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Abstract

The use of models becomes increasingly important, especially for the develop-

ment of large complex software systems. These (meta-)models can be defined in

both a graphically or textually way. Each modelling tool has its own features,

advantages and disadvantages. The aim of this thesis concerns the development

of a Human-Usable Textual Notation (HUTN) for ArkM3. ArkM3 is an exe-

cutable meta-meta-model of AToMPM, which is the successor of AToM3. The

HUTN supports deep meta-modelling (multiple meta-levels) and provides the

syntax to define models in terms of classes, associations, actions and constraints.

This textual modelling language is a neutral and independent language. This

means that the basic syntax of the language does not allow other language snip-

pets. The HUTN has its own syntax, which could be extended or modified by

defining new grammar rules. In this way HUTN is extensible and gives the user

an opportunity to define domain specific languages.
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0. Introduction

In software engineering, the use of models becomes increasingly important,

especially for the development of large complex software systems. Some of the

advantages of using models are for instance: analysis of a system or code gener-

ation. Another technique is model transformations. Models are also very useful

as documentation of a system. Thus there are many occasions where models

are used. Today, users can define their own models (and metamodels) both

graphically and textually using different tools. Examples of graphical tools are

MetaEdit+ [1] and AToM3 [2]. In a graphical tool, such as AToM3, it is not

only possible to draw models that conform to a particular meta-model. Users

can also perform transformations on these models. On the other hand there are

textual modelling tools e.g., metaDepth [3] and Kermeta [4], which have other

advantages.

Krahn et al. [5] denoted several benefits of using a textual language instead

of graphical language. Some of these textual language advantages are:

• Information content: graphical languages usually need more space (on

your screen or a sheet of paper), than textual languages to display models;

• Description of constraints: actions and constraints on models are very

hard or even impossible to describe graphically. Almost every graphical

model contains textual snippets to describe, for instance, boolean expres-

sions;

• Platform and tool independency: graphical language users have to

draw models in the respective tool. They cannot modify or read the model

without that particular graphical tool. Textual language users can modify

and read their text in any text editor.

The advantages for the developer are for example the use of existing editors. He

does not have to write a whole new editor, but can write a plug-in for Eclipse for

his new textual language for highlighting en code completion. Krahn et al. [5]

also suggested that speed of creation of textual models is superior to graphical

models, but this is not always the case (using a specific meta-model tool). For

example, drawing a petri net model in a petri net tool is faster than writing

it textually. Graphical models are also useful to get a first impression. But a

textual modelling language is a good alternative to graphical languages.

The aim of this thesis concerns the development of a textual modelling lan-

guage for ArkM31 or in other words the development of a human textual nota-

tion (HUTN) for ArkM3. ArkM3 is described in the thesis of Xiaoxi Dong [6]

1ArkM3 = AToMPM reusable kernel Meta-MetaModel
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as the meta-meta-model used in the AToMPM project, the successor of AToM3.

Using this textual notation for ArkM3, users can create meta-models in terms of

classes and associations. Subsequently users can define actions and constraints

on these models.

This thesis is divided in three parts. The first part consists of related work.

The second part explains the ArkM3 design and describes the various modifica-

tions that has been made. The third part defines the syntax and implementation

of the HUTN.
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Part I

Related Work
1. Compiler-Compiler comparison

Developing a textual notation, implies the need for a compiler or parser

which is capable of interpreting our notation. Today there are several tools or

modules which facilitate this task. The most important type of these tools are

compiler-compilers (or parser generators). The selection of the right compiler-

compiler for this thesis depends on the conclusion of the paper: Compiler-

Compiler Comparison with Python Support [7]. In this report various compiler-

compilers were compared. The generation of Python is a requirement, because

ArkM3 is also written in Python. This section explains some parsing concepts

and also contains several (modified) abstracts of the comparison report. At

the end, the chosen compiler-compiler (i.e. PLY [8]) will be illustrated. The

complete comparison report can be found in Appendix A.

1.1. Introduction to lexers and parsers

“To translate a program from one language into another, a compiler

must first pull it apart and understand its structure and meaning,

then put it together in a different way.”

Andrew W. Appel (Lexical Analysis) [9]

A compiler usually consists of a lexer and parser. The role of the lexer is to

read the input characters of the source and break this stream of characters into

tokens (i.e. tokenize). Ulman et al. [10] used three distinct terms to describe

the process of tokenization:

• A token consists of a token name and an optional attribute value. The

name of the token is an abstract symbol representing a kind of lexical unit

(e.g. keyword, identifier) and these token names are used as the input

symbols for the parser;

• A pattern is a description of the form that lexemes of a token may take;

• A lexeme is a sequence of characters in the source program that matches

the pattern for a token and is identified by the lexer as an instance of that

token.

Suppose there is an expression total = 4 + 8.2 and our lexer has the

following lexer rules:

1 Identifier = "[a-zA-Z]"
2 AssignmentOperator = "="
3 PlusOperator = "+"
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4 Integer = "\d+"
5 Real = "\d*\.\d+"

On the left-hand side the token names are defined and the right-hand side

consists of regular expressions which define the pattern of our token. When the

lexer takes the previous expression as input, then the following token stream

will be generated:

1 Identifier AssignmentOperator Integer PlusOperator Real

These tokens correspond to certain lexemes of the input stream, namely:

• Identifier corresponds to total;

• AssignmentOperator corresponds to =;

• Integer corresponds to 4;

• PlusOperator corresponds to +;

• Real corresponds to 8.2.

The generated token stream of the lexer is the input for a parser, which has

mainly two functions:

1. conformance checking : it checks if the token stream conforms to the defi-

nition of the language (i.e. the syntax);

2. building a parse tree: this tree represents the syntactic structure of a token

stream.

The syntax of a language is described using a grammar which defines the struc-

ture of the language by means of grammar rules (i.e. productions). A grammar

supporting the structure of previous expression (total = 4 + 8) can be of

the form:

1 assignment -> Identifier AssignmentOperator expr
2 expr -> number PlusOperator number
3 number -> Integer | Real

This example provides three productions: assignment, expr and number.

A production starts with the name of the production on the left-hand side (e.g.

assignment). The right-hand side is the specification of the production, which

has zero or more terminals and/or non-terminals. A terminal refers to a token

type (e.g. Identifier) and a non-terminal refers to a production rule that

has the same name (e.g. number).

1.1.1. Tree Construction

A parser uses these grammars and his productions to perform conformance

checking and to build up a parse tree (see Figure 1). The parse tree could be

seen as the path of the parser through the grammar (in-order traversal).

9



expr

PlusOperatornumber number

Integer Real

AssignmentOperator

assignment

Identifier expr

Figure 1: Parse tree for total = 4 + 8.2 using the previous grammar
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Integer Real

assignment

Identifier plus

Figure 2: AST for total = 4 + 8.2 using the previous grammar

As mentioned in the previous paragraph a parser generates a parse tree or

in other words a syntax tree (because it represents the syntax). There are

two kinds of syntax trees, namely a concrete syntax tree (CST) and an abstract

syntax tree (AST). A CST is a normal parse tree that conforms exactly with the

syntactic structure of the grammar. An AST is more an abstract representation

of the syntactic structure, i.e. it does not represent every detail that appears

in the real syntax. Figure 1 is the CST for the expression total = 4 + 8.2
and Figure 2 is the AST.

1.1.2. Types of Parsers

There are essentially two types of parsing[11]:

Top-down parsers

Top-down parsers generate a parse tree by starting at the root of the tree

(the start symbol), expanding the tree by applying productions in a depth-first

manner. A top-down parse corresponds to a pre-order traversal of the parse

tree. The weakness of top-down parsing is its predictiveness, since parsers have

to predict the production that is to be matched. LL parsers are examples of

top-down parsers. The L stands for ”Left to right” as the parser reads the

input from left to right and the L stands for Leftmost derivation, this means

the leftmost non-terminal2 is always derived. An example of a LL parser is

ANTLR [12];

Bottom-up parsers

Bottom-up parsers generate a parse tree by starting at the tree’s leaves and

working toward its root. This technique is more powerful because the predictive-

ness is eliminated. These parsers only select a production if the entire right-hand

2Terminal symbols describe the input, while nonterminal symbols describe the tree struc-
ture behind the input.
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side matches. A bottom-up parse corresponds to a post-order traversal of the

parse tree. The most common bottom-up parsers are the shift-reduce parsers.

