it will behave at
runtime. I felt that Arena Orthogonal semantics better fulfilled the criterion of quick mental
calculations, and would thus be more intuitive for developers.

33



A B C
o O
Al B1 Cl
tl
A2 B2 C2

Figure 2.12: A second example of Small-Step Consistency semantics

Interrupt Transitions and Preemption

The second semantic sub-aspect concerns the case where one transition is an interrupt for
another transition. A transition A is an interrupt for a transition B if their source states are
orthogonal, and one of the following conditions holds:

e The destination of transition B is orthogonal with the source of transition A, and the
destination of transition A is not orthogonal with the source of either A or B. This is
illustrated in Listing 2.24 and Figure 2.13.

e The destination of transition A is not orthogonal with the source of transition A, the
destination of transition B is not orthogonal with the source of transition B, and the
destinations of transitions A and B are ancestrally related, such that the destination
of transition A is a descendant of the destination of transition B. This is illustrated in
Listing 2.25 and Figure 2.14.

P
A B
:: tl ::
Al £l Bl C
B2
A2

Figure 2.13: First Transition Preemption case

The semantic choices for this sub-aspect are:
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<scxml>
<parallel id="P">
<state id="A">
<state id="A1">
<transition target="A2" event="t1"/>
</state>
<state id="A2"/>
</state>
<state id="B">
<state id="B1">
<transition target="C" event="t1"/>
</state>
<state id="B2"/>
</state>
</parallel>

<state id="C"/>

</scxml>
S
Listing 2.24: First Transition Preemption case
<scxml >
<parallel id="P">
<state id="A">
<state id="A1">
<transition target="C" event="t1"/>
</state>
</state>
<state 1id="B">
<state id="B1">
<transition target="C2" event="t1"/>
</state>
</state>
</parallel>
<state id="C">
<state id="C1"/>
<state id="C2"/>
</state>
</scxml>
S

Listing 2.25: Second Transition Preemption case
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Figure 2.14: Second Transition Preemption case

e Preemptive: It is permissible for two transitions, where one is an interrupt for the
other, to be taken together in the same small-step.

e Non-Preemptive: The opposite of Preemptive, such that it is not permissible for two
transitions, where one is an interrupt for the other, to be taken together in the same
small-step.

SCION uses Non-Preemptive semantics, again because I felt this would be a more intuitive
choice for Web developers. In this case, I felt that Preemptive semantics would lead to
scenarios that, while logically sound, would be surprising and difficult to visualize for many
developers. For example, consider Figure 2.14. Intuitively, one would like to visualize the
state machine as “flowing” along a transition from the source state to the target state. I
felt it would be confusing to visualize the state machine as flowing along two transitions
simulataneously to two target states that are ancestrally related.

2.5.7 Transition Priority

The previous section outlined a set of rules describing when transitions may be taken together

in a small-step, but in order to describe how the examples in that section would execute in

SCION, an explanation of Transition Priority semantics is required. The Transition Priority

semantic aspect determines how transitions are prioritized when there are multiple enabled

transitions that cannot be taken together in a small-step. Transitions which are enabled,

and have priority over other transitions that are also enabled, are called priority enabled.
This semantic aspect is broken down into two categories of options:

e Basis:
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— Source: Priority is based on the transition source state.
— Destination: Priority is based on the transition destination state.

— Arena: Priority is based on transition arena.
e Scheme:

— Parent: If the basis is higher in the state hierarchy, it has higher priority.
— Child: If the basis is lower in the state hierarchy, it has higher priority.

The choice made for SCION semantics for this semantic aspect was influenced by SCXML.
SCION first uses Source-Child priority to select priority enabled transitions; if there are still
transitions which cannot be taken together, then SCION uses XML document order, where
transitions with lower document order (i.e. specified earlier in the document) have higher
priority. Because XML document order encodes a total ordering on the transitions, this
entails that transition selection based on priority will always be deterministic.

It is now possible to describe how the examples from the previous section would execute
in SCION.

In the example in Listing 2.22, the transition from A1 to B would have priority over the
transition from A to C, because the source of the first transition is lower in the state hierarchy.
Therefore, on event t1, the system would finish the small-step in configuration {B}.

In the example in Listing 2.23, the transition from A1 to A2 would have priority over
the transition from B1 to C1, because, even though their source states have the same depth
in the state hierarchy, the first transition occurs before the second in the XML document,
therefore it has higher priority. Thus, the system would start in configuration {A1,B1,C1},
and on event t1, the system would finish the small-step in configuration {A2,B1,C1}.

Like the previous example, in the example in Listing 2.24, the transition from A1l to A2
would have priority over the transition from B1 to C, because, even though the source states
of both transitions have the same depth in the state hierarchy, the first transition occurs
before the second in the XML document, and it therefore has higher priority. Thus, the
system would start in configuration {A1,B1}, and on event t1, the system would finish the
small-step in configuration {A2,B1}.

Likewise, in the example in Listing 2.25, the transition from A1 to C would have pri-
ority over the transition from Bl to C2, because, even though their source states have the
same depth in the state hierarchy, the first transition occurs before the second in the XML
document, therefore it has higher priority. Thus, the system would start in configuration
{A1,B1}, and on event t1, the system would finish the small-step in configuration {C1}.

2.5.8 Concurrency

Finally, there are two semantic aspects concerning AND states.
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<scxml >
<parallel id="P">
<state id="A">
<state id="A1">
<transition target="A2" event="t1"/>
</state>
</state id="A2">
</state>
<state id="B">
<state id="B1">
<transition target="B2" event="t1"/>
</state>
</state id="B2">
</state>
</parallel>
</scxml>

\S

Listing 2.26: Example of multiple transitions in orthogonal components that would be en-
abled in a single small-step

Number of transitions

The first semantic aspect describes how many transition occurrences can be executed in a
small-step, given a set of enabled transitions. There are two choices for this:

e Single: Only a single transition can be enabled in a small-step.

e Multiple: Multiple transitions can be enabled in a small-step

SCION uses Multiple semantics. This is illustrated in Listing 2.26 and Figure 2.15:

P

A B

O—0 OO0

Al A2 Bl B2

Figure 2.15: Example of multiple transitions in orthogonal components that would be en-
abled in a single small-step

In this example, the system would start in configuration {A1,B1}. On receiving event t1,
in the first small-step, the transitions from A1 to A2 and from B1 to B2 would be enabled. If
Multiple semantics are chosen, then both transitions would be taken in the first step. The
system would then finish the first small-step in configuration {A2,B2}.
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<scxml >
<parallel id="P">
<state id="A">
<state id="A1">
<transition target="A2" event="t1">
<log expr="’foo’"/>
</transition>
</state>
</state id="A2">
</state>
<state id="B">
<state id="B1">
<transition target="B2" event="tl1">
<log expr="’bar’"/>
</transition>
</state>
</state id="B2">
</state>
</parallel>
</scxml>

(S

Listing 2.27: SCXML example illustrating order of transitions

If Single semantics are chosen, then only one of the transitions could be taken in the
first small-step. The transition from A1l to A2 would have priority, as the source states of
both transitions have the same depth, and the first transition occurs earlier in the document,
therefore the system’s configuration at the end of the first small-step would be {A2,B1}. As-
suming the Event Lifeline semantics are Next Small Step for interface events and Maximality
semantics are Implicit, then the event t1 would not be sensed in the following small-step,
no transitions would be enabled, and the big-step would complete with the system in con-
figuration {A2,B1}.

Order of transitions

The second semantic aspect describes in what order a set of enabled transitions are executed.
There are two main choices for this:

e No order is specified.
e Order is explicitly defined.

The choice made for SCION semantics was again influenced by SCXML. SCION uses
document order of the XML <transition> nodes in order to explicitly define the order in
which transitions will be executed, such that transitions declared earlier in the document
will be executed before those declared later in the document.

This is illustrated in Listing 2.27. In this example, the system would start in configuration
{A1,B1}. On receiving event t1, in the first small-step, the transitions from A1 to A2 and
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from B1 to B2 would be enabled. If Multiple Transition semantics are chosen, then both
transitions would be taken in the first small-step. In SCION, as order is explicitly defined
based on document order, the <log> action of the transition from A1 to A2 would be executed
first, printing string “foo”. The <log> action of the transition from B1 to B2 would then be
executed, printing string “bar”. The system would end in configuration {A2,B2}.

The other semantic choice for Order of Transitions would lead to non-deterministic be-
haviour by definition, so the system may evaluate the transitions in any order, printing “foo
bar” or “bar foo”.
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Chapter 3

Pseudocode for SCION step algorithm

This chapter describes a canonical algorithm which implements the semantics of SCION
described in the previous sections. This algorithm meant to play a similar role to the
“Algorithm for SCXML Interpretation” presented in the SCXML specification. Furthermore,
Chapter 4 refers to specific sections of this algorithm in order to describe strategies for
optimizing its execution under ECMAScript.

Where possible, in the pseudocode algorithm, if a particular semantic option from “Big-
Step Semantics” has influenced the pseudocode implementation, it is noted in the function
description and in the code comments.

The pseudocode is written in a Python-inspired syntax. Indentation is used to delimit
block scope. Tuples are often returned from functions, and simple destructuring assignments
are used to initialize variables from the returned results. List data structures are initialized
using the “[]” syntax.

3.1 Data Structures

The following data structures are used in the algorithm.

e Set: An unordered collection of objects. In particular, note that union and difference
methods mutate the set, such that it is updated in-place.

List: An ordered list of objects.

Map: A map of string keys to object values.

Queue: A First-in-First-Out (FIFO), ordered data structure.

FEvent: A structure with the following properties:

— name : String

— data : Object
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3.2 Constants

The following state types are enumerated constants. The terms “parallel” and “composite”

are to indicate AND and OR states to avoid confusion with the boolean “and” and “or”
operators.

e PARALLEL

COMPOSITE

HISTORY

BASIC

INITTAL

3.3 Global Objects

The following variables are global to the functions in the algorithm:

e configuration: A basic configuration, which is a Set containing only basic and initial
states.

e historyValue: Map from a history state id string to a basic configuration.
e nnerFBventQueue: Queue containing Sets of Events.

e datamodel: String-to-Object Map.

3.4 Utility Functions

The following utility functions are used in the step algorithm. The implementation of these
depends on the underlying representation of the Statecharts model.

e getAncestors(sl,s2) : Returns the ancestors of state s1 up to, but not including
state s2.

e getDepth(s) : Returns the depth of a state s.
e getArena(t) : Returns the arena state of a transition t.

e isOrthogonalTo(sl,s2) : Returns a boolean value if state s1 is orthogonal to state
s2.

42



procedure init ():

configuration = new Set ()
historyValue = new Map()
innerEventQueue = []

Listing 3.1: procedure init

3.5 procedure init

Procedure init initializes the global data structures and is called when the interpreter is
first instantiated, and before any events are sent.

3.6 procedure start

Procedure start begins execution of the Statecharts model. This sets the initial configura-
tion, executes top-level scripts, initializes the datamodel, and performs the initial big-step.

procedure start (model)
configuration .add(model.root.initial)

#initialize top—level datamodel expressions. simple eval
for script in model.scripts
evaluateScript (script)

for item in model.datamodel
if item.expr then datamodel[item.location] = eval(item.expr)

performBigStep ()
S

Listing 3.2: procedure start

3.7 procedure performBigStep

Procedure performBigStep accepts an event as input. It will loop, selecting transitions
and performing small-steps, until no transitions are selected, at which point the big-step is
complete.

Procedure performBigStep implements Maximality: Take-Many semantics.

3.8 procedure performSmallStep

Procedure performSmallStep performs a single small step. First, it selects priority enabled
transitions, given the datamodel and present events for the current small-step. Next, it
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procedure performBigStep (e)
if ¢ then innerEventQueue.push(new Set([e]))

keepGoing = true

# Semantic Choice : Maxzimality: Take—Many
while keepGoing
if innerEventQueue.isEmpty ()
eventSet = innerEventQueue.shift ()
else
eventSet = new Set ()

#create new datamodel cache for the next small step
datamodelForNextStep = new Map()

selected Transitions = performSmallStep (eventSet ,datamodelForNextStep)

keepGoing = not selectedTransitions.isEmpty ()

Listing 3.3: procedure performBigStep

computes states that are exited and states that are entered. Next it processes states that are
exited, in order of depth, which includes updating any history states of the states exited, and
performs exit actions. Next, transition actions are executed in document order. Then, enter
actions are executed in reverse depth order for each state entered. Next, the configuration
is updated, such that basic states which are exited are removed from the configuration, and
basic states that are entered are added to the configuration. Next, the set of internal events
that have been sent by a <raise> are added to the innerEventQueue, so that they will be
active in the next small-step. Finally, the datamodel is updated with the values that have
been set in the current small-step.
Procedure performSmallStep implements the following semantic options:

e Concurrency: Number of transitions: Multiple
e Concurrency: Order of transitions: Explicitly defined

e Fuvent Lifelines: Next small-step

3.9 function getStatesExited

Function getStatesExited computes the states that have been exited, given a set of tran-
sitions. This function loops through the given set of transitions, computes the transition
arena and its descendants, and adds to set basicStatesExited states that are both in the
current configuration and descendants of the arena. Because the configuration contains only
basic states, the states added to basicStatesExited will be basic states. To compute AND
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procedure performSmallStep (eventSet ,datamodelForNextStep)
selectedTransitions = selectTransitions (eventSet ,datamodelForNextStep)

# if selectedTransitions is empty, we have reached a stable state,
# and the big—step will stop, otherwise will continue
if not selectedTransitions.isEmpty ()
[basicStatesExited ,statesExited] =
getStatesExited (selectedTransitions)
[basicStatesEntered ,statesEntered] =
getStatesEntered (selectedTransitions)

eventsToAddTolnnerQueue = new Set ()

#update history states
for state in statesExited

#peform exit actions
for action in state.onexit

evaluateAction (action ,eventSet ,datamodelForNextStep ,

eventsToAddTolInnerQueue)

#update history
if state.history

if state.history.isDeep

f = lambda s0 : s0.kind is BASIC and s0 in getDescendants(state)

else
f = lambda sO : s0O.parent is state
historyValue[state. history.id] = statesExited. filter (f)
# Semantic Choice : Concurrency: Number of transitions: Multiple
# Semantic Choice : Concurrency: Order of transitions: Ezplicitly defined
sortedTransitions = selectedTransitions.sort(

lambda (t1,t2) : tl1.documentOrder — t2.documentOrder)

for transition in sortedTransitions
for action in transition.actions
evaluateAction (action ,eventSet ,datamodelForNextStep ,eventsToAddTolnnerQueue)

for state in statesEntered
for action in state.onentry
evaluateAction (action ,eventSet ,datamodelForNextStep ,eventsToAddTolnnerQueue)

#update configuration by removing basic states exited,

#and adding basic states entered
configuration.difference (basicStatesExited)
configuration .union(basicStatesEntered)

#add set of gemerated events to the innerEventQueue

# Semantic Choice : Event Lifelines: Next small—step

if not eventsToAddTolInnerQueue.isEmpty ()
innerEventQueue . push(eventsToAddTolnnerQueue)

#update the datamodel
for key in datamodelForNextStep.keys
datamodel [key] = datamodelForNextStep [key ]

return selectedTransitions

Listing 3.4: procedure performSmallStep
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and OR states exited, the ancestors of the basic states exited, up to, but not including the
arena, are added to statesExited, which contains both basic and non-basic states. The
statesExited set is then sorted by depth and returned.

function getStatesExited(transitions)
statesExited = new Set ()
basicStatesExited = new Set ()

for transition in transitions
lca = getArena(transition)
desc = getDescendants(lca)

for state in configuration
if state in desc
basicStatesExited .add(state)
statesExited .add(state)
for anc in getAncestors(state ,lca)
statesExited .add(anc)

sortedStatesExited = statesExited.sort(
lambda (s1,s2) : getDepth(s2) — getDepth(sl))

return [basicStatesExited ,sortedStatesExited]

Listing 3.5: procedure getStatesExited

3.10 function getStatesEntered

Function getStatesEntered computes the states that have been entered, given a set of tran-
sitions. First, all state targets of the given transition set are added to statesToRecursivelyAdd.
Next, the algorithm loops so that composite states with initial sub-states are added to
statesToRecursivelyAdd. Furthermore, at each step of the loop, the algorithm searches
for children of parallel states without descendants in statesToEnter, as it is possible that
some descendants of parallel states had been added to statesToEnter, but other children
of those parallel states had not yet been added. This subroutine ensures that there will not
exist any parallel states in statesToEnter whose children are not also in statesToEnter.
If no such parallel states exist, then statesToRecursivelyAdd will be empty at the end of
the loop, and the loop will terminate. Finally, all states in statesEntered are sorted by
depth and returned.