The parser shifts symbols on to the parse stack and reduces a string of symbols

located at the top of the stack to one of the grammar’s non-terminals. The

following example3, in Listing 1 and Listing 2, explains the shift and reduce

actions.

Listing 1: Sentence Grammar

1 Sentence := NounPhrase VerbPhrase
2 NounPhrase := Art Noun
3 VerbPhrase := Verb | Adverb Verb
4 Art := ’the’ | ’a’
5 Verb := ’jumps’ | ’sings’
6 Noun := ’dog’ | ’cat’

Listing 2: Bottom-up parsing using shift and reduce on input: ”the dog jumps”

1 Stack Input Sequence
2 () (the dog jumps)
3 (the) (dog jumps) SHIFT word on to stack
4 (Art) (dog jumps) REDUCE using grammar

rule
5 (Art dog) (jumps) SHIFT..
6 (Art Noun) (jumps) REDUCE..
7 (NounPhrase) (jumps) REDUCE
8 (NounPhrase jumps) () SHIFT
9 (NounPhrase Verb) () REDUCE
10 (NounPhrase VerbPhrase)() REDUCE
11 (Sentence) () SUCCESS

LR parsers are examples of bottom-up parsers. The L stands for ”Left to

right” as the parser reads the input from left to right and the R stands for

Rightmost derivation, this means the rightmost nonterminal is always derived.

There are different types of LR parsers[11]:

• SLR parsers or Simple LR parsers have the simplest implementation.

They do not have to scan through the possible reductions, because there

is at most one reduction. Python Lex-Yacc [8] supports SLR grammars;

• LALR parsers are the intermediate form. They have smaller parse tables,

because they reduce the amount of reductions. LALR parsers can handle

more languages than SLR parsers and they are very efficient. Examples

of LALR parsers are the GOLD Parser [13] and PLY [8];

• LR parsers are the most powerful parsers. They can parse a larger set of

languages compared with LALR and SLR, however they have much bigger

3Example adapted from http://en.wikipedia.org/wiki/Bottom-up parsing
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parse tables which results in low efficiency. An example of a LR parser is

Wisent [14].

Top-down (LL) vs. Bottom-up (LR)

A big difference between LL and LR grammars is that an LL grammar

requires:

• eliminating left recursion: LL can’t handle left recursion, because it

will recurse forever due to the leftmost derivation;

Listing 3: Expression grammar using left recursion

1 Expr := Expr + Number
2 | Expr - Number
3 | Number

Listing 4: Expression grammar without left recursion

1 Expr := Number Expr_2
2 Expr_2 := + Number Expr_2? | - Number Expr_2?

• factoring common prefixes: this is required when two or more grammar

rule choices share a common prefix string. This is necessary because LL

parsing requires selecting an alternative based on a fixed number of input

tokens. The if-then-else-grammar is a famous example that shares a

common prefix string.

Listing 5: if-then-else grammar

1 S := if expr then S else S
2 | if expr then S
3 | other

Listing 6: The left-factored form of the if-then-else grammar

1 S := if expr then S E | other
2 E := (else S)?

LR parsing can handle a larger range of languages than LL parsing. Figure 3

shows the expressiveness of the several grammar classes. The number (0,1,k)

between parentheses denotes the lookahead. This is the amount of tokens that

the parser can look ahead at the next tokens in order to decide what to do.

1.2. Compiler-Compiler

Writing a compiler from scratch is a lot of work, because the programmer

has to write the grammar and the code for the parser and lexer. We can address

this problem by using compiler-compilers. These tools use a formal language

description to generate a compiler. In this description the user defines the tokens

and productions. In this way, we do not have to write the basic code for the

13



Figure 3: A hierarchy of grammar classes[9]

parser and lexer. The most common form of a compiler-compiler is a parser

generator. The output of a parser generator is the source code of the parser

(and lexer). The input is a formal description that is defined in a grammar.

The generated parser is able to parse an input file according to the syntax

defined in the grammar. A schematic overview can be found in Figure 4.

1.2.1. Island Grammars

Certain compiler-compilers support the concept of island grammars. An

island grammar is used to parse a part of an input stream using an alternative

grammar (by invoking another parser). For instance, a HTML parser is used to

parse HTML documents which conform to its HTML grammar. If this HTML

parser encounters a PHP expression within the HTML document. It invokes a

PHP parser, which parses this PHP expression using its PHP grammar. This

example descibes a PHP island grammar.

The island grammar concept has a lot of advantages. The first one is sepa-

ration of concerns. There are two grammar files that are responsible for their

own expressions, i.e. HTML and PHP expression. Two smaller grammer files

instead of one (big) grammar file not only improves the readibility, it is also

more efficient and faster. The number of grammer rules of the parser are re-

duced, which implies smaller parser tables. Another advantage is the reuse of

the parsers. They could be used as a standalone parser or in other parsers

and/or projects.

14



compiler-
compiler

grammar generated
parser

input file

parse tree

Figure 4: Schematic overview of a parser generator

1.2.2. PLY: Python Lex-Yacc

An example of a parser generator is PLY [8]. Python-Lex-Yacc is a Python

implementation of the popular parser generator lex and yacc. PLY consists of

two seperate modules, lex.py and yacc.py.

The lexer

The lex module is the lexer, which uses regular expressions to define the

different patterns to match tokens. This module will produce a sequence of

LexTokens t, where t.type conforms to the token name and t.value to

the lexeme. There are two ways of specifying the patterns of tokens. For simple

tokens the regular expression is defined in a string variable. But if some kind

of action needs to be performed, then a token rule can be defined as a function

where the documentation string contains the regular expression (i.e. the pattern

of the token), see Listing 7. The name (without the prefix t ) of tokens defined

in a string variable should conform to a name in the token list. This is similar

for function-defined tokens, except that the user is able to change token name

by assigning a new value to t.type.

The parser

The parser is defined using the yacc module. Each parser rule is specified

as a function and prefixed with p . The first function is the start symbol of

the grammar and in each function the docstring contains the specification of

the rule. If the abstract in Listing 8 was the complete grammar, then the start

symbol would be expression and three grammar rules are reachable for this

start symbol, i.e. the plus, minus and term expression. The statements after

the docstring are the actions of that rule. The argument p is a tuple containing

the values of each symbol in the rule, see Listing 8.
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Listing 7: Abstract of a lexer in PLY

1 # List of token names. This is always required
2 tokens = (
3 ’NUMBER’,
4 ’PLUS’,
5 ’MINUS’,
6 ’MULT’,
7 ’DIV’,
8 )
9

10 # lexer rules for simple tokens
11 t_PLUS = r’\+’
12 t_MINUS = r’-’
13 t_MULT = r’\*’
14 t_DIV = r’/’
15

16 # lexer rule with some action code
17 def t_NUMBER(t):
18 r’\d+’
19 t.value = int(t.value)
20 return t

1.3. Conclusion of Comparison Report

The comparison report compares three compiler-compilers in detail, namely

SableCC3 [15], ANTLRv3 [16] and PLY [8]. The conclusion of the report is

that PLY is chosen in favor of ANTLRv3 and SableCC3. Good support for

both Python and island grammars made the difference. Table 5 provides a

good overview of the conclusion.
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Listing 8: Abstract of parser in PLY

1 def p_expression_plus(p):
2 ’expression : expression PLUS term’
3 # ˆ ˆ ˆ ˆ
4 # p[0] p[1] p[2] p[3]
5

6 def p_expression_minus(p):
7 ’expression : expression MINUS term’
8 p[0] = p[1] - p[3]
9