3.11 procedure recursivelyAddStatesToEnter

Procedure recursivelyAddStatesToEnter is called by procedure getStatesEntered. It
accepts a state s, and lists of states statesToEnter and basicStatesToEnter, which are
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function getStatesEntered(transitions)
statesToRecursivelyAdd = []
for transition in transitions
for state in transition.targets
statesToRecursivelyAdd .push(state)

statesToEnter = new Set ()
basicStatesToEnter = new Set ()

while not statesToRecursivelyAdd.isEmpty ()
for state in statesToRecursivelyAdd
recursivelyAddStatesToEnter (state ,statesToEnter ,
basicStatesToEnter)

#add children of parallel states that are mot already in
#statesToFEnter to statesToRecursivelyAdd
statesToRecursivelyAdd = []
for s in statesToEnter
if s.kind is PARALLEL
for ¢ in s.children
if c.kind isnt HISTORY and not ¢ in statesToEnter
statesToRecursivelyAdd .push(c)

sortedStatesEntered = statesToEnter.sort (
lambda (s1,s2) : getDepth(sl) — getDepth(s2))

return [basicStatesToEnter ,sortedStatesEntered]
(N

Listing 3.6: function getStatesEntered

mutated in each recursive call. If s is a history state, then if its previous history value was
set, the history value is added to statesToEnter and basicStatesToEnter; otherwise, the
default history state is used. If s is not a history state, then s is added to statesToEnter.
Furthermore, if s is a parallel state, then the children of s are also added, and s is called
recursively. If s is a composite state, then the initial state of s is added recursively. Finally,
if s is a basic or initial state, then s is added to basicStatesToEnter.

3.12 function selectTransitions

Function selectTransitions accepts an eventSet and a datamodel, and returns a set of
priority enabled transitions.

selectTransitions first computes a full configuration from the basic configuration.
Transitions are then selected for each state given the set of events and the datamodel, and
each transition in the returned set of enabled transitions is added to the set of all enabled
transitions. Finally, selectPriorityEnabledTransitions is called to select transitions by
their priority, and the result is returned.
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procedure recursivelyAddStatesToEnter (s,statesToEnter
basicStatesToEnter)
if s.kind is HISTORY
if historyValue.hasKey(s.id)
for historyState in historyValue[s.id]
recursivelyAddStatesToEnter (historyState ,statesToEnter ,
basicStatesToEnter)
else
statesToEnter.add(s)
basicStatesToEnter.add(s)
else
statesToEnter.add(s)

if s.kind is PARALLEL
for child in s.children
if not (child.kind is HISTORY)
#don 't enter history by default
recursivelyAddStatesToEnter (child ,statesToEnter ,
basicStatesToEnter)

else if s.kind is COMPOSITE

recursivelyAddStatesToEnter (s.initial ,statesToEnter
basicStatesToEnter)

else if s.kind is INITIAL or s.kind is BASIC or s.kind is FINAL
basicStatesToEnter.add(s)

Listing 3.7: function recursivelyAddStatesToEnter

3.13 function getActiveTransitions

Function getActiveTransitions accepts a state and a set of events, and returns a set of
enabled transitions.

3.14 function selectPriorityEnabledTransitions

Function selectPriorityEnabledTransitions accepts a set of transitions, and returns a
set of priority enabled transitions.
selectPriorityEnabledTransitions first gets consistentTransitions and

inconsistentTransitionsPairs from function getInconsistentTransitions, and adds
the consistentTransitions to the set of priorityEnabledTransitions. It then loops
until inconsistentTransitionsPairs is empty, at each step creating a new set of tran-
sitions, and adding to it the transition with higher priority given each pair of transitions
in inconsistentTransitionsPairs. getInconsistentTransitions is then called again
to update consistentTransitions and inconsistentTransitionsPairs given the new

48




function selectTransitions (eventSet ,datamodelForNextStep)
states = new Set ()

#get full configuration , unordered
#this means we may select transitions from parents before children
for basicState in configuration

state.add(basicState)

for ancestor in getAncestors(basicState)
state.add(ancestor)

enabledTransitions = new Set ()
for state in states
for transition in getActiveTransitions(state ,eventSet)
enabledTransitions.add(transition)

return selectPriorityEnabledTransitions (enabledTransitions)

Listing 3.8: function selectTransitions

transition set. The updated consistentTransitions will then be added to the set of
priorityEnabledTransitions. This will eventually reach a stable state where there are
no longer any transitions pairs which conflict, at which point the set of priority enabled
transitions will have been computed, and will be returned.

3.15 function getTransitionWithHigherSourceChildPri-
ority

Function getTransitionWithHigherSourceChildPriority accepts a pair of transitions,
and compares them based first on depth, then based on document order, and returns the
one with the highest priority.

This function implements the following semantic option: Priority: Source-Child.

3.16 function getInconsistentTransitions

Function getInconsistentTransitions accepts a set of transitions, and returns a set of
consistent transitions (consistentTransitions), and a set of inconsistent transition pairs.
getInconsistentTransitions compares transitions pairwise to determine if the pair are
arena orthogonal, which is to say, if their arenas are orthogonal. Those transitions that are
not arena orthogonal are added to allInconsistentTransitions, and transition pairs that
are not arena orthogonal are added to inconsistentTransitionsPairs. The transitions not
in conflict are then computed through set difference operation with the set of all transitions,
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function getActiveTransitions (state ,events)
transitions = new Set ()

for t in state.transitions
if (t does not have a trigger or
events.some (lambda e : nameMatch(e.name,t.event))) and
(t does not have a condition or
the cond of t evaluates to true):
transitions.add(t)

return transitions

Listing 3.9: function getActiveTransitions

and the result is assigned to consistentTransitions. Finally, consistentTransitions
and inconsistentTransitionsPairs are returned.
This function implements the following semantic options:

e Transition Consistency: Small-step consistency: Source/Destination Orthogonal

e Interrupt Transitions and Preemption: Non-preemptive

3.17 function isArenaOrthogonal

Function isArenaOrthogonal takes two transitions and determines if they have the same
arena.

3.18 procedure gen

Procedure gen implement’s the statechart interpreter’s interface to the environment. When
implemented in single-threaded environments, such as the browser environment, this in-
terface can be very simple, in essence passing the given event straight through to the
performBigStep procedure, as gen is passed the thread of execution when it is called.

3.19 procedure evaluateAction

This evaluates actions. Pseudocode for the <send>, <raise>, <assign>, <script>, and
<log> actions are shown.
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function selectPriorityEnabledTransitions(transitions)
priorityEnabledTransitions = new Set ()
[consistentTransitions , inconsistentTransitionsPairs] =

getInconsistentTransitions (transitions)

priorityEnabledTransitions .union(consistentTransitions)
while not inconsistentTransitionsPairs.isEmpty ()
transitions = new Set ()
for transitionPair in inconsistentTransitionsPairs
transitions .add(
getTransitionWithHigherSourceChildPriority (

transitionPair))

[consistentTransitions , inconsistentTransitionsPairs] =
getInconsistentTransitions (transitions)

priorityEnabledTransitions.union(consistentTransitions)

return priorityEnabledTransitions
(S

Listing 3.10: function selectPriorityEnabledTransitions

function getTransitionWithHigherSourceChildPriority (t1,t2)
if getDepth(tl.source) < getDepth(t2.source)
return t2
else if getDepth(t2.source) < getDepth(tl.source)
return tl
else
if t1.documentOrder < t2.documentOrder
return tl
else
return t2

Listing 3.11: getTransitionWithHigherSourceChildPriority
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function getInconsistentTransitions(transitions)

alllnconsistentTransitions = new Set ()
inconsistentTransitionsPairs = new Set ()

transitionList = transitions.toList ()
for i in range(0,transitionList.length)
for j in range(i+41,transitionList.length)
t1 = transitionList [i]
t2 = transitionList []]

if not isArenaOrthogonal (t1,t2)
alllnconsistentTransitions.add(t1)
alllnconsistentTransitions.add(t2)
inconsistentTransitionsPairs.add ([t1,t2])

consistentTransitions =

transitions . difference (alllnconsistentTransitions)

return [consistentTransitions ,inconsistentTransitionsPairs]

(S

Listing 3.12: function getInconsistentTransitions

function isArenaOrthogonal(tl,t2)
t1Arena = getArena(tl)

t2Arena = getArena(t2)
return isOrthogonalTo (t1Arena ,t2Arena)

Listing 3.13: function isArenaOrthogonal

procedure gen(e)
performBigStep (e)
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procedure evaluateAction (action ,eventSet ,datamodelForNextStep ,
eventsToAddTolnnerQueue)
switch action.type
case ”script”:
evaluateAction (action ,
datamodelForNextStep ,eventSet)
case "log”:
console.log (evaluateAction (action .expr,
datamodelForNextStep ,eventSet))
case "send”:
#this delegates sending to the environment
setTimeout (lambda : gen(action.event),action.delay)
case "raise”
eventsToAddTolnnerQueue.add (new Event(action.event, data)
case ”assign”
datamodelForNextStep [action.location] =
evaluateAction (action .expr,
datamodelForNextStep ,eventSet)

Listing 3.15: procedure evaluateAction
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Chapter 4

Optimizing SCION for ECMA Script
and the World Wide Web

4.1 Problem Statement

The primary goal of SCION was to create a Statecharts interpreter that was well-suited for
interactive Web-based user interface development. Because interactivity in Web-based user
interfaces is implemented primarily in ECMAScript, this entailed developing a Statecharts
interpreter optimized for ECMAScript.

This problem statement may be further refined, as the restrictions imposed by the Web
browser environment determine the factors for which one should optimize. Specifically, event
dispatch time, memory usage, and generated code size were the factors that were most likely
to impact the usability of Web Uls. Fast event dispatch is required in order to handle high-
fidelity UI events. For example, when dragging the mouse, mouse movement events are fired
at a high rate. If a Statecharts implementation is unable to handle high-fidelity events as
they occur in real time, then events may begin to queue, which may result in visible UI “lag”.
This would, in turn, negatively impact usability. Generated code size must also be kept to
a minimum, as all code must be downloaded over a network, most often the Internet, and
thus a large code payload increases the amount of time required before a Ul may initially
be used. Finally, reducing memory usage is also an important consideration, particularly
when one considers the proliferation of ECMAScript-enabled Web browsers on mobile and
embedded devices, which have more limited memory than desktop devices.

In order to optimize SCION for ECMAScript, four high-level Statecharts optimization
strategies were chosen. A configuration of the available options for each of these strategies is
referred to as an optimization profile. Every possible optimization profile was tested against
a suite of benchmarks and in different Web browsers, in order to seek optimization profiles
that were outliers in terms of performance and memory usage. Generated code size was
ultimately not a concern due to the way SCION was architected, and this is elaborated in
Section 4.4.
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4.2 Project Background

Before developing SCION, the effort to develop a Statecharts implementation for ECMAScript
had gone through several major iterations. First, in 2008, I developed an ECMAScript back-
end for Thomas Feng’s SCC Statecharts compiler[Fen04]. This worked well for internal Ul
research projects, but had the effect of strongly coupling Statecharts development with the
AToM3 DCharts environment, which I felt could be problematic for outside developers.

Next, in 2010, I developed scxml-js, a Statecharts-to-JavaScript compiler based on SCXML,
as a course project for McGill University course COMP-621, taught by Laurie Hendren, and
continued its development as a Google Summer of Code project for the Apache Software
Foundation. This project had the advantage of being based on SCXML, a W3C draft speci-
fication, and of better integration with existing Web technologies. Still, scxml-js had several
disadvantages, the primary being that it would generate large amounts of boilerplate code
for each compiled SCXML document, and that some aspects of its semantics were not clearly
defined and tested, leading sometimes to unexpected behaviour.

For these reasons, in the summer of 2011, the decision was made to rewrite scxml-js,
and this new project became SCION. SCION aimed to improve on scxml-js in several ways.
First, SCION used a “pluggable” software architecture, built around a fast interpreter core,
which could be further optimized through injection of optimized data structures at runtime.
Second, SCION leveraged the dynamic language features of ECMAScript in order to generate
optimized data structures dynamically at runtime, so that generated code did not need to be
compiled in advance and downloaded over the network. Finally, SCION started with a well-
defined semantics, and used test-driven development to verify the correct implementation of
this semantics. These improvements are further explained in Section 4.4.

SCION has been released under an Apache 2.0 open source license, and is available at
the following URL: https://github.com/jbeard4/SCION

4.3 Statecharts Optimization Strategies

This section describes four strategies for optimizing the SCION step algorithm outlined in
Chapter 3.

4.3.1 Transition Selection

Selecting a set of enabled transitions, given a state and a set of events, is a fundamental
operation of a Statecharts interpreter. Section 3.13 illustrates a simple transition selection
algorithm as a part of the SCION step algorithm. This transition selection algorithm may
be further optimized to use data structures derived through static analysis of the Statecharts
model. This section outlines three options for transition selection optimization. Each opti-
mization strategy provides an example based on the SCXML document in Listing 4.1. Note
that this example attaches “id” attributes to transitions, which is not normally a part of the
standard SCXML syntax, and is for demonstration purpose only. These transition ids are
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mapped to variables of the same name in the transition selection examples, such that they
reference “transition objects” that the interpreter can use to perform the enabled transition.

<scxml>
<state id="A">
<transition target="B" event="el" id="transitionl"/>
<transition target="B" event="e2" id="transition2"/>
<transition target="B" event="e2" id="transition3"/>
</state>
<state id="B">
<transition target="A" event="e3" id="transition4"/>
</state>
</scxml>

(\

Listing 4.1: Example SCXML document used to illustrate transition selection optimization
strategies

Nested Switch Statement

In the Nested Switch Statement transition selection option, states and triggers are encoded as
enumerations, or, if native enumerations are not available in the target language, an appro-
priate encoding such as integer constants. On event dispatch, each state in the configuration
is passed to a switch statement, and the event is then sent to another switch statement
nested in the case statement corresponding to the current state. A list of transition objects
is then returned from the case statement corresponding to the input event [SZ01, Sam02].
An example in Java-like pseudocode of a transition selection function built using a nested
switch statement can be seen in Listing 4.2.
This strategy has been used in the Rhapsody Statecharts implementation [SZ01].

State Table

In the State Table transition selection option, set of states and triggers of a Statecharts model
are mapped to unique integer indexes, starting from index 0. These indexes correspond to
indexes in a “State Table,” which is a |S| x |T'| size matrix, where S is the set of states, and
T the set of triggers. Each cell in the matrix contains a possibly empty set of transitions.
On event dispatch, the interpreter indexes into the State Table using the indexes of the
given state and event, in order to obtain the transitions enabled by that state and event
[Dou00, Sam02]. An example of a State Table data structure can be seen in Table 4.1.

The advantage of this strategy is that it has a fast, constant dispatch time. The disad-
vantage is that the State Table data structure tends to be large and sparse, which is wasteful
in terms of memory.

This strategy has been used in the SCC Statecharts compiler [Fen04].
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function switchSelector (stateld ,eventName){
switch(stateld){

case "A”:
switch (eventName) {
case "el”:
return [transitionl |;
case "e2”:
return [transition2 ,transition3|;
default:
return [];
case "B”:
switch (eventName) {
case "e3”:
return [transition4 ];
default:
return [];
default:
throw Error(” State._not._found”)
}
}
Listing 4.2: Pseudocode Nested Switch Statement
| states/events | el \ e2 \ e3 \
A [transitionl] | [transition2,transition3] ]
B (] (] [transition4]

Table 4.1: State Table

State Design Pattern

In the State Design Pattern transition selection option, each state is mapped to a unique
class, and triggers are mapped to methods on each state class. The configuration is captured
by a set of instances of these state classes. Hierarchy is encoded via class inheritance [Nia05,
Sam02], or, in ECMAScript, via prototypal inheritance. A pseudocode example of this can
be seen in Listing 4.3 using a pseudo-Java syntax.

The advantage of this approach is that it leverages the object-oriented language feature of
inheritance in order to implicitly encode Source-Child transition priority semantics, described
in Section 2.5.7. This is illustrated in an additional example, in Listings 4.4 and 4.5, which
shows a transition originating from an inner basic state taking priority over a transition
originating from an outer OR state on event el.

The State Design Pattern’s impact on performance and memory usage is unclear, and
is generally dependent on the underlying language implementation of the Statecharts inter-
preter.

This strategy has been used in the SMC state machine compiler [Rap10].
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class A {
public el (){
return [transitionl |;
}

public e2(){
return [transition2 ,transition3];
}

public e3(){
return [];
}

}

class B {
public el (){
return [];
}

public e2(){
return [];
}

public e3(){
return [transition4 |;
}

Listing 4.3: Pseudocode State Design Pattern

4.3.2 Set Data Structure

A Set is an unordered collection of unique objects. The Set interface used by the SCION
step algorithm is specified in pseudo-Java syntax in Listing 4.6.

Sets are a fundamental data structure for Statecharts interpretation, as a Set is used to
store the system’s configuration, which is updated in each small-step. Sets are also used
for a number of other purposes in the SCION step algorithm, including storing the events
that can be sensed in each small-step, and the enabled transitions derived in a small-step.
The performance of an implementation of the SCION step algorithm is therefore likely to be
highly dependent the implementation of the Set data structure.

While many programming languages provide built-in Set data structures, either as a core
part of the language, or through their standard library (for example, Java’s java.util. HashSet
implementation, included as part of the standard library [has|, and python’s built-in set data-
type [pyt]), ECMAScript does not currently provide a native Set implementation,’ and so

LA native Set data structure has been proposed as a part of the emerging ECMAScript 6 standard.
However, at the time of this writing, the ECMAScript 6 standard has not been completed, and this language
feature is only available in recent versions of Mozilla’s implementation of ECMAScript [Int12].
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<scxml>
<state 1id="A">
<state id="A1">
<transition target="B" event="el" id="transitionl"/>

</state>
<transition target="B" event="el" id="transition2"/>
</state>
<state id="B"/>
</scxml>

\S
Listing 4.4: Additional example SCXML document used to illustrate State Design Pattern

transition selection optimization strategy

class A {
public el (){
return [transition2 ];
}

}

class Al extends A {
public el (){
return [transitionl |;

}

}

class B {
public el (){

return [];

}

}

(S

Listing 4.5: Additional Pseudocode State Design Pattern example

there is variability regarding how a Set may be implemented in ECMAScript.

ECMAScript Native Data Structures

ECMAScript provides two high-level data structures upon which a Set can be based. These
high-level data structures are Arrays and Objects.

An ECMAScript Object is a Map-like data structure, which stores key-value pairs [obj.
The keys must be strings (when given any other type, the string representation of that type
is used as the key), and values can be of any type, including other complex types such as
Object and Array. The underlying implementation of Object may be implemented as a
HashTable, and so one would expect an ECMAScript Object to provide O(1) expected time
for operations involving key lookup, and O(n) worst-case time[CSRL01]. A Set based on an
ECMAScript object would therefore typically inherit these expected and worst-case times,
as all Set operations rely on key lookup.
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interface Set {
//add an object to the set
void add(Object x);

//remove an object, and return true
//if the object existed in the set and was removed
boolean remove(Object x);

//Union the set with another set.
//This updates the current set in—place and returns itself.
Set union(Set s);

//Implements set—difference operation.
//This updates the current set in—place and returns itself.
Set difference (Set s);

//returns true if x is in the set
boolean contains(Object x);

//returns true if the set is empty
boolean isEmpty ();

//returns true if s2 is equal to the current set.
boolean equals(Set s2);

Listing 4.6: Set Interface

An ECMAScript Array, on the other hand, is a list-like data structure, which has a
dynamic property, length, that tracks the number of elements the structure contains, and
maps integer indexes to ECMAScript values [arr]. In the ECMAScript object model, an
Array is also an Object, but in most ECMAScript implementations, the ECMAScript Ar-
ray is optimized to delegate to a native array in the underlying language implementation
(usually C++), thus making operations on the ECMAScript Array have native array-like
performance. For example, indexing into an ECMAScript Array should be a fast opera-
tion, and have a O(1) worst-case time, as it would on a native array. Iterating through an
ECMAScript Array should also be faster than iterating through the key-value pairs of an
Object.

Optimization Using Static Analysis

The SCION step algorithm uses sets to contain states, transitions, and triggers. Because
all objects that could possibly go into these sets (the universe of keys) are known at the
time the Statecharts model is parsed, and are static, such that the keys do not change at
run-time, one can utilize perfect hashing to optimize performance of worst-case lookup times.
A hashing technique is defined to be perfect if the worst-case number of memory accesses
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required to perform a search is O(1), as opposed to O(n) [CSRLO1].

To accomplish this, each object in the universe of keys is assigned a hash value in advance,
such that the integer hashes start at value 0, and increase incrementally. The universe of
keys can then be used to initialize the in-memory data structure that allows O(1) worst-case
search time.

Perfect hashing was implemented in ECMAScript in two ways.

Boolean Array In this technique, an ECMAScript Array was used, although not in the
same way as the Array-based set technique described above. In the aforementioned approach,
adding an object to an Array-based set required appending that object to the Array using the
ECMAScript Array.push method; and removing an object from an Array-based set involved
retrieving that object’s index in the Array, using Array.indexOf, deleting the object at that
index and left-shifting subsequent objects by using ECMAScript’s Array.splice method.

In the perfect hashing approach, an Array is created such that its length is initialized to
the size of the universe of keys, which is passed in as an argument to the Set constructor.
Each object’s hash can be used directly as Array indexes. Therefore, in order to add an
object to the set, that object’s hash is used to index into the Array (an O(1) operation),
and set the value at that index to boolean true. In order to remove an object from the set,
the object’s hash is used to index into the Array and set the value at that index to boolean
false.

Bit Vector ECMAScript has a single numeric data type, Number. Number can be used
to perform bit operations, in which case it behaves as a 32-bit integer [bit].

A bit vector is like a Boolean Array, except that instead of using an Array to encode a
list of boolean values, the bits in a 32-bit integer are used instead. Like the Boolean Array,
each object’s integer hash can be used directly as an index, which in this case can be used
in conjunction with bit masking operations on the bit vector set.

In the case that the size of the universe of keys is less than or equal to 32, a single Number
can be used to encode the Set. In the case that a universe of keys larger than 32 is used, an
Array of ECMAScript Numbers can be used, such that each Number can be used to store
an additional 32 objects.

4.3.3 Transition Flattening Transformation

One condition for a transition to be enabled is for the transition’s source state to reside in the
model’s full configuration (described in Section 2.3). Section 3.12 described a basic algorithm
for selecting states to pass into the transition selection function. In this algorithm, the full
configuration is derived from a basic configuration, and each state in the full configuration
is passed in conjunction with the event set to the transition selection function in order to
derive the set of enabled transitions for that small-step.

One possible optimization to this approach would be to “flatten” the transitions, such
that every basic state would be made the source state for all transitions originating from
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that basic state’s ancestors. This means that the algorithm would no longer be required to
look up transitions hierarchically, and instead would only need to iterate over the states in
the basic configuration.

This flattening transformation must be performed a way that would respect SCION
semantics concerning Transition Priority (described in Section 2.5.7). This can be accom-
plished by appending transitions to basic states in order of state hierarchy, followed by
document order. This transformation is illustrated in Listings 4.7 and 4.8, which present a
simple model before and after the flattening transformation is applied. One can see in the
examples that SCION semantics are respected, as in both models, the transition from Al to
B would have the highest priority given event t.

<scxml>
<state id="A">
<state id="Al">
<transtition target="B” event="t"/>
<transtition target="C" event="t"/>
</state>
<transtition target="D" event="t"/>
<transtition target="E” event="t"/>
</state>
<state id="B"/>
<state id="C"/>
<state id="D"/>
<state id="E"/>
</scxml>
S
Listing 4.7: Simple model before flattening transformation
<scxml>
<state id="A">
<state id="Al">
<transtition target="B” event="t"/>
<transtition target="C" event="t"/>
<transtition target="D" event="t"/>
<transtition target="E” event="t"/>
</state>
</state>
<state id="B"/>
<state id="C"/>
<state id="D"/>
<state id="E”/>
</scxml>
S

Listing 4.8: Simple model after flattening transformation
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4.3.4 Cached Structural Information

The getAncestors, getDescendants and getArena functions described in Section 3.4, and
used throughout the step algorithm, involve querying the Statecharts model for a given state’s
ancestors and descendants, as well as a transition’s arena. This information can be computed
through static analysis when parsing the Statecharts model, and cached by the interpreter
so that it does not need to be computed at run time. This can significantly improve the
performance of the interpretation algorithm, but potentially may lead to increased memory
usage as additional information must be kept by the interpreter.

4.4 SCION Architecture

Before discussing the experimental framework in which the above optimizations were evalu-
ated, it is important to provide an overview of SCION’s architecture.

SCION is is built around a core interpreter class, which is able to accept optimized data
structures as optional arguments to its constructor when the interpreter is instantiated. This
is illustrated in Listing 4.9 using a pseudo-Java syntax.

interface SCION({

//constructor

public SCION(
SCXMLModel model,
Optimizations opts

)s

//method to start the machine
public Configuration start ();

//method to send events
public Configuration gen(String eventName, Object eventData);

}

interface Optimizations{
Function transitionSelector;
boolean isFlattend;
Set TransitionSet ;
Set StateSet;
Set BasicStateSe;

Listing 4.9: SCION Interpreter API

SCION’s static analysis and code generation modules are also written in ECMAScript.
This means optimized data structures may be generated in advance, and downloaded to the
user’s browser, or may be generated on the fly, in the user’s browser. The time to generate
these optimized data structures is negligible, taking less than a millisecond for all models
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tested. The code generation modules themselves are relatively small, taking less than 1KB
disk space when compressed. This means that on-the-fly code generation is cheap in terms
of initial load time, and it is therefore no longer meaningful to discuss optimizing the size-on-
disk of generated data structures, as they can be generated dynamically in the user’s browser
at runtime, without requiring the user to download the generated code over the network.

Furthermore, it should be noted that even though SCION was developed with the Web
browser in mind, the interpreter core was implemented to be portable, without any depen-
dencies on the Web browser environment. The implication of this is that SCION now works
well in a number of ECMAScript environments, including server-side environments, such as
node.js and Mozilla Rhino.

4.5 Experimental Framework

4.5.1 Optimization Profiles

Section 4.3 described four categories of optimizations, each with various options. The Tran-
sition Selection strategy has four options: State Table, which is simply referred to as Table;
Switch Statement, which is simply referred to as Switch; State Design Pattern, which is
simply referred to as Class, because of how it is usually implemented in object-oriented pro-
gramming languages; and a default, unoptimized algorithm, referred to as Default, which is
simply the straightforward implementation of the algorithm for transition selection described
in Section 3.13. The Set category has four options: Array Set, Object Set, Boolean Array Set,
and Bit Vector Set. Finally, Transition Flattening Transformation and Cached Structural
Information are both optimizations that can be enabled or disabled, which is simply referred
to as True, to describe the strategy as being enabled, and Fualse to describe the strategy as
being disabled. This yields 4 x4 x 2 x 2 = 64 possible optimization profiles. The experimental
framework sought to test the performance and memory usage of these optimization profiles
on a set of tests cases divided into nine test categories, and executed in four different Web
browsers, each using a unique ECMAScript interpreter.

4.5.2 Test Cases

While many programming languages have well-known or standard suites of tests for bench-
marking performance (e.g. SunSpider for ECMAScript [sun], and SPEC for C [spe]), SCXML,
as an emerging specification, does not yet have such a suite of tests.

The solution to this was to programmatically generate a suite of meaningful, reduced
tests that would stress the SCION interpreter in various fundamental ways likely to be
encountered in real-world usage scenarios.

A test document here is defined to be an SCXML document, and a test script is a separate
document which specifies a list of events to send into the interpreter, as well as the expected
resulting configuration after sending each event. A test case is a pair, consisting of one test
document and one test script.
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All test cases generated have a special property, which is that they can be looped, meaning
that at the end of the test script, it should be possible to send the events in the test script
again, resulting in the same system configurations, without resetting the interpreter.

Test cases were generated for nine separate test categories, where each test category was
designed to test a specific and reduced aspect of the SCION interpreter. Each category
generated tests according to a unique algorithm, and all algorithms were designed to accept
a scalar integer that would increase the complexity of the generated test case. Each test cat-
egory and its associated algorithm is described informally through examples in the following
sections.

basic-states

The goal of the basic-states test category was to test the performance of a sparse, flat model
with a variable number of basic states. The algorithm generates a basic state for each
variable, and connects each state to the next state via a single transition, with a single
trigger t. The last state in the sequence is made the source state of a transition targeting
the initial state, so that a loop is formed. Examples of test SCXML documents for variable
values 1 and 2 can be seen in Listings 4.10 and 4.11, respectively. The test script would
simply send event t repeatedly.

<scxml>
<state id="state-0">
<transition target="state-0" event="t"/>
</state>
</scxml >

Listing 4.10: Generated test document for basic-states with variable 1.

<scxml >
<state id="state-0">
<transition target="state-1" event="t"/>
</state>
<state id="state-1">
<transition target="state-0" event="t"/>
</state>
</scxml>

\

Listing 4.11: Generated test document for basic-states category for variable 2.

events

The events category is like basic-states, but the input variable not only specifies the number
of states generated in a sequence, but also assigns a unique event to each transition. This
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tests the effect of having a large set of states and events in a Statecharts model. This is
illustrated in Listing 4.12.
The test script would specify that events t-0, t-1, and t-2 be sent in a loop.

<scxml>
<state id="default-state">
<transition target="state-0" event="t-0"/>
</state>
<state id="state-0">
<transition target="state-1" event="t-1"/>
</state>
<state id="state-1">
<transition target="default-state" event="t-2"/>
</state>
</scxml >

(\

Listing 4.12: Generated test document for events for variable 3.

transitions

The transitions category was designed to test dense models that have few states, many
transitions, and few events. The input variable determines the number of transitions which
loop between two states (default-state and the-other-state), all of which have the same
trigger t. An example test document can be seen in Listing 4.13 for input variable 3. The
test script would specify that event t be sent in a loop, which would cause the system to
transition between the two states.

<scxml>
<state id="default-state">
<transition target="the-other-state" event="t"/>
<transition target="the-other-state" event="t"/>
<transition target="the-other-state" event="t"/>
</state>
<state id="the-other-state">
<transition target="default-state" event="t"/>
<transition target="default-state" event="t"/>
<transition target="default-state" event="t"/>
</state>
</scxml >

\S

Listing 4.13: Generated test document for transitions category for variable 3.

transitions2

Test category transitions?2 is like test category transitions, except that it generates a unique
event for each transition emanating from a state. This is meant to test dense models that
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also have a large number of unique events. An example of this is seen in Listing 4.14. The
test script would specify that events t-0, t-1, and t-2 be sent in a loop, causing the system
to transition between the two states.

<scxml>
<state id="default-state">
<transition target="the-other-state" event="t-0"/>
<transition target="the-other-state" event="t-1"/>
<transition target="the-other-state" event="t-2"/>
</state>
<state id="the-other-state">
<transition target="default-state" event="t-0"/>
<transition target="default-state" event="t-1"/>
<transition target="default-state" event="t-2"/>
</state>
</scxml>

\S

Listing 4.14: Generated test document for transitions2 category for variable 3.

depth

The depth test category is designed to test the role state hierarchy depth plays on perfor-
mance. This test involves two main states: a single top-level state, and a basic state nested in
a variable number of OR states, such that its depth is equal to the algorithm input variable.
An example of this can be seen in Listing 4.15. The test script would specify that the event
t be looped, causing the system to transition between the nested basic state basic and the
outer default state default-state.

<scxml>
<state id="default-state">
<transition target="basic" event="t"/>
</state>
<state id="composite-0">
<state id="composite-1">
<state id="basic">
<transition target="default-state" event="t"/>
</state>
</state>
</state>
</scxml>

\S

Listing 4.15: Generated test document for depth category for variable 2.
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history-depth

The history-depth test category is like depth, but with the addition of a single top-level
history state, and two basic states at the deepest level. Two basic states were used instead
of one, so that history would meaningfully record the previous state that the system was in
when the outermost OR state is exited. This test category is designed to test the effects of
history in conjunction with deeply-nested OR states. This is illustrated in Listing 4.16.

The test script is slightly more complex for this test case, so that the history functionality
can be fully exercised. This test script can be described as follows:

1. On event in, the system would transition to state history, which, the first time it is
entered, would transition to state basicl, and subsequently would transition to the
state that the system was in when state composite-0 was last exited.

2. On event t1, the system would transition to state basic2.

3. On event out, the system would exit the nested OR states and transition to state
default-state.

4. On event in, the system would transition back to history, which would return the
system to basic2, the state that the system was in when composite-0 was exited.

5. On event t2, the system would transition to state basicl.

6. On event out, the system would exit the nested OR states and transition to state
default-state.

This sequence of events would then be looped.

concurrency

Test category concurrency is designed to test models with shallow AND states. The input
variable determines the number of orthogonal components of the single top-level AND state.
The contents of each orthogonal component are identical, where each component contains
two basic states, and transitions which loop between the basic states on event t. An example
of this is shown in Listing 4.17 for input variable 2. In this example, the event t would be
looped, causing the system to loop between configurations {substate-1-0,substate-1-1}
and {substate-2-0,substate-2-1}.

history-concurrency

Test category history-concurrency is like concurrency, but with a single top-level history
state inside of the AND state. This test category is designed to test the effect of history in
conjunction with shallow concurrency.

An example of this can be seen in Listing 4.18 for input variable 2. As in test category
history-depth, the test script for this document is more complicated so that the history
functionality can be fully exercised.
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<scxml >
<state id="default-state">
<transition target="history" event="in"/>
</state>
<state id="composite-0">
<state id="composite-1">
<state id="composite-2">
<state id="basicl">
<transition target="basic2" event="t1"/>
</state>
<state id="basic2">
<transition target="basicl" event="t2"/>
</state>
</state>
</state>
<history type="deep" id="history">
<transition target="basicl"/>
</history>
<transition target="default-state" event="out"/>
</state>
</scxml >

\S

Listing 4.16: Generated test document for history-depth category for variable 3.

1. On event in, the system would transition to state history, which, the first time it
is entered, would lead to configuration {substate-1-0, substate-1-1}, and subse-
quently to the configuration that the system was in when state composite-0 was last
exited.

2. On event t1, the system would transition to configuration {substate-2-0, substate-2-1}.
3. On event out, the system would exit the AND state and transition to default-state.

4. On event in, the system would transition back to history, which would return the
system to configuration {substate-2-0, substate-2-1}, the configuration that the
system was in when parallel was exited.

5. On event t2, the system would transition to configuration {substate-1-0, substate-1-1}.

6. On event out, the system would exit the outer AND state and transition to state
default-state.

nested-parallel

Test category nested-parallel tests nested concurrency, where AND states are grouped inside
of AND states at multiple levels. Each AND state has two orthogonal components, and the
input variable determines the depth of this hierarchy.
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<scxml >
<parallel id="default-state">
<state id="ortho-0">
<state id="substate-1-0">
<transition target="substate-2-0" event="t"/>
</state>
<state id="substate-2-0">
<transition target="substate-1-0" event="t"/>
</state>
</state>
<state id="ortho-1">
<state id="substate-1-1">
<transition target="substate-2-1" event="t"/>
</state>
<state id="substate-2-1">
<transition target="substate-1-1" event="t"/>
</state>
</state>
</parallel>
</scxml>

(S

Listing 4.17: Generated test document for concurrency category for variable 2.