10 def p_expression_term(p):
11 ’expression : term’
12 p[0] = p[1]
13

14 def p_term_times(p):
15 ’term : term MULT factor’
16 p[0] = p[1] * p[3]
17

18 def p_term_div(p):
19 ’term : term DIV factor’
20 p[0] = p[1] / p[3]
21

22 def p_term_factor(p):
23 ’term : factor’
24 p[0] = p[1]
25

26 def p_factor(p):
27 ’factor : NUMBER’
28 p[0] = p[1]

17



SableCC3 ANTLRv3 PLY

Python support ++ ++++ +++++
(unstable) (stable) (Python library)

Tree construction +++ +++++ +
(rewrite rules) (rewrite rules, opera-

tors)
(create own tree)

Visitor pattern +++++ ++ +
(extended visitor pat-
tern)

(create own visitor) (create own visitor)

Elegance +++ +++ +++
(walkers, separation
action vs. grammar)

(grammar actions, tree
grammars, predicates)

(precedence rules, en-
capsulation, parser li-
brary)

Tools + +++ ++
(Python tools) (ANTLRWorks) (debugger, Python

tools)

Documentation + +++++ +++
(no Python documen-
tation)

(internet,books) (internet)

Island Grammars ++++ +++ +++++
(lexer states) (it is possible, but

dirty)
(lexer state, call other
parser class)

Scalability +++ +++ ++++
LALR(1) LL(k) LALR(1)

Figure 5: Conclusion Compiler-Compiler Comparison
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2. Textual Meta-Modelling

This section will handle existing textual meta modelling tools and languages.

2.1. Epsilon Object Language

The Epsilon Object Language or EOL [17] is one of the modelling lan-

guages provided by Epsilon4 [18]. EOL is meta-model independent and builds

on OCL5 [19], which is a query and constraint language for MOF models like

UML [20]. OCL is widely used in different model management tools, but it has

some limitations [21], inter alia:

• OCL does not support CRUD operations on models (except read), there-

fore the modification of models is impossible;

• No support for statement sequencing, leading to complex statements which

are hard to understand;

• Only one single model accessible concurrently.

The aim of EOL is to overcome the limitations of OCL. Statement sequencing

is supported by separating the different statements using the “;” symbol and

grouping of statements is achieved using the “{” and “}” delimiters. Another

issue of OCL is its meta-model dependency, because it is only compatible with

MOF models. EOL is not bound to a specific meta-model and is able to manage

models from various technologies (MOF, EMF and UML). It adresses the need

for a common infrastructure for model management by providing three key

facilities:

1. Navigation of models, e.g. query operations like OCL;

2. Modification of models, e.g. adding an element to an existing model;

3. Accesing multiple models at the same time, which implies the user is

able to define operations between multiple models (e.g. transformation,

merging, etc.).

2.1.1. User-Defined Operations

There are two ways of defining operations in EOL, viz. context and context-

less operations. In the first case, the context-type of an operation is explicitly

specified. The advantage of context-typed operations is that it is possible to call

this operations on instances of the type as if the operation was defined in the

corresponding type. An example of an operation on a context-type is given in

Listing 9. On the contrary, there are context-less operations. These operations

are less readable and the context is given via arguments, see Listing 10 for an

example.

4Epsilon = Extensible Platform of Integrated Languages for mOdel maNagement
5OCL = Object Constrain Language
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Listing 9: Context-Defined Operation [17]

1 1.add1().add2().println();
2

3 operation Integer add1() : Integer {
4 return self + 1;
5 }
6

7 operation Integer add2() : Integer {
8 return self + 2;
9 }

Listing 10: Context-Less Operation [17]

1 add2(add1(1)).println();
2

3 operation add1(base : Integer) : Integer {
4 return base + 1;
5 }
6

7 operation add2(base : Integer) : Integer {
8 return base + 2;
9 }

Operations in EOL support three annotations of which two are executable

and another simple annotation. The two executable annotations are pre and

post: these annotations are used to define the resp. pre- and post-conditions

of the current operation. The last and simple annotation is the cached anno-

tation, which is used for parameter-less operations. When the cached notation

is specified, the body of the operation will only be called once and the result

of this operation will be cached. All successive calls use the cache to get the

result of the operation. An example of pre- and post-conditions can be found

in Listing 11, whereas an example of the cached annotation is illustrated in

Listing 12. This example illustrate an implementation of Fibonacci numbers

in EOL. When the cached annotation is specified, the body operation is called

only 16 times (from Integer 0 to 15). Without caching the body would be

called 1973 times.

2.1.2. Types

The type system of EOL is inspired by the OCL types. An overview can

be found in Figure 6. Any type is the superclass of all types and conforms

to the OclAny type in OCL. EOL types can be divided in four categories:
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Listing 11: Pre- and post-conditions [17]

1 1.add(2);
2 1.add(-1);
3

4 $pre i > 0
5 $post _result > self
6 operation Integer add(i : Integer) : Integer {
7 return self + i;
8 }

Listing 12: Cached annotation for parameter-less operations [17]

1 15.fibonacci().println();
2

3 @cached
4 operation Integer fibonacci() : Integer {
5 if (self = 1 or self = 0) {
6 return 1;
7 }
8 else {
9 return (self-1).fibonacci() + (self-2).fibonacci();
10 }
11 }

• Primitive types, i.e. String, Integer, Real and Boolean;

• Collection types and Map type, i.e. Sequence, Bag, Set, OrderedSet
and Map;

• Native types;

• Model element types.

The table below gives an overview of the collection types.

Type Ordered Unique

Bag no no

Set no yes

Sequence yes no

OrderedSet yes yes

2.1.3. Native Typing

Native Typing is the provision for a user to create objects of the underlying

programming environment. This useful for users who need to implement fun-

tionality that is not supported in EOL. For instance, in a Java implementation
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Figure 6: Type system of EOL from [17]

of EOL, users can create instances of existing Java classes via its identifier. The

implementation attribute in the Native type class contains this identifier.

An example of a native type is given in Listing 13.

Listing 13: Native type for the java.io.File class

1 var file = new Native("java.io.File")("myfile.txt");
2 file.absolutePath.println();

The fourth category is Model Element Types. These types are used to access

specific types of a model. The textual syntax for model element types is per-

formed via the ! operator. For instance, UML!Class will return the Class
type in the UML model. If there are conflicting type names, then users are able

to define the absolute path separated by a :: symbol. For example, the full

path for the same UML class is UML!Foundation::Core::Class.

2.1.4. Type Operations

Users of EOL can perform built-in operations on all instances of these types.

For instance, it is possible to get all instances of a certain Model Element Type

by calling the operation allInstances(). For example UML!Class.allInstances();
returns a set that contains all elements of type Class. Each type in EOL has its

own operations and all these operations are described in the Epsilon Book [17].

Because all types inherit from Any type, they all have the operations of Any
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type. For example, the operation isTypeOf(type : Type) which returns

true if the current object is of the given type.

2.1.5. Expressions and Statements

In order to navigate properties of the various models and invoke operations

on them, the same operator as in OCL is used: . or ->. Arithmetical operators

(i.e. +, -, * and /), comparison operators (=, <>, >, >, <= and >=) and logical

operators (and, or, not, implies and xor) are also supported.

Declaration of variables is done by using the keyword var and users are able

to explicitly type the variable. If no type is specified, the type of the variable

is assumed to be of Any type. In case of non-primitive types, the initial value

of the variable must be specified. The default value for primitive types like

Integer, Boolean, String and Real are equal to respectively 0, false, ”” and 0.0.