An example of this can be seen in Listing 4.19. In the test script, t would be sent,
causing the system to loop between configurations {substate-1-a-a, substate-1-a-b,
substate-1-b-a, substate—l—b—b} and {substate—Q—a—a, substate-2-a-b, substate-2-b-a,
substate-2-b-b}.

4.5.3 ECMAScript Interpreters

There are a variety of ECMAScript interpreters which are used in Web browsers today.
Most modern ECMAScript interpreters are very sophisticated, implemented as both fast
interpreters and Just-In-Time (JIT) compilers that can generate native code for multiple
processor architectures. Because of this level of sophistication, the same ECMAScript code
may execute very differently in terms of performance and memory usage depending on lan-
guage implementation. For that reason, it was necessary benchmark SCION using multiple
ECMAScript interpreters, in multiple Web browsers.

Four Web browsers were selected for testing, each using a different ECMAScript inter-
preter:

1. Mozilla Firefox 12.0, which includes the Spidermonkey ECMAScript interpreter.

2. Chromium 18, the open source version of Google’s Chrome Web browser, which in-
cludes the v8 ECMAScript interpreter.

3. Opera 12, which includes the Presto ECMAScript interpreter.
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<scxml >
<state id="default">
<transition target="history" event="in"/>
</state>
<parallel id="parallel">
<state id="ortho-0">
<state id="substate-1-0">
<transition target="substate-2-0" event="t1"/>
</state>
<state id="substate-2-0">
<transition target="substate-1-0" event="t2"/>
</state>
</state>
<state id="ortho-1">
<state id="substate-1-1">
<transition target="substate-2-1" event="t1"/>
</state>
<state id="substate-2-1">
<transition target="substate-1-1" event="t2"/>
</state>
</state>
<history type="deep" id="history">
<transition target="substate-1-0_,substate-1-1"/>
</history>
<transition target="default" event="out"/>
</parallel>
</scxml >

\

Listing 4.18: Generated test document for history-concurrency category for variable 2.

Finally, while not a full Web browser, the open source Webkit HTML rendering en-
gine, which is used as the underlying engine for many browsers, including Apple’s Safari
Web browser and many mobile browsers, was also tested, using GtkLauncher, a lightweight
browser GUI for Webkit included with the Webkit library package on the Ubuntu GNU /Linux
operating system. Webkit includes the JavaScriptCore ECMAScript interpreter, and tests
run in GtkLauncher should provide similar results to the Safari Web browser, which also
uses the JavaScriptCore interpreter.

These Web browsers were selected because they could be run on GNU/Linux, and because
they should be representative of the majority of users” Web browsing experiences today.

There were other popular ECMAScript implementations which were not tested, including
JScript, which is used in Microsoft’s Internet Explorer Web browser, and Mozilla Rhino.
JScript was excluded because it could only be executed in Windows, and Rhino was excluded
because it is not used in any modern Web browser, and is instead primarily used in sever-side
ECMAScript development.
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<scxml>
<parallel id="parallel">
<parallel id="ortho-a">
<state id="ortho-a-a">
<state id="substate-1-a-a">
<transition target="substate-2-a-a" event="t"/>
</state>
<state id="substate-2-a-a">
<transition target="substate-l-a-a" event="t"/>
</state>
</state>
<state id="ortho-a-b">
<state id="substate-1-a-b">
<transition target="substate-2-a-b" event="t"/>
</state>
<state id="substate-2-a-b">
<transition target="substate-1-a-b" event="t"/>
</state>
</state>
</parallel>
<parallel id="ortho-b">
<state id="ortho-b-a">
<state id="substate-1-b-a">
<transition target="substate-2-b-a" event="t"/>
</state>
<state id="substate-2-b-a">
<transition target="substate-1-b-a" event="t"/>
</state>
</state>
<state id="ortho-b-b">
<state id="substate-1-b-b">
<transition target="substate-2-b-b" event="t"/>
</state>
<state id="substate-2-b-b">
<transition target="substate-1-b-b" event="t"/>
</state>
</state>
</parallel>
</parallel>
</scxml >

(\

Listing 4.19: Generated test document for nested-parallel category for variable 2.
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4.5.4 Testing Methodology

The testing methodology used in this thesis was loosely based on the methodology described
in the paper “On Efficient Program Synthesis from Statecharts,” by Andrzej Wasowski
[Was03]. In [Was03], two Statecharts optimizations were compared to an existing Statecharts
implementation for execution time, memory usage, and generated code size. Six Statecharts
models were used as test cases. For each test case, the time to process 107 random events
was recorded. Furthermore, the state machine would be reset with a probability of 1% after
sending each event.

The methodology used in this chapter differed from that in [Was03] in several ways.
First, 88 individual test cases were used (19 basic-states, 6 nested-parallel, and 9 test cases
for all other test categories), as opposed to just 6. Second, 64 optimization profiles were
tested, as opposed to just 3. Third, 4 separate implementations of the underlying language
runtime (the ECMAScript interpreter, in the case of SCION) were tested, as opposed to
just 1. Fourth, in each test run, predefined sequences of events were looped for a minimum
duration, as opposed to sending a fixed number of random events and randomly resetting the
state machine. This looping methodology was feasible due to the structure of the generated
test documents. Fifth, and finally, it was not necessary to record generated code size, because
code was generated on-the-fly in the Web browser, as described in Section 4.4, and so only
execution time and memory usage results were recorded.

To deal with this additional complexity, it is useful to first define some terminology. A
run combination is defined to be a tuple containing an optimization profile, test case, and
Web browser. A run is defined to be the execution of a particular run combination; this is
described in more detail below. A complete run is defined to be the execution of all possible
run combinations.

In this experiment, 22,528 unique run combinations were tested, for 88 test cases x 64
optimization profiles x 4 web browsers. Each run combination was executed 10 times, for
22,528,000 runs, and 10 complete runs.

Runs were executed as follows: a master test process would iterate asynchronously
through all run combinations, in order of test category and increasing complexity. Upon
initialization, the Web browser associated with the first run combination would be spawned
as a separate process.

The Web browser instance would then request a test combination using the Web browser’s
built-in XMLHTTPRequest object, which allowed it to asynchronously communicate with
the master test process. The Web browser would then execute a run by instantiating a
SCION interpreter using all of the parameters of the run combination (i.e., the optimization
profile and test document), and then dispatch the events listed in the test script associated
with that run combination on the interpreter instance in a loop, until at least 100 milliseconds
had passed.

During the run, the Web browser would measure the duration of the run, as well as the
number of events that were dispatched, in order to determine the number of events sent per
millisecond, which is the primary unit by which performance was measured. Duration was
measured using ECMAScript’s built-in Date object, which has millisecond precision. An
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example of the way Date can be used to measure duration is provided in Listing 4.20.

var tic = new Date ();

executeSomeCode () ;

var toc = new Date ();

var duration = toc — tic; //returns duration in milliseconds

Listing 4.20: Measuring duration using the ECMAScript Date Object

After the completion of a run, the Web browser would request that the master process
check the virtual memory size of the browser process. This was performed by parsing the
Linux process file associated with the Web browser process.

The memory and performance results of the run were then saved in a MongoDB database
for further analysis.

The Web browser instance would then continue requesting run combinations and exe-
cuting runs, until a run combination in a new test category was requested, at which point
the master test process would kill the current Web browser process, and start a new Web
browser process based on the Web browser associated with the current run combination.
This was performed to ensure that memory usage of each test category would be tested in
isolation from other test categories.

This process continued until all run combinations had been executed, thus finishing a
complete run, at which point the master process would terminate. The master process
would then be restarted by an external script. This was repeated 10 times.

All tests were performed on a Lenovo Thinkpad W520, with 2.40GHz Intel Quad-core
i7-2760QM CPU and hyperthreading, running 64-bit Ubuntu 11.10 GNU /Linux.

4.6 Results

The data from each complete run was aggregated, such that the minimum and maximum
values for performance and memory usage were discarded, and the mean was taken of the
remaining values. In this section, these aggregate results are explored in order to determine
which optimization profiles provided the best performance and memory usage for particular
test categories and particular browsers.

The general approach is to first examine the results of applying each optimization strategy
individually, in order to seek outlier options for each optimization strategy, and then to
examine all possible combinations of optimizations profiles in order to determine which
configuration of optimization options were the most performant when combined. Ultimately,
it will be shown that the optimization options that are the most performant when tested
individually were also the most performant when combined.

In order to examine each optimization strategy individually, the notion of a set of “de-
fault” options is required, where each optimization strategy is associated with a particular
optimization option that is used when not examining that particular strategy. In other
words, to examine an optimization strategy individually implies that all other optimization
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options that make up an optimization profile are populated with “default” values. The
default options chosen for each optimization strategy are shown in Table 4.2.

Transition Selection | Default
Set Type Array Set
Flattening False

Caching True

Table 4.2: Default Options

For example, when examining the Transition Selection optimization strategy individually,
the following optimization profiles would be compared:

e (Default, ArraySet, False, T'rue)
e (Class, ArraySet, False, True)

o (Switch, ArraySet, False, True)
e (State, ArraySet, False, True)

This is because the four options of the Transition Selection optimization strategy are
Default, Class, Switch, and Table, and the default options described in Table 4.2 are used to
populate the other optimization strategy values of the optimization profiles to be compared.

Each optimization strategy will be examined individually for performance and memory
usage. Generally, for each optimization strategy examined, one page of plots will be shown
with data derived from a particular Web browser. The page will contain 9 plots, one for each
test category. Note that most Web browsers actually provided similar results, so only one
page of plots, with results derived from a single browser, will be shown for each individual
optimization strategy. Cases where particular Web browsers deviated from the general trend
will be specifically called out and examined. Furthermore, a data table will be provided for
each optimization strategy, outlining results across all Web browsers.

4.6.1 Performance
Transition Selection Optimization Strategy

Figure 4.1 shows the impact of the four options of the transition selection optimization
strategy (Default, Table, Switch and Class) on performance in Firefox. The horizontal axis
shows an increase in complexity of the test case, and the vertical axis shows an increase in
number of events that can be processed per millisecond. High numbers on the vertical axis
are better, indicating increased performance.

One may make the following observations. First, for test categories basic-states and
events, Default and Table options are clear winners. Second, for test category transitions2,
Table is an outlier, followed closely by Class and Switch, and the Default option clearly per-
forms worse than the other options. Third, for test categories depth and history-depth, Table
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and Default are smaller outliers. Finally, for test categories history-concurrency and con-
currency, Switch performs worse than other transition selection options, which have roughly
the same performance.

In other browsers, Table continues to be significantly better for basic-states and events,
but Default sometimes performs worse than other options; furthermore, Switch sometimes
performs well in these categories. This can be seen in Figure 4.2 with results derived from
Webkit. Finally, all transition selection options perform equally well in test categories depth,
history-depth, concurrency and history-concurrency in Opera, Chromium and Webkit, so
there are no transition selection outliers for these browsers and categories.

Table 4.3 illustrates these results across all browsers for test categories basic-states, events,
transitions?, depth, history-depth and history-concurrency. In this table, each row corre-
sponds to a particular test category and browser. The columns show the test category name,
followed by the most performant transition selection option and its average performance,
followed by the least performant transition selection option and its average performance, fol-
lowed by the percentage difference between the most performant transition selection option
and the next most-performant option, and finally the percentage difference between most-
and least-performant transition selection options.
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Figure 4.2: Results of Transition Selection optimization strategy in Webkit

test category H best \ best ev/ms H worst worst ev/ms H vs. next \ vs. worst ‘
firefox
basic-states default 11.54 class 5.32 1.37% 116.71%
events table 12.04 class 8.49 2.03% 41.91%
transitions2 table 12.16 default 5.14 4.39% 136.65%
depth default 4.99 class 4.46 2.56% 11.78%
history-depth default 4.98 switch 3.95 2.90% 26.16%
history-concurrency table 0.40 class 0.29 11.83% 37.87T%
chromium
basic-states table 32.22 switch 27.52 2.97% 17.08%
events table 34.56 default 32.14 3.33% 7.52%
transitions2 class 19.30 default 6.17 2.80% 212.65%
depth table 11.11 switch 9.43 2.17% 17.81%
history-depth table 11.52 switch 8.82 5.94% 30.61%
history-concurrency class 1.28 default 1.17 0.25% 9.13%
opera
basic-states table 19.49 switch 15.53 4.92% 25.52%
events table 20.80 switch 18.51 2.85% 12.41%
transitions2 class 19.46 default 6.26 3.96% 211.09%
depth table 4.81 class 4.65 0.18% 3.47%
history-depth table 5.01 class 4.74 3.09% 5.73%
history-concurrency table 0.44 class 0.39 6.07% 11.10%
webkit
basic-states table 18.80 class 17.25 0.20% 8.97%
events switch 20.39 default 19.60 0.12% 4.03%
transitions2 class 20.24 default 8.81 2.68% 129.63%
depth class 6.75 table 6.53 0.51% 3.39%
history-depth switch 6.73 class 6.45 2.62% 4.34%
history-concurrency || default 0.72 class 0.70 0.76% 1.63%

Table 4.3: Transition Selection performance results
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Set Implementation

Figure 4.3 shows the impact of the four options of the Set Implementation optimization
strategy (Array Set, Bit Vector Set, Boolean Array Set, and Object Set) on performance in
Webkit.

One may observe that the Array Set implementation is significantly better for test cate-
gories basic-states, events, and transitions2. Furthermore, there are are no clear outliers for
the other test categories.

In Chromium and Firefox, the Bit Vector set implementation also performs well for test
categories depth and history-depth, performing similar to or better than the Array Set im-
plementation. This is illustrated in Figure 4.4 with results from Chromium. One possible
explanation for this boost in performance is that Chromium and Firefox’s ECMAScript
implementations generate native machine code on the fly, and thus, bit operations in EC-
MAScript may be JI'T-compiled directly to bit operations in x86 assembler, which would
likely provide the fast execution times that are seen here.

Table 4.4 illustrates results across all browsers for test categories basic-states, events,
transitions?, depth, and history-depth. The format of this table is identical to the previous
table, Table 4.3, which illustrated Transition Selection performance results.
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Figure 4.4: Bit Vector Set Implementation outliers in Chromium for test categories depth
and history-depth

test category || best | best ev/ms [[  worst | worst ev/ms || vs. next [ vs. worst
firefox
basic-states arraySet 11.54 boolArray 4.41 24.95% | 161.69%
events arraySet 11.80 boolArray 6.35 8.83% 85.83%
transitions2 arraySet 5.14 boolArray 3.77 3.52% 36.19%
depth bitVector 5.17 boolArray 3.77 3.72% 37.20%
history-depth || bitVector 5.25 boolArray 3.71 5.32% 41.37%
chromium
basic-states arraySet 31.29 boolArray 5.49 40.81% | 469.69%
events arraySet 32.14 boolArray 7.63 21.65% | 321.10%
transitions2 arraySet 6.17 boolArray 5.67 0.59% 8.80%
depth bitVector 11.77 boolArray 5.54 8.31% 112.67%
history-depth || bitVector 11.72 boolArray 5.16 7.80% 127.14%
opera
basic-states arraySet 17.98 boolArray 12.51 25.96% 43.68%
events arraySet 20.01 boolArray 14.97 19.31% 33.63%
transitions?2 arraySet 6.26 boolArray 5.62 3.45% 11.29%
depth objectSet 5.26 arraySet 4.80 1.41% 9.55%
history-depth || objectSet 5.33 arraySet 4.86 0.18% 9.62%
webkit
basic-states arraySet 18.38 boolArray 6.39 18.68% | 187.53%
events arraySet 19.60 boolArray 10.02 19.14% | 95.61%
transitions2 arraySet 8.81 boolArray 5.57 12.46% 58.27%
depth objectSet 6.76 boolArray 5.59 1.09% 21.02%
history-depth || objectSet 6.68 boolArray 5.35 2.21% 24.73%

Table 4.4: Set Type Performance Results
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Flattening

Figure 4.5 shows the results of the flattening transformation on performance in Webkit.

One may observe that the flattening transformation improves performance for test cat-
egories basic-states, events, depth, and history-depth. Furthermore, one may observe that it
decreased performance for test category history-concurrency.