An example is given in Listing 14

Listing 14: Variable declarations

1 var i : Integer = 5;
2 var c : new UML!Class;
3 var s : String = ‘‘hello world’’
4 var s2 : String

The statements in EOL are the one which are available in the most other

classical programming languages. EOL provides following statements: if-else,

switch, case, while, for, break, breakAll, continue and a throw statement. A

breakAll; statement is used to break out of all loops (while and for). A

throw statement is useful if a user wants to throw a exception (e.g. Java Excep-

tion) and afterwards catch this exception in his Java program. Another aspect

that should be mentioned is the fact that there are two built-in loop variables

hasMore and loopCount. These variables are accessible in each loop. The

former hasMore variable is a boolean which defines if there are more elements

in the current collection that will be executed in the loop. Variable loopCount
is an integer used to count the number of loops and is set to one before the loop

starts. Each iteration loopCount is incremented by one. Listing 15 is an

example which contains various statements.

2.1.6. Constraints

It is possible to define constraints on existing models using EOL in terms of

operations, but it does not provide textual syntax for contexts and invariants like

in OCL. The Epsilon language responsible for this part is the Epsilon Validation

Language[22], which is built atop of EOL. EVL is one of the seven task-specific

languages that are provided by Epsilon.
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Listing 15: Various statements in EOL

1 for (i in Sequence{1..10}){
2 if (i = 1){ continue; }
3 switch (i) {
4 case "1" : "1".println();
5 case "2" : "2".println();
6 case default : "default".println();
7 }
8 if (loopCount = 6){
9 break;
10 }
11 }

2.2. metaDepth

The Meta-Object Facility [23] is seen as the standard framework for the

creation of models and meta-models. The MOF standard has been adapted

by several tools and frameworks and the most known framework is the Eclipse

Modelling Framework [24]. One of the characteristics is that MOF is designed

as a four-layered architecture, where each element in a layer is an instance of

one element at the above layer. This approach implies limitations, because there

is only one instance-of relationship between two successive layers (meta-levels).

metaDepth [3], another meta-modelling framework, addresses this problem by

permitting an arbitrary number of meta-levels, i.e. deep meta-modelling.

2.2.1. Deep Meta-Modelling

In [25] an example is given where three meta-levels are squeezed into two

meta-levels when deep meta-modelling is not applied. The example considers

the type object pattern [26] which defines that a type of an object should also

be an object. The given example contains Products and ProductTypes. In a

two-level meta-model the classes Product and ProductType are defined in

the upper meta-level. Whereas the instances of these classes, resp. Book and

mobyDick, are located in the lower meta-level, see Figure 7. This solution

has two drawbacks. First of all the user has to manually maintain the links

between Product and ProductType. Secondly the user just want to create

a ProductType instance like Book or CD, but now he also has to define the

artificial instance Product. The three-level meta-model approach solves these

two problems. There are no links to maintain and there is artificial Product
instance, instead there are only Book and CD instances available.

2.2.2. Potency

Note that the figure of the deep meta-modelling approach presents an @
followed by a number. This indicates the potency value on an element (model,

class or attribute). Potency is used to control indirect instances in two or
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Figure 7: Classical vs. Deep Meta-Modelling [3]

more meta-levels below. For each meta-level downwards, the potency value will

decrease by one. If a potency value is greater or equal to zero, the corresponding

entity can be instantiated.

2.2.3. Linguistic vs. Ontological

Another remark in the previous example is that the middle meta-level have

both class and object facets, i.e. a Book is an instance of ProductType and can

be instantiated (e.g. mobyDick) in the lower meta-level. Because the element is

not only a class but also an object, the term clabject was introduced. Elements

of the different meta-levels are all linguistic instances of clabject, whereas the

elements within the domain (e.g. mobyDick is a Book) define the ontological

instantiation, see Figure 8.

2.2.4. Textual syntax

There is a textual syntax for building models, and the metaDepth framework

is also integrated with Epsilon. Due to this integration, the user can describe

actions and constraints using EOL [17] (or Java) expressions. Constraints can

be specified inside or outside a clabject and is always surrounded by two $
symbols: minVat and minPrice are examples of constraints in Listing 16.

Actions are defined by entering the EOL execution mode of metaDepth, see

Listing 17. Listing 16 provides the textual syntax of Figure 7. Store has a

potency of 2, which means it can instantiated in the subsequently two meta-

levels. All elements inside Store have the same potency 2 as his container

Store, except VAT has a potency equal to 1. ProductType has also two

constraints (i.e. minVat and minPrice).

2.2.5. Strict vs. Extensible Meta-Modelling

metaDepth can work in two ontological instantiation modes, viz. strict and

extensible. The strict case is the classic meta-modelling, where the (above)
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Figure 8: Linguistic vs. Ontological instantiation [3]

meta-model defines all the language properties for the model (i.e. the instance

of the meta-model). It is not possible to add new elements or types to the instan-

tiation. In other words: an instance conforms strictly to his meta-model. Strict

elements are marked with the strict keyword. The extensible case provides

the possibility to extend an instance with new elements or types. Extensible

elements are marked with the ext keyword. If no keyword is defined, the ele-

ment is extensible. An example using these keywords is given in Listing 18 and

Listing 19.
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Listing 16: Textual syntax for ProductType example [3]

1 Model Store@2 {
2 Node ProductType {
3 VAT@1 : double = 7.5;
4 price : double = 10;
5 minVat@1 : $self.VAT>0$
6 minPrice@2 : $self.price>0$
7 }
8 }
9 Store Library{
10 ProductType Book { VAT = 7; }
11 }
12 Library MyLibrary{
13 Book mobyDick { price = 10;}
14 }

Listing 17: EOL action generating 2000 books [27]

1 # EOL
2 for (i in Sequence{1..2000}) {
3 var b : new Book;
4 b.println();
5 }
6 #

2.3. Kermeta

Kermeta could be seen as an extension of the EMOF standard [23] (cf.

Arkm3 Object Package is also based on the EMOF standard). It adds con-

straints and operational semantics (actions) to the standard. Analogous to

ArkM3, actions and constraints are added to the classes in Kermeta. Kermeta

is used within and dependent on the Eclipse6 environment and the minimum

requirement is Eclipse 3.6.x, which means Kermeta is editor-dependent.

Kermeta is aspect-oriented. The aspect-oriented paradigm aims to increase the

modularity of a system by separating funtional units (aspects). The require
operator in Kermeta is a key feature for supporting aspect-oriented design. This

operator allows extension of a metamodel in sense of properties, operations, con-

straints and even the addition of new classes. Using the require operator it

is possible to import different operational semantics from different functional

units.

Another nice feature of the require operator is that it can be used to im-

6Eclipse: http://www.eclipse.org/
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Listing 18: A meta-model for class and object diagrams [3]

1 strict Model ClassDiagram@2 {
2 ext Node Class{
3 isAbstract@1 : boolean = false;
4 in : Class[*];
5 out : Class[*];
6 noAbsObjects : $self.isAbstract=false$
7 }
8 ext Edge Assoc(Class.out,Class.in);
9 }

Listing 19: A class and object diagram [3]

1 ClassDiagram Zoo {
2 Class Person {
3 name : String {id};
4 pet : Animal[*] {out};
5 }
6 Class Animal {
7 kind : String {id};
8 owner : Person[1..*] {in};
9 }
10 Assoc hasPet (Person.pet, Animal.owner) {
11 since : int;
12 }
13 }
14 Zoo myZoo {
15 Person p{ name = "Juan"; }
16 Animal a{ kind = "monkey"; }
17 hasPet(p,a){since = 2010;}
18 }
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port metamodels. For instance, a user can graphically create a metamodel

using the Eclipse Modelling Framework [24], thereafter he can import his cre-

ated ecore metamodel in his Kermeta program. This exploits the advantages

of both graphical and textual models. Besides importing Ecore files, it is also

possible to import OCL [19] constraints.

Jézéquel et al. [28] illustrated the use of the require operator in Kermeta.

They build an integrated environment for the Logo language. This language is

used to navigate a virtual turtle on a board that draws figures when its pen is

down7. The following example is taken from the paper of Jézéquel et al. [28].

Listing 20 shows an example of a Logo program. Figure 9 on page 30 shows the

metamodel of the Logo language developed in the Eclipse modelling Framework.

Listing 21 is the OCL file that defines a constraint on the ProcCall class and a

constraint on the ProcDeclaration class. Listing 22 is the Kermeta program

that includes the Ecore metamodel and the OCL constraints on that model.

As mentioned before, there is an alternative way. Both the metamodel and

the contraints can also be defined in Kermeta. The metamodel in Kermeta for

the corresponding Ecore metamodel can be found in Appendix B.1 and the

constraints in Kermeta corresponding to the OCL constraints can be found in

Appendix B.2.

Listing 20: Logo square program [28]

1 # definition of the square procedure
2 TO square :size
3 REPEAT 4 [
4 FORWARD :size
5 RIGHT 90
6 ]
7 END
8

9 #clear screen
10 CLEAR
11

12 #draw a square
13 PENDOWN
14 squar(50)
15 PENUP

Listing 21: OCL constraint on the Logo meta-model (StaticSemantics.ocl) [28]

1 package kmLogo::ASM
2

7Logo language on wikipedia: http://en.wikipedia.org/wiki/Logo_
(programming_language)
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Figure 9: Logo metamodel using Ecore (ASMLogo.ecore) [28]
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3 context ProcCall
4 inv same_number_of_formals_and_actuals :
5 actualArgs->size() = declaration.args->size()
6

7 context ProcDeclaration
8 inv unique_names_for_formal_arguments :
9 args->forAll(a1, a2 | a1.name = a2.name implies a1 = a2)
10

11 endpackage

Listing 22: Excerpt of the Kermeta program [28]

1 package kmLogo;
2 require "ASMLogo.ecore"
3 require "StaticSemantics.ocl"
4 [..]
5 class Main {
6 operation Main(): Void is do
7 // load a Logo program and check constraints on it
8 // then run it
9 end
10 }

The previous example shows how static semantics, like the metamodel and his

constraints, are handled. Moving on to operational semantics, firstly the run-

time model and its operations have to be created. Secondly the operational

semantics of the Logo language have to be defined and finally the interpreter

has to be implemented. The logo runtime metamodel is in this case a Turtle

that can move and draw figures when his pen is down. The metamodel is defined

in Figure 10. This metamodel is imported in a Kermeta file (LogoVMSeman-

tics.kmt) to implement operations like rotate, see Listing 23. Next we need to

attach this to Logo language, i.e. bind the abstract syntax of the Logo language

to the operations of the runtime model. For example when a Logo language user

writes the command FORWARD, the turtle has to move forward. An excerpt of

the operational Logo semantics is described in Listing 24. Each statement has

an operation eval which performs the appropriate actions. Lastly the inter-

preter uses this eval command to start the execution of the Logo program.

This file imports four files:

1. ASMLogo.ecore is the metamodel of the Logo language;

2. StaticSemantics.ocl are the constraints on this metamodel written in OCL;

3. LogoVMSemantics.kmt is the Kermeta file that requires VMLogo.ecore,

which is the runtime metamodel (Turtle), and the operations defined for

this metamodel;

4. OperationalSemantics.kmt are operational semantics on the Logo lan-

guage.
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An excerpt of this file can be found in Listing 25, more details about this example

and further information about Kermeta can be found in the paper Model Driven

Language Engineering with Kermeta [28]. The characteristics of Kermeta are

mainly the weaving of semantics into metamodels. Metamodels can be defined

in Ecore or Kermeta. Static semantics can be defined in OCL or Kermeta. OCL

support is implemented with model transformation from the AST of OCL to

the AST of Kermeta. Operational semantics are defined in Kermeta.

Figure 10: Logo runtime metamodel (VMLogo.ecore) [28]

Listing 23: Excerpt of the runtime model operations in Kermeta (LogoVMSemantics.kmt)
[28]

1 package kmLogo;
2 require "VMLogo.ecore"
3 [..]
4 package VM{
5 aspect class Turtle{
6 operation rotate(angle : Integer) is do
7 heading := (heading + angle).mod(360)
8 end
9 }
10 [..]
11 }

Listing 24: Excerpt of the Logo operational semantics (OperationalSemantics.kmt) [28]

1 package kmLogo;
2 require "ASMLogo.ecore"
3 require "LogoVMSemantics.kmt"
4 [..]
5 package ASM{
6 aspect class Forward{
7 method eval(context : Context): Integer is do
8 context.turtle.forward(steps.eval(context))
9 result := voidtype
10 end
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11 }
12 aspect class PenDown{
13 method eval(context : Context): Integer is do
14 context.turtle.setPenUp(false)
15 result := voidtype
16 end
17 }
18 [...]
19 }

Listing 25: Excerpt of the Logo interpreter [28]

1 package kmLogo;
2 require "ASMLogo.ecore"
3 require "StaticSemantics.ocl"
4 require "LogoVMSemantics.kmt"
5 require "OperationalSemantics.kmt"
6 [..]
7 class Main {
8 operation Main(): Void is do
9 var rep : EMFRepository init EMFRepository.new
10 var logoProgram : ASMLogo :: Block
11 // load logoProgram from its XMI file
12 logoProgram ?= rep.getResource("Square.xmi").one
13 // Create a new Context containing the Logo VM
14 var context : LogoVMSemantics::Context init LogoVMSemantics

::Context.new
15 // now execute the logoProgram
16 logoProgram.eval(context)
17 end
18 end

2.4. Conclusion of Textual Meta-Modelling Tools

EOL allows CRUD operations on models and complete the shortcomings of

OCL. One of its features are user-defined operations, which could be context-

typed (Listing 9) or context-less (Listing 10). A context-typed operation can

be seen as attaching a method on a certain context or model. This is similar

like in Kermeta, where static semantics (constraints) can be defined using OCL

like in EOL. Operational semantics are defined by adding Kermeta operations

to classes in the metamodel. In Kermeta the keyword aspect is used to define

a certain context. The term comes from aspect oriented programming, whereas

the semantics are weaved in to a certain model. metaDepth uses EOL for its

operational semantics and OCL for its constraints. metaDepth also supports po-

tency, to control instantiation of model elements in multiple meta-levels, which

is not supported by EOL or Kermeta. Another feature of metaDepth are Clab-

jects. Each element in a model is a linguistic instance of Clabject.
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Part II

ArkM3 Design
AToMPM [6, 29] (A Tool for Multi-Paradigm Modelling) is modelling environ-

ment under development, where every element is modelled using the appropri-

ate formalism. The metamodel architecture of AToMPM is a two-dimensional

architecture, a logical and physical dimension, as described in Xiaoxi Dong’s

thesis [6], see Figure 11 adapted from [6]. The logical dimension defines the

abstract syntax of models and conforms respectively to the M1, M2 and M3

layer in MOF. The phyisical dimension is the internal representation of the

meta-modelling tool (i.e. Himesis Graph).

Figure 11: AToMPM two-dimensional architecture [6]

ArkM3 is an executable, self-described, general-purposed meta-metamodel

and is the root of the logical dimension of AToMPM. Where AToM3 had the

Entity Relationship formalism as its meta-metamodel, AToMPM has ArkM3.

This part will handle ArkM3 and will point out some changes that have been

made. These adjustments are mainly made by Bart Meyers, Simon Van Mierlo

or Jelle Slowack. The structure of this section corresponds to the structure of

ArkM3 shown in Figure 12, namely the Object Package, the Action Language

Package and the Data Type and Data Value Package.

3. Object Package

The object package is based on the OMG’s standard EMOF [23] and con-

sequently it supports an object-oriented definition of metamodels. Conforming
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to this standard, the object package contains the definitions of elements like

Package, Class, Association and Composition.

3.1. Original Design

Figure 13 describes the original UML diagram of the ArkM3 Object Package.

In ArkM3 everything is a subclass of Element (datavalues, types, constraints,

etc.). The most important characteristic of elements is that they can have ac-

tions and/or constraints. This implies that all elements in ArkM3 can have

actions or constraints. The UML diagram consists of three specific elements,

namely NamedElement, TypedElement and MultiplicityElement. These

classes represent an element consisting of a name, type or multiplicity respec-

tively. Next there is a Package class which can contain multiple elements.