These results were consistent across browsers, and are illustrated in Table 4.5. The
columns in this table show the test category name, followed by the most performant option
and its average performance, followed by the performance of the least performant option,
followed by the percentage difference between the most performant and least performant
options.

test category | best [ best ev/ms | worst ev/ms | best vs. worst
firefox
basic-states True 11.94 11.54 3.48%
events True 12.14 11.80 2.88%
depth True 5.82 4.99 16.69%
history-depth True 5.55 4.98 11.42%
history-concurrency | False 0.36 0.11 226.70%
chromium
basic-states True 32.41 31.29 3.59%
events True 34.07 32.14 6.00%
depth True 13.31 10.87 22.43%
history-depth True 11.96 10.87 10.04%
history-concurrency | False 1.17 0.07 1693.95%
opera
basic-states True 21.03 17.98 16.99%
events True 21.74 20.01 8.66%
depth True 6.36 4.80 32.46%
history-depth True 6.56 4.86 34.86%
history-concurrency | False 0.40 0.11 262.06%
webkit
basic-states True 19.75 18.38 7.46%
events True 20.98 19.60 7.05%
depth True 8.60 6.69 28.57%
history-depth True 8.29 6.53 26.87%
history-concurrency | False 0.72 0.21 245.37%

Table 4.5: Flattening Transformation performance results
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Figure 4.5: Results of flattening transformation in Webkit
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Caching

Figure 4.6 shows the results of caching structural information on performance in Firefox. One
may observe that caching consistently provided better performance across all test categories,
except for transitions2, where it had no effect. These results were consistent across browsers,
which is illustrated in Table 4.6. This table has the same format as the previous table, Table
4.5, which illustrated the result of the Flattening optimization strategy.
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test category \ best \ best ev/ms \ worst ev/ms \ best vs. worst
firefox
basic-states True 11.54 5.50 109.75%
events True 11.80 8.08 46.16%
transitions True 0.09 0.06 64.22%
depth True 4.99 1.42 251.59%
history-depth True 4.98 1.51 230.47%
concurrency True 0.18 0.01 1107.63%
history-concurrency | True 0.36 0.04 884.98%
nested-parallel True 2.16 1.45 48.97%
chromium
basic-states True 31.29 13.46 132.49%
events True 32.14 18.66 72.22%
transitions True 0.33 0.15 124.39%
depth True 10.87 3.70 193.76%
history-depth True 10.87 3.87 180.67%
concurrency True 0.57 0.05 1038.21%
history-concurrency | True 1.17 0.11 976.29%
nested-parallel True 4.76 3.66 29.88%
opera
basic-states True 17.98 6.60 172.40%
events True 20.01 9.94 101.35%
transitions True 0.10 0.06 51.79%
depth True 4.80 1.16 313.82%
history-depth True 4.86 1.24 291.99%
concurrency True 0.18 0.01 1420.48%
history-concurrency | True 0.40 0.03 1504.60%
nested-parallel True 2.69 1.80 49.46%
webkit
basic-states True 18.38 7.81 135.24%
events True 19.60 11.18 75.36%
transitions True 0.19 0.10 95.71%
depth True 6.69 1.98 237.56%
history-depth True 6.53 2.05 217.95%
concurrency True 0.34 0.03 1215.18%
history-concurrency | True 0.72 0.06 1120.22%
nested-parallel True 3.78 2.37 59.65%

Table 4.6: Cached Structural Information performance results
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Figure 4.6: Results of caching model information in Firefox
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Performance Across all Possible Optimization Profiles

One may take the intersection of the above results in order to predict the best optimiza-
tion profiles when individual optimization options are combined. Table 4.8 illustrates the
predicted best optimization profiles for all browsers.

This table, and the following tables and figures containing combined results, use an ab-
breviated notation when referring to optimization profiles. In this abbreviated notation, the
optimization is expressed using four characters. The first character refers to the Transition
Selection optimization strategy, the second refers to the Set Implementation, the third refers
to the Flattening Transformation, and the fourth refers to the Model Caching optimization
strategy. The mappings from optimization option to character are shown in Table 4.7. So,
for example, the optimization profile (Default Transition Selection, Array Set, True, True)
would be abbreviated to “daTT.”

In Table 4.8, a pipe (“|”) indicates an OR relationship between possible optimization
options, and a question mark (“?”) indicates an “undefined” or “any” relationship, such
that no optimization value is predicted.

Transition Selector
Default d
Table t
c

S

Class
Switch
Set Implementation
Array Set
Bit Vector Set
Boolean Array Set
Object Set
Flattening
True
False
Model Caching
True T
False F

C|T < |

|

Table 4.7: Abbreviated notation for Optimization Profile

These predications did coincide with actual results. This can be seen in Table 4.9,
which provides a detailed comparison of the most performant optimization profiles across
all browsers. In this table, the columns list the test group, followed by the most performant
optimization profile and its average performance, followed by a comparison to the default
optimization profile (Default, Array Set, False, True), followed by a comparison between the
most and least performant optimization profiles.

Figures 4.7 and 4.8 provide graphical overviews of these results for the Webkit and Firefox
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browsers, respectively. For each graph, the best, worst and default optimization profiles are
plotted.
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group \ best opt profile \ ev/ms \ vs. default \ vS. worst
firefox
basic-states taTT 12.31 6.73% 512.74%
events taTT 12.75 8.05% 478.83%
transitions dvFT 0.09 0.73% 72.45%
transitions2 taTT 12.74 147.92% 249.05%
depth dvTT 5.95 19.35% 404.67%
history-depth taTT 6.01 20.63% 512.68%
concurrency dvFT 0.19 2.66% 1221.26%
history-concurrency taFT 0.40 11.83% 3310.46%
nested-parallel saTT 2.33 7.94% 121.04%
chromium
basic-states taTT 33.93 8.45% 600.71%
events taTT 37.18 15.68% 457.51%
transitions cvTT 0.45 37.12% 608.09%
transitions2 caTT 22.08 257.65% 302.94%
depth tvIT'T 14.74 35.63% 454.45%
history-depth taTT 14.19 30.51% 535.84%
concurrency tvIT 0.71 25.83% 1489.18%
history-concurrency tvFT 1.35 14.87% 3877.23%
nested-parallel taTT 6.43 35.14% 516.53%
opera,
basic-states taTT 22.13 23.10% 301.48%
events taTT 25.12 25.57% 200.85%
transitions covTT 0.10 8.22% 82.25%
transitions2 caTT 22.07 252.82% 307.50%
depth tvIT'T 7.22 50.33% 557.51%
history-depth cvTT 7.33 50.83% 753.39%
concurrency tvIT 0.22 22.02% 1923.23%
history-concurrency toF T 0.44 9.98% 5335.32%
nested-parallel covTT 3.68 36.41% 153.76%
webkit
basic-states taTT 20.74 12.88% 334.34%
events taTT 22.45 14.53% 205.98%
transitions dvFT 0.20 6.03% 148.26%
transitions2 caTT 21.45 143.37% 301.63%
depth calTT 8.77 31.11% 395.64%
history-depth calT 8.67 32.69% 561.70%
concurrency svIT 0.38 9.41% 1544.14%
history-concurrency daFT 0.72 same 4244.46%
nested-parallel daTT 4.27 12.90% 135.02%

91

Table 4.9: Most performant optimization profiles across all browsers




basic-states

25— T T T T
0 20 form T -
e — _
9 — taTT
S TOR — daFT
ol NG e — CbFF
R

Lo
%0 100200 300 400 500 600 700 800 900

variation
1 transitions
10 T T T T T T T
0 100 BN i
S -1
5-10
@ 107
2 -3
10 : : :
104 | | | | | | |
10 20 30 40 50 6 70 80 90
variation
; N
E I2F NG TN
u 1o
c 8
¢ 6
v 4
20 A — e S L o
%0 20 30 40 50 60 70 80 90
variation
concurrenc
10!
— svTT

— dafFT
— dbFF

events/ms

I I I

- 1 1
10 10 20 30 40 50 60 70 80 90
variation
, nested-parallel
10 ! T T T T T

T T

events/ms

variation

1

events/m

events
5 T T T 0 T 0 T
Ok ,,,,,,,,,,,,,,,,,,,,,,,,,,, R S S a
S — taTT
— daFT
— CcbFF

Il 1 Il Il Il Il Il
%O 20 30 40 50 60 70 80 90

variation
transitions2
25 — T T T T
N 20 B
E . . . . . . "
SN =T
$ 10 ‘ ‘ ‘ ‘ ‘ — dafT
s s — dbFF
A
%O 20 30 40 50 60 70 80 90
variation
history-depth
18 A A S —
o JON R R e
E T2 N TN .
W IO NN — calTl
S B T T — daFT
S B[ T
G.) 4 7777777 ARLPRRE ‘7 7777777 SRR PR ; — thF
2p ]
%O 20 30 40 50 60 70 80 90
variation
Lot | h!story—cqncurrengy |
10° i
107 g
102 ;
107 ;
10-4 X X X X X
10—5 I I I I I I I
10 20 30 40 50 60 70 80 90
variation

Figure 4.7: Comparison of best, worst, and default optimization profiles for performance in

Webkit 92



basic-states

. 12 5 12
€ 10 £ 10
2 8 2 8
§ 6 . . . . . E) 6 V
S SN s 4
ob T — e S e R
0 100200 300400500600 700800900 %.O 20 30 40 50 60 70 80 90
variation variation
0 transitions transitions2
10 T T — T — 14 — T — T T
P! o 120 T
EW I L L B R0f J
v 2 — dvFT v I T T SO — taTT
S 10 : : : : | — daFT S gk rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr — daFT
107 doei e —  cOFF > A —  dbFF
Y HNE S T S N N S -
10 20 30 40 50 60 70 80 90 0 20 30 40 50 60 70 80 90
variation variation
history-depth
12 T 1 ¥ P E—
" w 10 ‘
£ £ 8p
%) 0
1< c 6
s
2 ‘
! ! 1 I I ! ; AAJ ! ! ] I ! ; ‘ 1
%0 20 30 40 50 60 70 80 90 %O 20 30 40 50 60 70 80 90
variation variation
1 h!story—cqncurrengy

10 T

dvFT
daFT
cbFF

events/ms

I I I I I

- | i -5 i |
10 10 20 30 40 50 60 70 80 90 10 10 20 30 40 50 60 70 80 90
variation variation
, nested-parallel
10 ! T T T T T

I I I I I

T T

events/ms

variation

Figure 4.8: Comparison of best, worst, and default optimization profiles for performance in
Firefox 93



4.6.2 Memory Usage
Transition Selection

Figure 4.9 shows the impact of the four options of the transition selection optimization
strategy on memory usage in Firefox. All plots show virtual memory size in megabytes.

One may observe that the Table transition selection option took the most memory, and
the Default transition selection option took the least. This makes sense, as the Table tran-
sition selection options relies on a large, sparse two-dimensional array, whereas the Default
transition selection option can be used without loading any additional data structures.

While this observation is consistently true for Opera and Firefox, in Chromium and We-
bkit, the choice of transition selection had far less of an effect on memory. This is illustrated
in Table 4.10. This table lists the test category, followed by the transition selection option
with the lowest average virtual memory usage and its virtual memory usage in megabytes,
followed by the transition selection option with the highest average virtual memory usage in
megabytes, followed by the difference between the highest and lowest virtual memory usages
in megabytes, and the percentage difference between the highest and lowest virtual memory
usages.

One may observe in Table 4.10 that the transition selection optimization strategy had a
strong effect on memory usage in Opera, a moderate effect in Firefox and Chromium, and a
negligible effect in Webkit. The percentage difference between the memory usage of the best
and worst transition selection strategies is at most 0.25% in Webkit. The difference between
best and worst transition selections is 5.64% for test category transition2 in Chromium, but
all other test categories have less than 0.29% difference between best and worst transition
selection options in Chromium. Differences in memory usage in Firefox, on the other hand,
range between 2.62% and 5.39%, and Opera’s memory use ranges between 4.40% and 18.54%.
This can entail a difference of tens of megabytes of virtual memory usage for Firefox, and
over a hundred for Opera, but, except for group transitions?2 in Chromium, there is less than
5MB difference between transition selection options across test categories in Chromium and
Webkit.

Caching, Flattening, and Set Implementation

Caching, Flattening, and Set Implementation optimization strategies had a negligible effect
on memory usage.

It is somewhat surprising that Caching had a negligible effect on memory usage, as
it is, by definition, storing additional structural information about the Statecharts model.
However, the cache stores only references to state objects, rather than copies of the objects
themselves, and is thus a lightweight approach. It is therefore understandable that storing
object references for model caching has a negligible impact on memory usage compared to
other parts of the model. Finally, this approach scales well as the Statecharts model increases
in size and complexity.
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Figure 4.9: Results of transition selection optimization strategy on memory usage in Firefox
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test category H best \ best VSZ H worst \ worst VSZ H best - worst \ vs. worst
firefox
basic-states default | 1077.88 table 1129.94 52.06 4.61%
events default 843.36 table 867.49 24.13 2.78%
transitions default 840.18 table 862.75 22.57 2.62%
transitions2 default 839.44 table 866.17 26.73 3.09%
depth default 825.54 table 852.26 26.72 3.13%
history-depth default 845.42 table 875.47 30.05 3.43%
concurrency default 922.28 table 967.26 44.98 4.65%
history-concurrency || default 950.13 table 1002.68 52.55 5.24%
nested-parallel default 843.16 table 891.24 48.07 5.39%
chromium
basic-states default 667.15 table 667.74 0.58 0.09%
events switch 659.79 class 660.39 0.61 0.09%
transitions default 661.97 table 663.02 1.05 0.16%
transitions2 default 456.67 table 483.97 27.30 5.64%
depth switch 658.88 class 659.52 0.64 0.10%
history-depth switch 659.42 class 659.78 0.36 0.06%
concurrency switch 663.67 table 664.33 0.66 0.10%
history-concurrency || default 664.03 table 665.75 1.72 0.26%
nested-parallel default 660.29 table 662.23 1.94 0.29%
opera
basic-states default 917.73 table 1042.47 124.74 11.97%
events default 496.73 table 543.86 47.13 8.67%
transitions default 457.90 table 478.99 21.09 4.40%
transitions2 default 450.23 table 479.94 29.72 6.19%
depth default | 495.11 table 530.99 35.88 6.76%
history-depth default 536.87 table 586.73 49.86 8.50%
concurrency default 742.11 table 870.27 128.16 14.73%
history-concurrency || default 831.37 table 995.87 164.50 16.52%
nested-parallel default 515.62 table 632.99 117.37 18.54%
webkit
basic-states default | 1681.75 table 1684.81 3.06 0.18%
events default | 1691.74 table 1693.98 2.24 0.13%
transitions default | 1711.93 table 1713.13 1.19 0.07%
transitions2 default | 1715.77 table 1717.74 1.96 0.11%
depth default | 1683.97 table 1686.46 2.49 0.15%
history-depth default | 1720.45 table 1723.34 2.89 0.17%
concurrency default | 1722.61 table 1725.93 3.32 0.19%
history-concurrency || default | 1703.62 table 1707.47 3.85 0.23%
nested-parallel default | 1696.13 table 1700.38 4.24 0.25%
Table 4.10: Transition Selection memory results
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Memory Usage Across all Possible Optimization Profiles

To summarize previous results, the Table transition selection option proved to be the most
expensive in terms of memory usage, and the Default transition selection option proved to
be the least expensive, for test categories on Firefox and Opera, and for transitions2 on
Chromium. Other optimization strategies did not have a noticeable impact on memory
usage.

These observations held when all possible optimization profiles were tested. An example
of this can be seen in Figure 4.10, which shows results derived from the Opera browser.
Table 4.11 shows the results across all browsers.
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group H best opt profile H VSZ \ default VSZ H vs. default \ vs. worst

firefox
basic-states daTT 1076.22 1077.88 0.15% 4.91%
events daTT 839.90 843.36 0.41% 3.77%
transitions daTT 836.63 840.18 0.42% 3.44%
transitions2 daTT 836.02 839.44 0.41% 3.72%
depth daTT 822.32 825.54 0.39% 3.51%
history-depth daTT 843.43 845.42 0.23% 3.93%
concurrency daTT 919.39 922.28 0.31% 5.60%
history-concurrency daTT 947.35 950.13 0.29% 6.26%
nested-parallel daTT 838.27 843.16 0.58% 6.60%

chromium

basic-states daTT 667.08 667.15 0.01% 0.12%
events daTT 659.64 659.89 0.04% 0.12%
transitions daFT 661.97 661.97 same 0.21%
transitions2 daFT 456.67 456.67 same 7.64%
depth cbFT 658.86 659.35 0.07% 0.10%
history-depth cbFT 659.11 659.62 0.08% 0.10%
concurrency cbFF 663.39 663.79 0.06% 0.30%
history-concurrency daFT 664.03 664.03 same 0.26%
nested-parallel daTT 659.96 660.29 0.05% 0.42%

opera
basic-states daTT 917.72 917.73 same 14.42%
events daTT 496.65 496.73 0.02% 9.39%
transitions daTT 457.75 457.90 0.03% 4.52%
transitions2 daTT 450.15 450.23 0.02% 7.80%
depth daTT 495.03 495.11 0.02% 7.26%
history-depth daTT 536.83 536.87 0.01% 9.66%
concurrency daTT 742.04 742.11 0.01% 15.76%
history-concurrency daFT 831.37 831.37 same 16.88%
nested-parallel daTT 515.34 515.62 0.05% 18.76%

opera
basic-states dbFT 1680.80 1681.75 0.06% 0.24%
events daTT 1691.46 1691.74 0.02% 0.15%
transitions daTT 1711.72 1711.93 0.01% 0.08%
transitions2 daTT 1715.60 1715.77 0.01% 0.13%
depth daTT 1683.40 1683.97 0.03% 0.18%
history-depth daTT 1720.12 1720.45 0.02% 0.19%
concurrency daTT 1722.09 1722.61 0.03% 0.22%
history-concurrency daTT 1702.99 1703.62 0.04% 0.26%
nested-parallel daTT 1695.95 1696.13 0.01% 0.26%

Table 4.11: Memory results for all optimization profiles across all browsers
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Figure 4.10: Comparison of best and worst optimization profiles for memory usage on Opera
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4.6.3 Memory Usage versus Performance

Table 4.12 compares the performance and memory usage of the optimization profiles with
the best performance against those with the best memory usage, for each test category
and each Web browser. In this table, the optimization profile with the best performance
is shown, followed by its average performance and virtual memory usage in megabytes.
Next, the optimization profile with the best memory usage is shown, followed by its average
performance and memory usage. The next two columns compare the performance of the
profile with the best performance and the profile with the best memory usage, showing
the difference and percentage difference between the two profiles. Finally, the last two
columns compare the average memory usage of the two profiles, showing the difference and
the percentage difference.