Packages are used to group (related) ArkM3 elements, creating an hierarchy.

The Type class and his subclasses are discussed in section 4. The class Class
inherits from Type and has properties which represent his attributes. Finally

the Composition class is a subclass of Association which is a subclass of

Class and MultiplicityElement. In this way a composition and associa-

tion can have attributes and are able to derive and specialise themselves. The

source and destination of an association corresponds to isFrom and isTo. The

in- and outwards cardinalities of an association are properties.

3.2. Modifications

Figure 14 illustrates the modified UML diagram of the ArkM3 Object Pack-

age. In this paragraph all modifications with respect to the Object package are

listed:

• Only elements of class type ActionableElement can have actions or

constraints. In the original design all elements were allowed to have actions

and constraints;

• A Type is no longer a subclass of NamedElement, because only a custom

type should be a named element. See Section 4;

• Owned elements of a package are no longer instances of type Element.

Instead an element in a package should be a NamedElement. The main

ArkM3

Object
Package

Action
Language
Package

Data Type
and

Data Value
Package

Figure 12: ArkM3 contains three packages
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Figure 13: Original meta-model of Object Package
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Figure 14: New meta-model of Object Package
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reason is that elements within a package can now be referenced. An advan-

tage of allowing only named elements in a package is that these elements

can now be saved in a MappingValue. This increases the performance

for looking up certain elements in a package. Before this modification, one

has to manually loop over the elements to search a particular element;

• The orginal Class is split up in to two classes: Classifier and Clabject.

This is influenced by the clabjects in metaDepth, because the original

Class has both class and object facets. Thus the name Class is not cor-

rect and is replaced by Clabject. Typical class functionality is moved

to the superclass Classifier;

• The concept of a PropertyValue is introduced. Properties define the

type and default value of a property within a clabject. PropertyValues

are the actual values or instances of a particular property. The type of a

PropertyValue should conform to its property. An example of a property

is an integer attribute i in metamodel myInteger which has a default

value 0. In this case the PropertyValue could be the instantiation of that

attribute i (e.g. i=9) in model myIntegerInstance which is an instance

of myInteger ;

• Multiplicities of inCardinality and outCardinality are changed

from 1 to 0..1. The reason for this change is that an abstract association

can have no in- and/or out cardinality.

• As hyperedges are not supported, the multiplicity is adjusted for isTo
from 1..* to 0..1 (lower bound 1 is changed to 0 due to the abstract

association issue described in the previous item).

• An Exception class is added, which is a subclass of Clabject. In this

way, exceptions can have properties, actions and constraints.

4. Data Type and Data Value Package

In order to define actions and constraints, there has to be a notion of values.

In ArkM3 data types and data values are separated (Type Object pattern [26]).

Figure 15 gives an example of an IntegerValue 3.

Figure 15: IntegerValue example from [6]
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4.1. Original Design

This section will focus on the DataType package. The structure of this

package is modified in order to allow a strongly typed language which can

perform static type checking and where a user can write type expressions,

see Section 6.2.1. ArkM3 provides the following primitive types (and values):

IntegerType, BooleanType, StringType, RealType and TupleType.

Besides the primitive types, there are collection types like a SequenceType,

SetType and MappingType. The latter is a map or dictionary. All elements

in a sequence are ordered and not unique, whereas the elements in a set are

unordered and unique. Finally, there is also AnyType which is used when the

type of a value cannot be determined. See Figure 16 for an overview of all the

types in ArkM3.

4.2. Modifications

The original design is modified due to the fact that support for type expres-

sions is added and the strongly typed language should be maintained. A type

expression can define a sequence type which consists of integers. Another type

expression can define a sequence which can consist of floats and strings. A map-

ping type can map an integer to any type. To allow these type expressions, the

design needs to be adjusted. Figure 17 illustrates the modified UML diagram of

the Data Type package. The first adjustment is that AnyType is the superclass

for all data types. The reason for this change is that the AnyType will match

all types and corresponds as the base type like the Any type in EOL or the

OclAny type in OCL. The primitive types remained almost unchanged, except

for the RealType which is renamed to FloatType. Another change is the

TupleType being no primitive anymore, because it can contain multiple val-

ues which, in turn, have a type. Especially for type expressions, a TupleType
must know the various types of its elements in order to check if a certain value

corresponds with the types within the TupleType. Types like a set and a se-

quence only have one base type (e.g. set of integers). Therefore SequenceType
and SetType have the SingleBaseType as a superclass. This class repre-

sents types with only one base type and all elements of sequence or set should

conform to the base type. This base type can be a union of types. For instance,

the base type of a set of integers and strings is a union type which defines the

union of integers and strings. Another collection type is the MappingType
which has a key- and valuetype.

Additionally there was a need for some extra types:

• UnionType provides the user the ability to make a union of types. For

example a sequence which accepts integers and floats;

• CustomType is used for custom type declarations. It links a user-defined

type name to a type expression. For instance the custom type IntFloatList
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Figure 16: Original metamodel of DataType

is a user-defined type, which represents a sequence which can contain

integers and floats. The name of this custom type is IntFloatList and

the type expression is a sequence type, where the base type is a union of

integer and float;

• ImmutableType defines that the value cannot be changed;

• VoidType is used when there is no value (i.e. void);

• TypeReference is used to refer to a model element (like Model Element

Type in EOL). For example a package or a clabject (within a package).

For instance, if there is a Tiger class within a zoo package, then a type

reference is of the form zoo.Tiger. This can be used to create instances

of this clabject Tiger.
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Figure 17: Modified meta-model of DataType
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5. Action Language Package

The Action Language Package is the third package of ArkM3. The aim of

this package is to provide a general-purpose action language. Like EOL is the

action language of metaDepth, the Action Language Package defines the action

language for ArkM3. The (modified) Action Language Package provides three

main elements: constraints, actions and functions. Function are actually actions

that can have parameters and a return value. These elements are all defined

using the HUTN syntax and conform to the ArkM3 design. It is not possible to

import OCL files like in Kermeta or to write OCL constraints like in metaDepth.

The Action Language Package has its own design and syntax to describe the

static and operational semantics.

EOL provides two types of operations: context-less and context-defined.

The Action Language Package supports also user-defined operations that are

functions or actions. These functions or actions can be added to model elements

like, for instance, clabjects or associations. This operations are context-defined.

It is also possible to define operations without a context, i.e. context-less. There

operations are defined in a package.

5.1. Original Design

The package is divided in the following components:

• Action and Constraint: they both have a name and type. An action

represents the operational behaviour of a model, while a constraint checks

the semantics of a model. The latter always returns a boolean value;

• Statements: the possible statements are listed in the table below;

Statement Attributes Implementation

Expressions expr, ... expr traverse the content in order

Conditional expr, stat1, stat2 if expr is true execute stat1 otherwise
stat2.

Loop var, init, term, stat initialise var, execute stat and update
var, iterate until term expression is true

Declaration id, type binds an identifier id to a certain type

Return expr return expr’s value or reference to obj
referred by expr

Table 1: Statements table adapted from [6]
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• Expressions and Operators: an expression can be an identifier, a call

expression or a reference. An operator is a subclass of the Expression
class and following operators are provided:

– Arithmetic operators, like Plus or Minus;

– Boolean operators, like And or Not;

– Type conversion operators, like ToInt or ToBool;

– Comparison operators, like GreaterThan or LessThan;

– Collection operators, like Length or Append;

– Semantic operators, like AllInstance or Filter;

– Model manipulation operators, like Create or Read.

The complete UML diagram for the available operators can be found in

Figure 18.

5.2. Modifications

The single modification within this component is the addition of a Function
class. This class is a subclass of the existing Action class and has some impor-

tant differences compared to actions. The first one is that a function can have

a parameter list. In this way a user can provide arguments and perform action

code on it, but they both have the concept of self if they are not declared

in a package, i.e. context-defined. Secondly, functions have return values. An-

other difference between functions and actions (or constraints), is that functions

are not separately stored in a list like in the ActionableElement attribute

ownedActions. They are stored like clabject attributes, in properties or in

property values:

• A function declaration is stored as an instance of a Property. A func-

tion declaration defines the name of a function together with its parameter

types and return type. The name of the Property instance is the func-

tion name and the type of the property is a MappingType, which maps

the parameter types to the return type. The key type of the MappingType

is a TupleType containing the parameter types (in order). The value type

of the MappingType conforms to the return type;

• On the other hand, the function definition (which defines the body of a

function) is stored in a PropertyValue instance. The name of the

property value is equal to the name of the function. The value of the

property value is a Function instance. The signature of the function

in the PropertyValue conforms to the signature defined in the Property.

This means that parameter type and return type of the the function in

the PropertyValue conforms to the Property according to the Liskov sub-

stitution principle.
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Figure 18: Operators in ArkM3 adapted from [6]
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Note that a function declaration is stored in the same way as an attribute

declaration with type MappingType.
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Part III

HUTN
6. Syntax of HUTN for ArkM3

The Human Usable Textual Notation (HUTN) for ArkM3 is a Python-like

language. We tried to let the syntax resemble Python, e.g. indentation levels

are used to determine scope. In contrast to Python however the HUTN is

statically typed: each variable has a type and it is possible to cast a variable

to another type. This section will demonstrate all the features using various

code examples. The organisation of this section corresponds to the structure

of the ArkM3 Design. First of all there is the Object Language, next the Data

Type and Data Value package is going to be discussed. Finally, the syntax of

the Action Language Package is described.

6.1. Object Language

As discussed in Section II, the object package is based on EMOF. Thereby

the HUTN for ArkM3 consists of concepts like packages, classes, instances and

associations. The basic elements of the Object Language in the HUTN are:

• A package which is used to group model elements together;

• A class;

• An instance, i.e. instance of a class, association, composition, another

instance;

• An association or composition.

A class and instance are clabjects in the ArkM3 design. The distinction between

these two elements is their type. The type of a class is arkm3.object.-
Clabject, whereas the type of an instance is the clabject of its class. For

instance, the class Tiger is a clabject with type arkm3.object.Clabject.

The instance, myTiger is a clabject with type Tiger, which is a clabject.

HUTN (ArkM3) metaDepth

package Model

class/instance Node

association Edge

Table 2: Basic elements: HUTN vs metaDepth
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The table above links the corresponding elements of the HUTN for ArkM3 to

the elements available in metaDepth. ArkM3 also supports an arbitrary num-

ber of meta-levels, because a user can define multiple ontological instances. A

Model and a package differ in some aspects. First of all, a package can contain

other packages (they can be nested). A Model cannot be nested. Second, a

Model represents a metalevel and a package does not. Instances of Model ele-

ments are defined in a metalevel below. Thus a model cannot contain instances

of its elements, this elements can only be instantiated in the model or met-

alevel below. In ArkM3, a package can contain classes and instances of these

classes. The Nodes and Edges of metaDepth conform to the classes/instances

and associations of ArkM3, except that the latter does not support potency.

All elements of the HUTN are defined inside a package. A package is de-

fined using the keyword package followed by the identifier of the package. A

package can contain following elements:

• Another package;

• A class, instance, association or composition;

• An action or constraint;

• A function definition.

Actions are the operational semantics for a particular element. They have a

name and a body (i.e. the action code) which contains statements and expres-

sions. An action is defined using the keyword action followed by its identifier

and a colon :. The action code is written on the next line and is indented to de-

fine a new scope. Constraints are the static semantics for the current element.

Constraints also have a name and a body, the latter should always return a

boolean value. To define a constraint one has to use the constraint keyword

instead of the action keyword.

A class, an instance, a composition or association can contain the fol-

lowing elements:

• An action or constraint;

• An attribute declaration;

• An attribute definition.

Besides actions and constraints, users can declare and define attributes. The

declaration of an attribute specifies a name, a corresponding type and an op-

tional default value. This default value can be an expressions, in this case it is

a derived attribute. A definition will define an attribute by assigning a value to

the definition. In ArkM3, functions are treated in the same way as attributes.

They actually are attributes (i.e. properties), see Section 5.2. A function decla-

ration is an attribute declaration, where the type is a MappingType containing
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the parameter list as key type and the return type of the function as value type

of the map. A function definition is in an attribute definition, where the value

of the attribute is the function definition. An example of a function declaration

and definition is given in Listing ??.

Listing 26: Function declaration and definition

1 # function declaration
2 {int, int : bool} sumIsOdd
3 # function definition
4 sumIsOdd = {int a, int b: bool} :
5 if (a+b) % 2 == 0:
6 return False
7 else:
8 return True

In Listing 27 three classes are defined which reside in a test package. The

Animal class contains an attribute declaration which represents the age of the

animal and has a default value zero. Mammal is defined as an abstract class and

last but not least the Dog class inherits from the Animal and Mammal class

(multiple inheritance). The Dog class consists of an action gettingOlder and

a constraint c. Lassie is an instanceof Dog.

Listing 27: Classes in the HUTN for ArkM3

1 package be.ac.ua.test
2 class Animal
3 int age = 0
4

5 abstract class Mammal
6

7 class Dog(Animal,Mammal)
8 action gettingOlder:
9 if(self.age < 99):
10 self.age = self.age + 1
11 constraint c :
12 return self.age >= 0
13

14 Dog Lassie
15 age = 6

Note that a package statement (e.g.be.ac.ua.test) can be defined in one

line using a . symbol to concatenate sequential package. Another way of

defining a package is to use different scopes (i.e. indentation). In Listing 28 two

alternatives for the previous package statement are given.

Listing 28: Alternative package definitions

1 #alternative 1
2 package be.ac.ua
3 package ua.test
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4

5 #alternative 2
6 package be
7 package ac
8 package ua
9 package test
10 [..]

The last example illustrated the syntax for classes and packages, the next exam-

ple will present the syntax for associations and compositions. The key features

are:

• Actions, constraints and attributes;

• Multiple inheritance;

• Role names;

• Abstract, ordered and unique associations or compositions.

Listing 29 illustrates several associations and compositions. Attributes, ac-

tions and constraints are not illustrated, because their textual syntax is anal-

ogous to definition of attributes, actions and constraints in classes. The op-

tional keywords abstract, unique, ordered should always be written at

the beginning of the line. Multiplicities and role names are optional, as well

as the keywords abstract, unique and ordered. If no role name is spec-

ified from and to will be used for navigation, e.g. PersonGotLegs.from.

Otherwise a role name is defined, then this will be used for navigation, e.g.

DogOwnership.owner. Associations, like the DogOwnerShip association,

can also have a multiplicity, which should be interpreted as a lower and upper

limit for the particular association. Hyperedges are not supported, hence an as-

sociation is always from exactly one class type to another. Figure 19 shows the

corresponding UML diagram for the associations and composition. Note that

inheritance, uniqueness and the multiplicity of the DogOwnerShip association

is not shown in the figure.

Listing 29: Associations in the HUTN for ArkM3

1 package be.ac.ua.test
2 [..]
3 abstract association Ownership
4

5 unique association DogOwnerShip<0..*>(Ownership)
6 owner:from Person<1..1>
7 owned:to Dog<0..*>
8

9 composition PersonGotLegs
10 from Person<1..1>
11 to Leg<0..2>
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1..1

0..4

1..1

0..2
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0..*

Person Dog

Leg

Car

Figure 19: Corresponding associations and leg compositions

12

13 composition DogGotLegs
14 from Dog<1..1>
15 to Leg<0..4>
16

17 association CarOwnership(Ownership)
18 from Person
19 to Car
20

21 Person John
22 Dog Lassie
23

24 DogOwnership do
25 owner = John
26 owned = Lassie

6.2. Data Type and Data Value

The HUTN for ArkM3 provides the following primitive types: float, int,

bool and string. The minimum and maximum values for these types are

equal to the minimum and maximum for the corresponding Python values. The

available collection types are:

• A sequence, where elements are ordered and not unique;

• A set, where elements are unique, but not ordered;

• A map, which maps a key to a certain value (where the key is a primitive

type);
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• A tuple, which consists of a number of values separated by a comma (like

Python tuples). It is an immutable type, where individual items of a tuple

cannot be changed.