One may make the following observations. First, as predicted by the results of the previ-
ous section, there is very little difference in terms of memory usage between the optimization
profile with the best performance and the profile with the best memory usage for Chromium
and Webkit. The maximum percentage difference for Chromium is 0.42%, and the maximum
for Webkit is 0.24%. There is also not much difference in memory usage for Firefox, where
the maximum percentage difference is 5.52% (for test-category history-concurrency, and op-
timization profiles “taFT” and “daTT”), and the maximum difference in memory usage
is 55.33MB (for test-category basic-states, and optimization profiles “taTT” and “daTT”).
There were large differences in memory usage in Opera, however, with maximum percentage
difference of 16.58% (for test-category history-concurrency, and optimization profiles “toFT”
and “daFT”), and difference of 165.24MB (for the same test category and optimization pro-
files).

Second, there were large differences in performance between optimization profiles with the
best performance and the optimization profiles with the best memory usage. For example,
for test category transitions2, the optimization profile with the best performance offered
speed increases of over 100% across all browsers. Another example is basic-states, where
the optimization profile with the best performance offered a speed increase of 224.56% in
Webkit, and smaller speed increases in other browsers.
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4.6.4 Conclusion

There are several ways to apply these results. The first and most straightforward would
be to recommend a general optimization profile that should provide the best performance
and memory usage across as wide a range of browsers and usage scenarios as possible. The
clear winner for this would be optimization profile “taTT”, or Table transition selection and
Array Set, with model caching and the flattening transformation enabled.

The transition selection optimization is especially important for dense models, as can be
seen in the results of the transitions2 test category, but can increase performance for large,
sparse, flat models, as can be seen in test categories basic-states and events. Any transition
selection option involving generated code (i.e., any option other than the Default option),
performs similarly for transitions2, but the Table option performs well across all browsers
for test categories basic-states and events as well.

Furthermore, while the Table option is most expensive in terms of memory use, this
primarily affects Opera, and to a lesser extent Firefox and Chromium. Webkit is not affected
at all. While there exist mobile versions of Opera, Firefox and Chromium, the Webkit
browser, with the JavaScriptCore ECMAScript implementation, is shipped as a part of the
default Web browsers of most mobile operating systems, including Apple iOS and Google
Android. At the same time, when targeting desktop Web browsers, memory use is less of a
concern. Therefore, the Table transitions selection option should be recommended for general
use, as it provides the overall best performance across the widest range of browsers and usage
scenarios, and should not affect memory usage at all in JavaScriptCore, the ECMAScript
implementation most likely to be used in mobile, memory-restricted environments.

The Set implementation optimization can improve performance for large, sparse, flat
models such as those in basic-states and events, and Array Set provides the best performance
for these. The Bit Vector set provides good performance for the depth and history-depth test
categories in Chromium and Firefox, but the speed increase is nominal compared to that
of Array Set, and Bit Vector performs worse for test categories basic-states and events,
particularly for Webkit and Opera. Therefore, Array Set is recommended for general use.

Flattening can increase performance in most scenarios and across all browsers. The one
exception to this is in cases where history is combined with concurrency, as is captured in
test category history-concurrency. As it improves performance for most other scenarios, the
flattening transformation is recommended for general use.

Finally, model caching improves performance in most scenarios across all browsers, and
it never leads to a decrease in performance or an increase in memory usage, therefore it is
recommended for general use.

In the future, it may be possible to generalize the above results into a set of heuristics that
can be applied to optimize execution on-the-fly. In this scenario, static analysis techniques
could be applied when a Statecharts model is loaded into the user’s web browser, in order to
derive relevant properties, such as its transition density, maximum depth, use of history, and
maximum number of concurrent states. The target environment could also be considered
in cases where performance was found to differ among browsers. Heuristics could then be
applied to these properties in order to select an optimization profile that could be used to
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optimally execute the Statecharts model.
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Chapter 5

Web User Interface Development with
the Stateful Command Syntax Design
Pattern

5.1 Overview

A “design pattern” is defined as “a solution to a problem in a context” [GHJV95]. A new
design pattern called Stateful Command Syntaz, or SCS, will be described and illustrated
with two case studies.

The “problem” which the SCS design pattern attempts to solve is that some system
behaviour comprises complex “command syntax” that varies depending on high-level appli-
cation state. The “context” of SCS is the domain of User Interfaces. In many user interfaces,
Ul events can be entered in sequences to form complex commands, and the language of pos-
sible commands that can be entered forms a “command syntax”. Furthermore, many user
interfaces can change between a fixed set of possible high-level application states, or “modes,”
and the command syntax may change depending on the mode the application is in.

The “solution” of the SCS design pattern is to apply Statecharts in the following way.
First, event listeners are registered that map Ul events to Statecharts events, and dispatch
them to a single Statecharts model instance.

This Statecharts instance encapsulates the behaviour of the UI, and has the following
properties. First, the Statecharts model has a single top-level AND state, with two or
more orthogonal components. At least one component is primarily responsible for encoding
the high-level application state, or mode, and the other orthogonal component is primarily
responsible for encoding multiple command syntaxes that vary depending on that mode.

A single UI command can often be described using a regular expression, and a regular
expression has a deterministic finite state machine representation[Sip06]. The idea behind
the orthogonal component that encodes the command syntax, then, is to use state hierarchy
in order to elegantly combine the finite state machine representations of multiple command
syntaxes, such that the common states and transitions are shared, and the overall number
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of states and transitions are minimized. This will typically yield a transition-dense orthog-
onal component, with one “idle” or “ready” default state from which originates multiple
transitions, with triggers corresponding to UI events, that target intermediate states. These
intermediate states may connect to other intermediate states, until ultimately the command
completes, and a loop is formed back to the “ready” state, in which case the system is ready
to begin processing a new command. Furthermore, the transitions that connect the interme-
diate states will make heavy use of transition conditions in order to direct the flow of events
through the network of intermediate states, thus encoding a command syntax that may vary
depending on certain conditions. In particular, the In() predicate will often be used in these
transition conditions in order to inspect the application mode encoded by the orthogonal
component that encodes application mode. In this way, multiple command syntaxes are
encoded which vary depending on mode.

The orthogonal component that encodes application mode will typically contain several
mode states that correspond directly to high-level, named modes in the application. From
these mode states will originate transitions that connect to other mode states, thus encoding
possible changes in application mode given the current mode and a particular input event.

The transitions between mode states will have triggers that correspond to both Ul events,
as well as events sent from the orthogonal component that encodes command syntax. This
is due to the fact that a common Ul requirement is for a particular command to change
the application mode, and therefore, the orthogonal component that encodes the command
syntax may send an event at the end of a command to which the other orthogonal component
must react, possibly prompting a state change, and thus a change in mode. On the other
hand, some individual UTI events, not part of a sequence of events that form a command, may
also change the application mode, and this can be encoded as a simple transition between
mode states, with a trigger corresponding to a Ul event.

These techniques will be described in more detail in the following two case studies. The
purpose of these case studies is to evaluate the expressiveness and generality of SCS. If SCS
can capture a non-trivial subset of the user interface behaviour of two highly interactive,
but very different existing applications in such a way that it seems to reduce accidental
complexity, then it should be possible apply SCS effectively to other similarly complex
applications.

Both case studies can be run run live in a Web browser, and can be found at the following
URL: https://github.com/jbeard4/scion-demos

5.2 Case Study 1: Application of SCS to Vim Modal
Text Editor

5.2.1 Introduction

The goal of this case study was to develop a text editor based on the Vim text editor
using SVG, ECMAScript and Statecharts. This case study was developed in 2010 for course
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MINF10121, “Modeling and Transformation in Software Development,” at the University of
Antwerp, taught by Professor Hans Vangheluwe.

Vim’s User Interface (UI) behaviour is complex for a number of reasons. In simple text
editors, like Microsoft Notepad, when the user enters printable characters on the keyboard,
they are directly inserted into a text buffer and rendered on the screen. Typically, arrow
keys and the mouse are then used to navigate within the document. This behaviour does
not change very much depending on application state. In Vim, on the other hand, printable
characters can be entered in sequences to form complex commands. The language of possible
commands that can be entered forms a command syntax. Furthermore, Vim is a “modal”
text editor, which means that it can change between a fixed set of possible application states,
referred to in documentation as “modes.” Vim’s command syntax also changes depending
on the mode that Vim is in. Finally, Vim includes other features that can also alter the
command syntax, an example of which is macro recording.

From a high level, the approach employed in this project was to use the Vim Reference
Manual [BMO8] to obtain a natural-language specification of Vim’s behavioural requirements.
This behavioural specification was then described using Statecharts. Concurrently, an edi-
tor framework was developed in SVG and ECMAScript. The Statecharts model was then
embedded within the editor framework and executed using SCION to produce a working
Web-based user interface.

5.2.2 Case Study Goals

This case study had several high-level goals. First, it was necessary to implement a rea-
sonable subset of Vim’s features in SVG and ECMAScript. Next, it was important to
minimize accidental complexity in the implementation, such that the final result would be
easily understood and maintained by a developer. It was also important that the resulting
implementation be robust, which is to say, reasonably stable and free of bugs.

Furthermore, it was necessary for the application to be usable. Of particular concern
when developing a text editor is responsiveness: the user should not be able to perceive
a delay between the sending of an event, and the corresponding visual changes in the Ul
Therefore, it was necessary for common editing operations such as moving the cursor, enter-
ing text and changing modes to seem to occur instantaneously.

5.2.3 Editor Requirements

A goal of this project was to implement a reasonable subset of Vim’s features. These features
were chosen based upon the author’s personal, day-to-day use of Vim.
These requirements can be summarized as follows:

e The editor can switch between Normal, Insert, Command, Visual, and Select modes.
These are all of Vim’s modes, except for Replace and Ex mode. A complete description
of Vim’s mode-switching behaviour can be found in [BM09]. This project implements
a subset of that behaviour, which is summarized in Table 5.1.
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FROM mode TO mode
Normal Visual Select Insert Command
Normal v, V, ctrl.v i, a
Visual esc ctrl_g
Select esc ctrl_g printable character
Insert esc
Command | esc, enter

Table 5.1: Editor Mode-switching Behaviour

e In Normal Mode, the following movement commands are available:

— Move the cursor left, down, up, and right (triggered by “h” /“left arrow”,“j” /“down
arrow”, “k” /“up arrow”, and “l” /“right arrow”, respectively).

— Move the cursor to the beginning of the next word, end of next word, and begin-

[} [1P%2]

ning of previous word (triggered by “w”, “e”, and “b”, respectively).

— Move the cursor to the beginning of the current line, the end of the current line,
the beginning of the document, and the end of the document (triggered by “0”,
“$”, “gg”, and “G”, respectively).

Text can be copied and pasted to and from registers (triggered by “dd”/“yy”, and “p”
while in Normal Mode, respectively).

Commands can be repeated by prefixing the command with a count. For example,
“3dd” while in Normal Mode would delete the next three lines.

Text can be entered while in Insert Mode.

Visual and Select modes support Line, Character and Block selection.

Macros can be recorded and played back.

5.2.4 Application Architecture

Before developing the behaviour of the SVG-based text editor, it was necessary to construct
a framework that would provide a programming interface to support basic text editing op-
erations. The application’s architecture is illustrated in Figures 5.1 and 5.2. The following
is an overview of the classes used in the application.

Overview of Classes

Line Conceptually, a Line is a string without “newline” characters. A Line is responsible
for controlling the string’s representation in SVG. This is non-trivial, because SVG 1.1 does
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package Data] vimu

1 SVGEditor VimBehaviour
1
] 1
1 2 1
CommandManager Cursor SelectionManager
-rowNum : int -selectionStartRow : int
1 -colNum : int -selectionStartCol : int
ModeT. -selectionEndRow : int
odeText +move\l;\?ftt()() -selectionEndCol : int
-text : Stri +movevvrite
;. . +moveDown() +copySelection() : String
+updateText( s : String ) +moveUp() +deleteSelection() : String
+appendText( s : String )| |+writeChar(c : char) +replaceSelection( s : String ) : String
+removeText( s : String )| [+writeNewLine() ; ]

1 1
1

DisplayManager
- 1 1 -displayWidth : int
Line -displayHeight : int
-tspans LineManager -characterWidth : int
-characterHeight : int
+getText() : String +getLine( rowNum : int )

+getCoordinates( colNum : int )
+writeChar( c : char, colNum :int)
+writeBackspace( colNum : int )

+insertLine( rowNum : int )
+deleteLine( rowNum : int)

—_
*
—_

—_

Figure 5.1: Class Diagram of Visual Editor

not provide built-in support for word or character wrapping, and the string must therefore be
broken up across multiple <tspan> elements. Line then implements algorithms for wrapping
text across multiple tspan elements, which are applied upon insertion or deletion of a new
character.

Furthermore, Line provides methods to map a character’s index to its coordinates on the
screen.

LineManager The LineManager aggregates multiple Lines to form a text buffer. It pro-
vides methods for getting a Line given its row index, and creating and deleting Lines. The
LineManager will always have at least one Line. If the last Line is deleted, it will immediately
create a new empty Line to take its place.

Cursor The Cursor is a visual icon on the screen, which indicates where text will be
inserted in the text buffer. The cursor has a row and column index, and is responsible for
inserting and deleting text into the LineManager at its current position. Furthermore, the
cursor has a visual representation, and is responsible for updating that visual representation
when its row and column indexes change.
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VisualObject DOMNode

JAY

ModeText Cursor Line SelectionManager

Figure 5.2: Classes extending VisualObject have a visual representation

SelectionManager The SelectionManager stores a pair of row and column indexes, which
correspond to a range of selected text. It provides methods to copy the text in that range,
as well as to delete it or replace it. Furthermore, it controls its visual representation as its
attributes are updated.

DisplayManager The DisplayManager is responsible for providing the width and height
dimensions of the display, and of the fixed-width font used by the editor. This information
is used for text wrapping, and is thus associated with Line and SelectionManager.

ModeText The ModeText is responsible for controlling the text at the bottom of the
screen, which indicates the editor’s mode (e.g., “-- INSERT --” for Insert Mode). An example
of this text is shown in the bottom, left-hand corner of Figure 5.3. ModeText provides
methods to set the mode text, and append or remove a string from the mode text.

D @ @ case study.tex (~/workspa...inal_project_paper) - GVIM2

w-iflE e L @ @ °

4 outline.txt drafttxt drafttex papertex case studytex + scratch.txt *

The in\ mode orthogonal region is used track which ~‘mode'' the a
pplication is in. This can be underst via a fairly straightfow
ard conceptual mapping: each of the text editor " 'mode’' maps to

a corresponding basic state.

- INSERT --

Figure 5.3: Screenshot of GVim text editor with mode text in bottom left corner
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CommandManager The CommandManager stores the various commands which may be
executed by the editor in Command Mode. Currently, accepted commands are “!”, which
evaluates an arbitrary ECMAScript string, and “help” which prints some useful help text.

VimBehaviour VimBehaviour is responsible for managing the application state. It is
implemented by a Statecharts model.

SVGEditor There is one SVGEditor instance per application instance. SVGEditor acts
as a controller to the editor framework for the Statecharts model instance.

5.2.5 VimBehaviour Statechart Design
High-Level Overview

Figure 5.4 provides a high-level overview of the design of the VimBehaviour statechart. There
is an AND-state main, a final state, and a basic state initial_default. initial_default
is the top-level default state, and so the application begins in the initial default state.
The purpose of initial default is to provide the opportunity for the environment to send
the system a controller object. The controller object is sent to the statechart as data on
the init event (_event.data), and is assigned to variable controller, which is local to
the statechart. The controller object will be an instance of SVGEditor, and will allow the
statechart to control the text editing environment via calls to its API in the action code of
the statechart.

init/controller = event.data
initial_default

main

recording_macro in_mode dispatching_events

exit

O

Figure 5.4: VimBehaviour Statechart Top States

Upon receiving the init event, the statechart transitions to state main, an AND-state
with three orthogonal components. The statechart remains in the components until the
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statechart receives exit, causing the statechart to enter a final state, and the application to
quit. The orthogonal components of main will be discussed in detail in the following sections,
but at a high level, one may describe them as follows. in_mode tracks the application’s
“mode”. dispatching events is responsible for encoding command syntax depending on
mode. Finally, recording macro handles the logic pertaining to macro recording.

This follows the SCS technique of using one or more top-level orthogonal components
primarily to capture application mode, and one orthogonal component primarily to dispatch
events based on that mode.

Mapping User Interface Events to Statecharts Events

User Interface events must first be mapped to Statecharts events. The domain of the map-
ping, or set of possible User Interface events, depends on the underlying platform upon which
the User Interface is built. SVG uses the Document Object Model (DOM) Level 2 Events
Specification for event handling [DFF10, Ch. 16], and so the domain of the mapping is the
set of DOM events. The co-domain of the mapping is the universe of possible Statecharts
events, which has been described in Chapter 2 as a structure with a property “name” of
type String, and property “data” of type Object. In SCION, any ECMAScript String can
be used as an event name, except for the wildcard event *, which has a special interpretation
in SCION semantics, such that it matches any event (described in Section 2.3).

Initially, a simplifying assumption was made for this case study to only deal with keyboard
events, and not mouse events. However, it would not be difficult to extend the following
mapping to also handle mouse events.

The mapping from DOM events to Statecharts events can be defined as follows. In the
case that the user inputs a printable character, that printable character will be used as the
Statecharts event name. In DOM events, printable characters are distinguished by their
charCode attribute, which will be equal to zero if the character is not printable, and will
equal a positive integer if the character is printable. A string representation is derived from
the charCode by using the ECMAScript built-in String.fromCharCode method. So, for
example, when the user presses the “e” key, a DOM event is dispatched to a DOM event
listener. The charCode attribute of the dispatched DOM event would be set to 101. When
this charCode is passed into String.fromCharCode, the string “e” would be returned, which
would then be used as the Statecharts event name.

In the case of non-printable characters, a mapping is defined from the character’s unique
keyCode attribute to a symbolic string name, for each event that must be explicitly handled
by the statechart. Here, “explicitly handled” means that the statechart contains transitions
with events which correspond to that non-printable character. Examples of non-printable
characters that must be explicitly handled by the VimBehaviour statechart are “esc”, “left”,
“right”, “end”, and other non-printable movement keys. So, for example, if the user presses
the left arrow key, a DOM event with keyCode 37 would be dispatched to the DOM event
listener. Because charCode on the event object would be 0, the event would be sent to the
keyCode-to-name map, which in this case would return the string “left”. Note that, in this
mapping, it is important that the keyCode-to-name map does not return strings that are
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single characters, as this would collide with the mapping applied to printable characters.

The final step is to then map modifier keys to a symbolic string representation (e.g.,
“ctrl”, “shift”, “alt”, and “meta”), and to then prepend that string to the derived symbolic
event name. The order in which these modifier strings are prepended matters, as for example,
Statecharts event ctrl _shift_a would be distinct from shift ctrl a.

The final resulting string is then used to instantiate a Statecharts event, with name prop-
erty set to that string, which is is then dispatched upon the statechart instance. Furthermore,
the original DOM event object is sent as Statecharts event data. The statechart therefore
has access to platform-specific data (such as keyCode and charCode) from the DOM event.

Advanced Ul Event Mapping

Sometimes it is desirable to specify ranges of acceptable User Interface events for an indi-
vidual transition. For example, in state before nonzero digit the state machine should
transition to after nonzero digit if sent an event in the range of 1 through 9.

The solution to this problem was to use a transition with the wildcard event, and a
transition condition to determine if the event belonged within a specified set of characters.
ECMAScript regular expressions were used to determine this. This meant that regular
expressions could be used to define event ranges, and that a transition would not be selected
unless the given event is a member of the set defined by that range.

Modelling Application Mode in Orthogonal Component in mode

The in_mode orthogonal component is used to track which editing “mode” the application is
in. This can be understood via a straightforward mapping of Vim’s editing concepts onto the
Statecharts language: each of Vim’s editing “modes” maps to a corresponding basic state in
the Statechart model. This is shown in Figure 5.5.

in_mode

O

insert_mode

normal_mode (:)

command_mode

O O

select_mode visual_mode

Figure 5.5: Vim modes mapped onto states
Vim changes modes when the user enters certain characters. For example, when in
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Normal Mode, i will bring the editor into Insert Mode. Likewise, when in Insert Mode,
esc will return the editor to Normal Mode. This can be described using Statecharts with a
transition from state normal _mode to state insert_mode on event i, and with a transition
from insert mode to normal mode on event esc. This is shown in Figure 5.6.

i

normal_mo;e:C insert_mode

Figure 5.6: Transitions between mode states

In Vim, when a mode is exited, and a new mode is entered, the mode text is updated
to correspond to the new mode. For example, changing to Insert Mode will update the
mode text to “- INSERT --". An example of this is shown in Figure 5.3. In Statecharts,
this is expressed by adding an enter action to each mode state which calls the method
controller.updateModeText, and passes in a string corresponding to the state that will be
entered.

The Vim Visual and Select modes require an additional refinement to the above mapping.
In Vim, for both Visual and Select modes, when the mode is entered, the editor begins
selecting text, and when Visual or Select mode is exited, the editor stops selecting text,
and the selection is cleared. Furthermore, ctrl_g toggles between Visual and Select modes
without clearing the selection.

In Statecharts, this can be expressed by creating a OR state visual or_select mode,
with visual mode and select_mode as substates. When visual or_select _mode is entered,
the selection is started by calling the method startSelection on the controller, and when
it is exited, the selection is cleared by calling clearSelection. This then allows the system
to transition between visual mode and select mode without clearing the selection. This is
shown in Figure 5.7.

visual_or_select_mode
ctrl_g
visual_mol! elect_mode

Figure 5.7: Visual and Select modes as basic states in OR state

One further refinement to the statechart representations of Visual and Select modes is
needed. In Vim, there are three possible forms of Visual mode and three possible forms of
Select mode: Visual Line, Visual Block, Visual Character; and Select Line, Select Block,
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Select Character. These are entered into from Normal Mode in different ways. v, V, and
ctrl_v events will bring the statechart into Visual Character, Visual Line, and Visual Block
modes, respectively. Also, when toggling between Visual and Select modes, the Line, Block,
and Character modes will be preserved. For example, if the editor is in Visual Block mode,
and transitions to Select mode, it will then be in Select Block mode. The same is true when
transitioning from Select to Visual mode, and for Line and Character modes. Finally, the
mode text will be updated to “-- VISUAL BLOCK --” when entering Visual Block mode,
and so on, for all other combinations.

The solution that was chosen is shown in Figure 5.8. In this solution, visual mode and
select_mode are OR states, and Visual Character, Visual Line, etc. are basic substates. On
ctrl_g, transitions take the system from Visual Line to Select Line, and vice versa, for each
Line, Block, and Character state. Finally, each Line, Character, and Block mode can switch
to other modes without changing from Select to Visual mode with v, V, and ctrl.v. On
entering each basic state, the mode text is updated appropriately.

in_mode

select_mode

ctrl
-9 s

visual_charact€

selglt_character

\/ ctrl_g

Figure 5.8: Line, Block and Character Selection modes as substates in Visual and Select OR
states

The full solution to in_mode is shown in Figure 5.9.
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in_mode

i [not (In(after_quote) or In(after_at))]

insert_mode

allCmdCharsDeleted

esc,

command_mode

visual_or_select

viglual_mode / /

select_mode

ctrl_g

visual_characte

ine

Figure 5.9: VimBehaviour Statechart in_mode Orthogonal Component
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Modelling Mode-Dependent Command Syntax in Orthogonal Component
dispatching events

The main purpose of dispatching events is to define a syntax for parsing commands com-
posed of sequences of events, such that the syntax may vary depending on the mode the
application is in. Furthermore, it provides a way to group common behaviours shared by
different modes.

The following are some examples of Vim commands and their meanings:

“n 3%

e “"il2yy” : yank (“copy”) the next twelve lines into register “i

e “15@a”" : play back the contents of macro register “a” 15 times

e “12gg” : move the cursor to line 12

As an example of how this syntax changes depending on mode, the above commands are
processed in the manner described while in Normal Mode, but when in Insert Mode, the
character data corresponding to each event would be inserted directly into the main text
buffer.

Figure 5.11 shows a way of describing this behaviour using Statecharts.

The initial state is before nonzero_digit in OR state main dispatching events. The
statechart keeps a variable called count. If it receives an event in the set [1-9], it updates the
count with this number and transitions to after nonzero_digit. While in after nonzero_digit,
when an event in the set [0-9] is received, the count is updated. This count will be used later
to determine how many times to repeat a command when it is invoked.

It is necessary to have the two states before nonzero digit and
after nonzero_digit, because, if a 0 is entered before a number in the range [1-9] is received,
and the editor is in Normal Mode or Visual mode, then the cursor should be moved to the
first column on the current line, and the count should be reset.

In Vim, simple commands can be invoked before or after any numbers have been entered.
Here, “simple” commands refers to commands that are executed after entering a single
character. Examples of simple commands include those triggered by movement keys, such
as h or left arrow to move left, or $ to move to the last column of the current line, and all
printable characters when in Select, Insert, and Command Modes, in which case the editor
will write the character to the main or command text buffers.

Complex commands are executed after receiving two or more keypress events. Examples
of complex commands include “dd” (cut a line), “yy” (copy a line), “gg” (go to first line),
““character in [a-zA-Z]” (select the register into which text will be copied), and “@character
in [a-zA-Z]” (invoke macro in register character). There are complex commands that are
composed of more than two characters, but the solution presented restricts itself to the
complex commands listed.

Commands, whether simple or complex, will be performed a number of times equal to
the count. After performing a command, the count will be reset to 0.

Simple commands are realized using Statecharts with transitions from
main dispatching events to itself. Drawing all of them would lead to a cluttered diagram,
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so they are grouped here under a single transition labelled with an ellipsis. By making the
transition exit the OR main dispatching events state, it is possible to elegantly fulfill the
requirement that these simple commands be performed regardless of whether any digits have
been entered, as the transition will be taken if the statechart is in before nonzero_digit
or after nonzero_digit. Furthermore, by making the transition enter the
main_dispatching events OR state, and putting an entry action that clears the count on
the main dispatching events state, it is possible to elegantly fulfill the requirement that,
upon completing a command, the count should be cleared.

Complex commands are realized by transitioning to an intermediate state in the OR state
completing two_part_command. Once in the intermediate state, the statechart will wait to
receive the second event to complete the command. Upon receiving the second event, the
statechart will invoke the appropriate command, and transition back tomain_dispatching events.

The advantage of using a OR state to group these intermediate states is that it elegantly
fulfills the requirement that, if the user enters an event which is not a legal part of the
command syntax (e.g., an x following a g), then the editor should clear the count and
transition back to a mode where it is ready to receive a new command. In essence, by
default, if the statechart receives an input that is not part of the command syntax, then the
statechart will return to a ready state. This is expressed by connecting a transition with an
event * from completing two_part_command to main dispatching events.

Using the In Predicate to Control Event Dispatch Based on Mode

Not every mode will have the same command syntax. For example, Normal Mode would
accept “"ayy” to yank the current line into the register “a”. But in Visual mode, the “yy”
command does not exist. Instead, pressing “y” once while in Visual Mode yanks the current
selection into the default register, and pressing “"ay” yanks the current selection into the
“a” register. These command syntaxes are mutually exclusive.

In order to implement these differences using Statecharts, the built-in In predicate is
used as a condition on most transitions. The In predicate accepts a reference to a state,
and returns true if the statechart’s current configuration includes that state; otherwise, it
returns false. Using the In predicate in a condition on a transition expresses the notion
that certain transitions are only taken while in specific modes, hence varying the command
syntax depending on mode. For example, in Vim, while in Normal Mode, if “i” is pressed,
Vim will enter Insert Mode. The exception to this, however, is if “i” follows “"” or “@”,
as “i” will then be used to select a register. This can be expressed using Statecharts by
putting the condition “not(In(after_quote) or In(after_at))” on the transition from
state normal mode to insert_mode in the in_mode orthogonal component. The same is
true for transitions to command_mode (on “:”) and visual mode (on v, V, or ctrl v). An
example of this is shown in Figure 5.10.

The technique of using the In predicate to control event dispatch based on mode is a
standard part of SCS, and will appear again in the following case study.

To summarize, dispatching events uses elements of the Statecharts language to cleanly
encode several different command syntaxes, which vary depending on the application mode.
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i [not(In(after_quote) or In(after_at))]

insert_mode

normal\mode

colon [not (In(after_quote) or In(after_at))

command_mode

Figure 5.10: Example of in_mode mode affected by dispatching events

Further Application Mode in Orthogonal Component recording macro

Vim has the capability to record macros. These are sequences of events which are stored in
a register selected by the user, and can later be played back as though the user had retyped
them. Macro recording is initiated by pressing “qcharacter in [a-zA-Z]” while in Normal
Mode. After that, every keypress event will be stored in buffer character. Macro recording
is stopped by pressing “q”, also while in Normal Mode.

A solution to this using Statecharts is shown in Figure 5.12. By default, the statechart
begins in state before_q keypress, in OR state recording off. When recording off
is entered, an empty event list data structure is initialized. If in normal_mode, pressing
“q” transitions to state selecting register. Any printable character then transitions the
statechart to state recording on, at which point all events will be appended to the event
list. Finally, pressing “q” while in normal mode will cause the statechart to transition back
to OR state recording off.

Pressing “Qcharacter in [a-zA-Z]” will then cause the events stored in register character
to be dispatched to the statechart. This command is handled by orthogonal component

main_dispatching events.
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.spatching_events

main_dispatching_events

* [_event in [0-9]]/addToCount (_evejt)

0[In(normal_mode) or Infvisual_or_select_mode)]/goToStartOfLine ()

g[Inj{(normal_mode) or In(visual_or_select _event in [1-9]]/addToCount (_eveN

before_nonzero_digit after_nonzero_digit

@[In(normal_jode) ]

I 1
y [In(normal_mo mode) ]

completing_two rt_command

oLowerCase (_event .name)

y/yankLineIn egister (currentR4gisfer) * [_event \n [§-zA-Z]]/curre
9/goToFirstline () d/deleteCurrentLine () * [_event in -7]]/jfnvokeMacroInRegister (_eventf. name)
after_g after_y
after_d after_quote after_at

Figure 5.11: VimBehaviour Statechart dispatching events Orthogonal Component
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5.3 Case Study 2: Vector Graphics Drawing Tool Based
on Inkscape

5.3.1 High-Level Goals

The goal of this case study was to create a vector graphics drawing tool using SVG, EC-
MAScript, and Statecharts, whose functionality and user interface behaviour were derived
from Inkscape, a free and open source vector graphics drawing tool. This case study will
illustrate an application of the SCS design pattern.

The following subset of Inkscape’s functionality was chosen to be implemented:

e Change between three tools on a toolbar: “transform”, “draw rectangle”, and “draw
circle.”

e Draw circles and rectangles on the canvas. These graphical objects will be referred to
as “nodes” because of their close association with SVG DOM nodes.

e Select and deselect one or more graphical objects on the canvas.

e Graphically transform selected nodes on the canvas by rotating, translating and scaling
them.

Furthermore, a meta-requirement was that the drawing tool must feel responsive at all
times, particularly when the user was transforming a node by means of a dragging operation,
which is to say, the user should not perceive a delay between the sending of a user interface
event, and the corresponding visual change in the UI.

5.3.2 Natural-Language Specification of User Interface Require-
ments

The following is a natural-language specification of Inkscape’s UI behaviour for the subset of

functionality described in the previous section. In subsequent sections, it is shown how this

natural-language specification of requirements was implemented by means of a Statecharts

model.
There are five classes of objects with which the user could interact :

e A single Canvas.

e A single Rotation Handle, which the user manipulates to rotate selected nodes.

A single Scale Handle, which the user manipulates to scale selected nodes.

A single Toolbar with three buttons: the “Transform Button,” “Draw Circle Button,”
and “Draw Rect Button.” Only one button can be chosen at a time.

A variable number of nodes, of which there are two sub-types: Rect and Circle.
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In general, the user can perform the following operations on the above objects:
e “Create” a node by clicking and dragging on the Canvas.

e “Select” and “deselect” nodes by clicking on them, as well as in various other ways.
To indicate which nodes are selected, selected nodes are surrounded by a transparent
dashed rect, the “selection box”, the dimensions of which are equal to the aggregate
bounding box of of the selected nodes.

e Graphically transform selected nodes, by dragging them (to “translate”), by dragging
the Rotation Handle (to “rotate”), or by dragging the Scale Handle (to “scale”).

e “Choose” a tool on the toolbar. Note that, while “choose” and “select” are synonyms,
in this context “choose” denotes an operation applied to a toolbar button, and “select”
denotes an operation applied to a node. Likewise, a toolbar button will be referred to
as “chosen”, and a node as “selected”.

The command syntax used to apply these operations is dependent on application state,
primarily regarding which tool is currently chosen. The remainder of this section will provide
a detailed natural-language description of this stateful command syntax.

Here, mousedown, mouseup, and mousemove refer to individual mouse events, while
mouseclick refers to the sequence of events (mousedown, mouseup), and drag refers to the
sequence of events (mousedown, mousemove+ mouseup), which is to say, one mousedown
event, followed by one or more mousemove events, followed by a mouseup event.

Behaviour that Occurs Regardless of Which Tool is Chosen

A mouseclick on the canvas without holding the shift key results in all nodes being selected.
A mouseclick while holding the shift key on a node results in a node’s selection state
being toggled, such that a node which is not selected will be selected, and vice versa.
A mouseclick without holding the shift key on a non-selected node results in that node
being selected, and all other nodes being deselected.

When the Transform Tool is Chosen

Rotation and Scale Handle If there are selected nodes, then either the rotate or scale
handles will be visible, and will be positioned on the lower right corner (southeast position)
of the aggregate bounding box of all selected nodes. Otherwise, if no nodes are selected,
then neither the rotation nor the scale handle will be shown. A mouseclick (without shift)
on a selected node results in rotation/scale handles being toggled, such that if the rotation
handle is visible, it will be hidden and the scale handle shown, and vice versa. Dragging the
rotation handle rotates all selected nodes about the center point of their aggregate bounding
box. On mouseup, the position of the rotation handle is reset to the lower right corner of the
aggregate bounding box of all selected nodes. Dragging the scale handle scales all selected
nodes.
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Additionally, when no nodes are selected, and a node is first selected, then the scale
handles will be shown first, unless the last time nodes were selected, rotation handles were
shown when they were deselected, and the nodes are selected via a drag, rather than a click.

Node Interaction Dragging a node without holding the shift key will deselect all currently
selected nodes, drag the target node, and select the target node.

Dragging a node while holding the shift key has same effect as dragging on the canvas.

Dragging a selected node results in all selected nodes being dragged.

Dragging a non-selected node results in that node being selected, and all other nodes
being deselected.

When the Rect or Ellipse Tools are Chosen

When the Rect or Ellipse Tools are chosen, rotate and scale handles will never be visible.
Furthermore, mouseclick without holding the shift key on a selected node while in this mode
has no effect. Finally, dragging anywhere (on the canvas or a node) results in a new element
being draw, created and selected, and on mouseup, all other elements are deselected.

5.3.3 Application Architecture

The application’s architecture is structurally similar to the application architecture described
in the modal text editor case study in Section 5.2.4. Class diagrams containing an overview
of the application architecture can be seen in Figures 5.13 and 5.14.

package Datal architecture U
Canvas 1 1 InkscapeBehaviour
1{1|1(1
1 0. |1 1
SelectionBox Drawable Object ScaleHandle RotationHandle
T
Rectalmgle Cirlcle

Figure 5.13: Class Diagram of Drawing Tool
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package Data| architecture2 y

VisualObject—~——————— > DOMNode

I

RotationHandle Drawable Object SelectionBox Canvas ScaleHandle

Figure 5.14: Classes extending VisualObject have a visual representation

Each class of graphical object described in Section 5.3.2 is represented as a class in
Figure 5.13. There are one-to-one relationships between the Canvas, SelectionBox, Scale-
Handle and RotationHandle classes, and a zero-to-many relationship between the Canvas
and the DrawableObject class. Furthermore, the Canvas has a one-to-one association with
an InkscapeBehaviour class which represents the InkscapeBehaviour statechart.

Each graphical object class is a subclass of VisualObject, which implies that it aggregates
a DOM node. By changing the associated DOM node, its visual rendering will change on
the page.

5.3.4 Mapping DOM User Interface Events to Statecharts Events

Mapping Ul events to Statecharts events in this case study is not as complex as the mapping
that was required for the text editor case study, described in Section 5.2.5. In this case, the
only user interface events to which the application must react are three varieties of mouse
events: mousedown, mouseup and mousemove. Furthermore, the Statecharts model should
be able to detect whether the shift key was pressed, as well as the DOM node event target.
These are both properties exposed by the DOM event, as specified in the Document Object
Model (DOM) Level 2 Events Specification| DFF*10, Ch. 16]. Mapping the DOM event to a
Statecharts event therefore entails mapping the DOM event name (e.g. mousedown) directly
to the Statechart event’s name (e.g. mousedown), and making the DOM event object the
Statechart event’s data. This will be clarified in the following sections.

5.3.5 InkscapeBehaviour Statechart Design
High-Level Overview

Figure 5.15 provides a high-level overview of the design of the InkscapeBehaviour statechart,
which is similar to the VimBehaviour statechart described in the previous case study, in
Section 5.2.5. Like VimBehaviour, there is an AND-state main, a final state, and a basic state
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init/controller = _event.data

initial_default
main
presentation_state dispatching_events
exit

@

Figure 5.15: Top States

initial default. initial_default is the top-level default state, and so the application
begins in the initial _default state, and the statechart uses an init event to pass in a
reference to a controller object, which provides an interface to the environment. Specifically,
the InkscapeBehaviour controller object will contain references to the DOM nodes associated
with the Canvas and Toolbar singletons, as well as a reference to an ECMAScript array that
will contain references to all Rect and Circle DOM nodes on the canvas.

Upon receiving the init event, the statechart transitions to state main, an AND-state
with two orthogonal components. presentation_state will model the application modes,
and dispatching events is responsible for encoding command syntax depending on mode.

Modelling Application Mode in Orthogonal Component presentation_state

Orthogonal component presentation_state captures high-level application state, or “mode”.
As described in the natural-language specification of the Ul requirements, the high-level ap-
plication state is most closely coupled with the state of the toolbar, which affects the pre-
sentation of the UI, for example changing which toolbar button is highlighted and whether
the rotation and scale handles and selection box are shown, as well as changing the com-
mand syntax. To that end, the states in presentation state have two main roles: to
be inspected by the dispatching events orthogonal component, thus encoding changes in
command syntax, and to update the visual representation directly via action code in state
entry and exit actions. This will be explained in detail below.
presentation_state has two top-level OR states: transform tool_selected and

drawing tool_selected. drawing tool_selected is furthermore broken down into two ba-
sic states, rect_tool_selected and ellipse _tool selected. Together, these three states
(transform_tool_selected, rect_tool_selected and ellipse_tool_selected) capture the
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possible application states of the toolbar. Entering any of these states will highlight the as-
sociated button object, and exiting any of these states will remove the highlighting from the
associated button object.

transform tool_selected, rect_tool _selected and ellipse_tool_selected are all
strongly connected by transitions, such that a mousedown event on a toolbar button will en-
able a transition to the button’s associated state, regardless of the state the system is in. For
example, amousedown event on the ellipselcon will cause a transition to ellipse_tool_selected,
regardless of whether the system is in state transform tool_selected or rect_tool_selected.

transform tool_selected contains three substates: an initial state
transform_tool_selected_initial, a basic state no_nodes_selected, and an OR state
nodes_selected. Default transitions originating from transform tool selected initial
bring the system into states no nodes_selected or nodes_selected, depending on whether
or not the selectedNodes array is empty. A node is encoded as being selected by including
it in the selectedNodes array. When the selectedNodes array is empty, this means that
no nodes are selected.

In order to encode the logic that the dashed selection box and rotation handle or scale
handle should only be shown when the transform tool is selected, the entry action on
nodes_selected will show the selection box, and will hide it on exit. Likewise, the entry ac-
tion of ready_to_rotate will show the rotation handle, and hide it on exit. ready_to_scale
will do the same with the scale handle.

The system will transition between the substates of transform tool _selected based
on internal events which are sent from the other orthogonal components. For example,
when a node is selected with a click, then the event NODES_SELECTED _WITH_CLICK will be
sent, and if the system is in state no_nodes_selected, then it would transition to state
nodes_selected, which makes sense, as semantically the NODES_SELECTED WITH CLICK event
means that a node has been selected with a click, and thus the array selectedNodes would
be nonempty. On the other hand, if a node is deselected, then the event CHECK _NODES is
raised. If the system is in state nodes_selected, and selectedNodes is indeed empty, then
the system would take the transition to no_nodes_selected, which again makes sense given
the semantics of the raised event.

Finally, the history sub-state of nodes_selected is used to encode the special behavioural
requirement mentioned in Section 5.3.2, which is that the same scale or rotation handle will
be shown as the last time the user had any nodes selected, if the new node selection was
initiated with a drag, as opposed to a click. As can be seen, if the system is in state
no nodes_selected, and a NODES_SELECTED _WITH DRAG event is sent, then the system will
transition to the history state, thus encoding the requirement that this command be initiated
with a drag, rather than a click. The history state will then show either a scale handle, if a
scale handle had been shown the last time any nodes were selected, or a rotation handle, if
a rotation handle had been shown the last time any nodes were selected.
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Orthogonal Component dispatching events

This orthogonal component implements the stateful command syntax specified in natural-
language specification of the Ul requirements. There are essentially two possible command
phrases, which refer to two specific sequences of events. “mouseclick” refers to the sequence
of events (mousedown, mouseup), and “drag” refers to the sequence of events (mousedown,
mousemove+, mouseup), which is to say, one mousedown event, followed by one or more
mousemove events, followed by a mouseup event. These “phrases” can have varying effects
depending on the following factors: the event target, whether the shift key was pressed
during the initial mousedown event, node selection state, and toolbar state. Node selection
state and toolbar state are captured in the presentation_state orthogonal component and
the selectedNodes array, while the event target and shift key state are captured in the
triggered DOM event, which is passed to the system as event data. Transition conditions are
used to inspect both the presentation_state orthogonal component, by using the SCXML
In() predicate, and the DOM event, which is exposed as the data property on the SCXML
object.

Generally, the system will begin in the ready state, and on mousedown, the system will
transition to the first of possibly two intermediate states. If the system receives a mouseup as
the second event, then the system will identify the phrase as a “click”, generally transitioning
back to the ready state, and performing some action on the way. However, if the system
receives a second mousemove event, the phrase will be identified as a “drag”, and the system
will transition to the second intermediate state, possible performing some action on the way;
subsequent mousemove events will cause the system to loop in the second intermediate state,
performing some action based on the coordinates of the mouse event. mouseup will cause
the system to return from the second intermediate state to the ready state.

A few examples will illustrate this process.

Consider the simple example where the user wishes to select an unselected node by
clicking on it with the mouse. Assume that no other nodes are selected and the transform
tool is chosen, and thus the system is in basic configuration {no nodes_selected,ready}.
To perform this command, the user would click a node. When the user clicks on a node,
the system will receive a mouseclick where the node is the event target. The system
will transition to after mousedown on nonselected nodes. The system will then receive
a mouseup event, at which point it will transition back to ready. The transition action
will set the selectedNodes array to contain only the original event target (clickedNode),
and will send the NODES_SELECTED WITH CLICK event, causing the system to transition to
state ready_to_scale, and reveal the selection box and scale handle due to entry actions on
nodes_selected and ready_to_scale, respectively.

As another example, consider the case where the user wishes to draw a rectangle. As-
sume that the rect drawing tool is selected, and that the system is thus in configura-
tion {rect_tool selected,ready}. To perform this command, the user would drag any-
where, including on the canvas or on top of another node. Depending on where the user
clicked, and whether the shift key was selected, the system will transition to a sub-state of
after mousedown. All transitions leaving from sub-states of after mousedown have guard
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condition In(’transform tool _selected’). As the system is in state rect_tool_selected,
these transitions would evaluate to boolean false. There are two transitions with trigger
mousemove leading from OR state after_mousedown: one with condition
In(’ellipse_tool_selected’), and one with condition In(’rect_tool_selected’). The
latter would be enabled, and would cause the system to transition to state drawing rect.
A new rect element would be created as the transition action. On subsequent mousemove
events, the state would transition back to draw_rect, and on entry to draw_rect would
update the newly-created rect based on the mousemove event’s coordinates. On mouseup,
the system would transition back to state ready.

drawing rect is an example of a “second intermediate state” discussed earlier. Other ex-
amples of these states are drawing ellipse, dragging, rotating and scaling, and all have
similar behaviour, such that they loop back to themselves on mousemove event, and perform
some action on entry, based on the mousemove event. For example, dragging will move the
set of selected nodes by a delta computed from the mouse coordinates. drawing rect will
create a rect, and update its width and height based on the position of the mouse coordinates
of the mousemove event. drawing marquee works the same way, as does drawing_ellipse, but
instead updates the rx and ry properties of the ellipse. rotating will rotate the selected
objects based on a mouse delta, and scaling will scale the objects based on the mouse delta.
The mouseup event from these states will return to ready without further action.

Finally, consider the case where the user wishes to translate a group of selected nodes.
Assume the system is in basic configuration {ready to_scale, ready}. To perform the
command, the user would mousedown on a selected node and drag it. The initial mousedown
event would bring the system to state after mousedown on _selected nodes. The subse-
quent mousemove event would enable the transition targeting state dragging, as its condition
In(’transform tool_selected’) would evaluate to true. This would bring the system into
state dragging, which would work in the same manner as described above.

5.4 Critique of SCS

The major critique against SCS is that its use of a single monolithic Statecharts model
per application instance to describe all of a user interface’s behaviour breaks encapsulation
between individual UI components, and is thus unlikely to scale well with increased user
interface complexity. There are two possible approaches that can be used to mitigate this
concern.

The first is to compose the top-level orthogonal components, or sub-states of the orthog-
onal components, into individual “submachines,” which is to say, to treat individual states
of a statechart as architectural components in themselves. This could be facilitated by phys-
ical separation, as a single monolithic SCXML document can be divided into multiple XML
documents which are then combined when the model is parsed. This can be accomplished
with XInclude, a W3C standard which allows XML documents to be physically separated
into multiple documents, such that they can be transformed into a single document when
parsed. This strategy has has been suggested in previous iterations of the SCXML draft
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specification[ BAA*10].

This approach still relies on using a single Statecharts instance per application, which
breaks encapsulation between individual UI components. A better solution may come in the
form of creating multiple statechart instances, one for each graphical object created, such
that each object aggregates its own statechart which encapsulates that object’s state and
behaviour. Objects would communicate with one-another via event-passing protocols.

This approach is likely to scale best with complex, object-oriented systems, but it does
add complexity, and may lead to situations where state must be replicated between indi-
vidual objects, thus violating the principal of “don’t repeat yourself”. For example, in the
previous case study based on Inkscape, the toolbar state was a global concern that affected
the behaviour of all other parts of the application. By using a monolithic statechart, that
state could be inspected using the simple “In()” predicate from any transition, essentially
making the toolbar state a global variable within the statechart. As in procedural pro-
gramming languages, global variables are a very simple technique to share state across an
application, but global variables are also well-known for breaking encapsulation, which is
why many object-oriented languages, such as Java, do not directly support them. Moving
the toolbar state out into its own object, such that it would need to be retrieved via a
message-passing protocol, would have been possible, but it would have added complexity to
the implementation.

The conditions under which SCS ceases to be a technique that scales well with complexity
of a particular set of Ul requirements is a problem which requires further investigation.
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Chapter 6

Conclusion

The first three chapters of this thesis described the development of SCION, a Statecharts
variant with a precise semantics built on SCXML and optimized for execution under EC-
MAScript and the Web browser environment. Chapters 2 and 3 described SCION’s pre-
cise syntax and semantics, leveraging the work of the W3C SCXML draft specification for
SCION’s syntax, and “Big-Step Semantics”, by Esmaeilsabzali, Day, et. al [EDANOQ9] for
SCION’s semantics.

Chapter 4 provided a rigorous empirical analysis of the performance of various optimiza-
tion strategies of SCION semantics when run under different Web browser environments.
The chapter described four optimization strategies that would be tested: the data structure
used for transition selection; the Set data structure used throughout the algorithm; “model
caching”, where structural information about the model was precomputed and cached, rather
than being computed at runtime; and finally, a flattening transformation to avoid traversing
the state hierarchy. The chapter concluded that using a State Table data structure for tran-
sition selection, an ECMAScript Array as a Set implementation, and, finally, enabling model
caching and the transition flattening transformation, provided the best overall performance
and memory usage across a wide range of browsers and usage scenarios.

Chapter 5 described a design pattern that applied SCION to the development of a par-
ticular class of Web-based user interfaces, specifically those whose behaviour consists of a
command syntax that varies depending on high-level application state. This design pattern
described how to map user interface events to Statecharts events; how to encode high-level
application state in the statechart through top-level orthogonal components; and finally, how
to map the syntax of a user interface “command”, often expressible as a regular expression,
to a reduced state machine representation, annotated with embedded ECMAScript actions,
that could then be embedded in the top-level orthogonal components. This design pattern
was illustrated through detailed case studies of two highly interactive, but very different
applications: a modal text editor based on vi, and a vector graphics drawing tool based on
Inkscape. Because the SCS design pattern was sufficiently expressive to capture a non-trivial
subset of the user interface behaviour of these two existing applications, it should be possible
to develop other similarly complex applications using this technique.

Finally, SCION has been released as an open source project, and is currently being used in
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production in several environments. For example, my employer, INFICON, a manufacturer of
scientific instruments, has included it as a core component in its new software platform, where
it is being used to control hardware. As another example, [24]7 inc., a consumer experience
company, uses SCION to coordinate inputs across multiple modalities or browsers.

Future Work

The conclusions of Chapters 4 and 5 both describe opportunities for future work, regarding
further optimizations of performance and memory usage of the SCION interpreter, and by
refining the techniques by which SCION may be applied to Web user interface development.

Going forward, there are many problems to which SCION may be applied beyond the
realm of Web-based user interface development. ECMAScript has been described as the
“lingua franca” of scripting languages [Atw], and it is currently embedded in numerous
development frameworks and environments outside of the Web browser. As SCION is im-
plemented in ECMAScript, it can easily be embedded in these environments, and could
thus be used to solve problems specific to the application domains targeted by these other
environments.

The first way SCION may be applied outside of the Web browser environment is in desk-
top user interface development. Similar problems are faced in the development of desktop
user interfaces as Web user interfaces. This is evident, as both case studies in Chapter 5
were based on applications that were originally desktop applications. It is possible to apply
SCION in this way because there already exist high-quality ECMAScript bindings to many
GUI toolkits used to develop desktop application. For example, SCION could potentially be
used with the Qt GUI toolkit, which embeds ECMAScript via the QtScript bindings [qt].
As another example, SCION could be used in development of Java Swing applications via
the Mozilla Rhino Java bindings.

SCION may also be applied to server-side Web development. Previous research has shown
that Statecharts can be productively applied to the problem of modelling Web navigation
[WP03]. SCION could be used to apply the same techniques described in existing literature
to modern, ECMAScript-based web application frameworks, such as Node.js.

There is an interesting corollary to the previous application, which is that SCION could
also potentially be used for embedded systems development including, possibly, robotics.
Statecharts were originally invented for the purpose of controlling safety-critical embedded
systems [Har87]. While ECMAScript cannot be run directly on embedded microcontroller
hardware, there now exist several libraries and projects for the Arduino microcontroller,
which facilitate the shift of embedded control logic from the microcontroller hardware to a
Node.js server [M, Ped, Wal]. SCION could thus potentially be used with such a framework
to control embedded applications.

A final domain to which SCION may be applied is game development. It has been shown
that Statecharts may be productively applied to game development [MB], and ECMAScript is
currently used as a scripting language in several existing game engines, including the popular
Unity3D engine [uni]. SCION could thus potentially be used as an embedded Statecharts
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controller in such game engines, or in the development of browser-based games based on
technologies such as HTML5 Canvas.
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