Besides primitive and collection types, there are also two special types. The

first one is the any type which will accept all types, secondly the void type is

the type of the void value.

6.2.1. Type Expressions

Types are defined using type expressions, which allows a user to make com-

binations of different types. The features of type expressions are:

• Union types, representing a collection of two or more types. A union type

accepts all the types defined in its collection.

E.g. int | string | float, accepts integers, strings and floats;

• Set types, are defined using curly brackets.

E.g. {int}, is the definition of a set containing integers;

• Sequence types, are defined using square brackets. They also have an

optional parameter which defines the maximum size of the sequence.

E.g. [string 8], describes a sequence of maximum 8 strings;

• Mapping types, are defined using curly brackets and a colon to seperate

the key from the value.

E.g. {int:string}, is a type which maps integers to strings;

• Tuple types, are defined using a comma , to separate the different types.

E.g. int , int , int, defines a tuple type containing 3 integers;

• Brackets, to group types together.

E.g. {(int | float) : string }, describes a type which maps

integers or floats to strings;

• Immutable types, are types describing values that cannot be altered.

E.g. immutable int, is the definition of a constant integer.

Note that the language user is able to use and define custom types in type

expressions, see Section 6.3.1.

Another remark is that one can refer to a type in a package, these are called

type references. These type references can also be used in type expressions.

For instance, a type expression defining a sequence of the previous Dog class

(defined in package be.ac.ua.test) is written as [be.ac.ua.test.Dog].
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6.3. Action Language

The Action Language is part of the HUTN for ArkM3 and is used for ex-

ecutable expressions or statements. The action language is used in case of as-

signing a value to an attribute or when action body is started which is marked

by a colon : (e.g. body of a function). It is also possible to write action files

and use the action parser, without the notion of the object language.

6.3.1. Statements

The HUTN supports all statements described in the ArkM3 meta-model. In

addition it also supports type declarations, exceptions and type casting. Type

declarations allow users to define their own custom types and exceptions allow

the users to raise and catch exceptions. Type casting is used to cast a value to

a certain type.

6.3.2. Declarations

There are two types of declarations:

1. Variable declarations that bind a variable to a certain type. It is also

possible to immediately assign a value to a variable, see Listing 30 for an

example;

Listing 30: Variable declarations

1 # variable declarations
2 {string} mySet
3 [int | float] numbers
4

5 # variable declarations with assignment
6 int i = 55
7 string j = "Hello there!"
8 [int] list = [1,2,3]
9 {int} m = {1,4,8,1000,5}
10 (int,float) j = (1, 2.0)
11 {int:string} d = {1:"hello"}
12

13 #assignments
14 mySet = {"one","two","three"}
15 numbers = [1, 2, 3, 4.5, 6.999, 100]

2. Type declarations that allow the user to define custom types, see List-

ing 31.

6.3.3. While

A while loop is the first loop statement in the HUTN. The loop stops if

the loop condition returns false. An example, which increments an integer until

it has reached 10, is given below:
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Listing 31: Type declarations

1 # type declarations
2 type StringOrInt = String | Int
3 type SpecialList = [StringOrInt]
4

5 # variable declaration using the custom type
6 SpecialList my_special_list = [1, "hello"]

1 int i = 0
2 while(i < 10):
3 i = i+1

6.3.4. For

The for loop is the second loop statement in the HUTN and is an iterator-

based for loop, which means it will iterate a collection (i.e. iterable).

1 [int] list = [1,2,3,4,5,6]
2 for i in list:
3 print i

6.3.5. Conditions

Conditional statements are expressed using the if-elif-else structure:

1 string j = "hello"
2 if(j == "hello"):
3 print "hello world!"
4 elif(j == ""):
5 print "nothing here.."
6 else:
7 print "goodbye world!"

6.3.6. Return

The return statement can return a value of any type or even no value.

1 string b = "Jos"
2 if b == "hello":
3 return
4 else:
5 return True and b == "Jos"

6.3.7. Comments

It is also possible to add comments. HUTN supports single-line and block

comments:
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1 #single line comment
2 float f = 1.5 + 3 * 4 #another single-line comment
3

4 /*
5 block comment
6 */

6.3.8. Exceptions

Exceptions are very similar to the exceptions of Python, especially the

structure to catch exeptions try-except-else-finally. The else and

finally clause are optional. The latter is always executed at the end, while

the else clause is only executed if no exception occured. Exceptions in ArkM3

are classes (or actually clabjects), in this way an exception inherits all the prop-

erties of a class. For instance, it is possible to specify exceptions consisting of

attributes and constraints. Listing 32 gives a small example of the exceptions.

Listing 32: Exceptions in the HUTN

1 package atompmTest.testExceptions
2 exception MyException
3 int d = 1
4 string a
5

6 exception MyException2(MyException)
7 int e = 2
8 string a
9

10 action a:
11 int bla
12

13 try:
14 bla = 7
15 raise MyException()
16 except MyException as d:
17 bla = 8
18 except (MyException2,MyException) as e:
19 bla = 9
20 except:
21 bla = 10
22 else:
23 bla = 11
24 finally:
25 bla = 12

6.3.9. Basic Operators

The following operators are supported:
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• Boolean operators, like ==, !=, <, >, >=, <=, and, or, not;

• Arithmetic operators, like +, -, *, /, %;

• Index operators and slice operators, an example is given below.

1 [int] list
2 list.append(1)
3 list.append(2)
4 list.append(3)
5 list.append(4)
6 print list[0] # prints 1
7

8 list = list[:2] # slice of list = [1,2,3]
9 list.append(5)
10

11 [[int]] doubleList
12 doubleList.append(list)
13 print list[0] # prints list 1,2,3
14 print list[0][0] # prints 1
15 print list[0][1] # prints 2
16 print list[0,1] # this is the same as previous line

Each type has its own operations, this paragraph illustrates the available oper-

ations for a string, set {}, sequence [] and map {:}. Optional parameters are

in italic. The operations are influenced by the existing Python operations8.

String operations:

• int string.count(string sub)
Count the number of times a substring occurred in a string;

• int string.find(string sub)
Find a substring and return the index;

• int string.rfind(string sub)
Same operation as find, but from right to left;

• string string.replace(string old, string new , int limit)
Replaces a substring by a new string and has an optional limit;

• string string.strip(string sub)
Return a copy of string, where leading and trailing sub string is removed;

• string string.lstrip(string sub)
Return a copy of string, where leading sub string is removed;

8Python Types documentation: http://docs.Python.org/library/stdtypes.html
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• string string.rstrip(string sub)
Return a copy of string, where trailing sub string is removed;

• [string] string.split(string sep , int limit)
Return a sequence of the words of a splitted string, where sep is the

separator;

• [string] string.rsplit(string sep , int limit)
Same operation as strip, but starting from the right;

• string string.lower()
Return a copy of string where all letters are converted to lower case;

• string string.upper()
Return a copy of string where all letters are converted to upper case;

• string string.swapcase()
Return a copy of string where all letters are swapped from lower to upper

case and vice versa;

• string string.title()
Return a copy of string where each first letter of a word is upper case;

• string string.capitalize()
Return a copy of string where the first letter of the string is converted to

upper case.

• int seq.size()
Return the size of the string;

Set operations:

• void set.add(any e)
Add an element to a set;

• void set.remove(any e)
Remove an element of a set;

• {any} set.union(set e)
Return a copy of the union of the two sets;

• {any} set.difference(set e)
Return a copy of the difference of the two sets;

• {any} set.symm diff(set e)
Return a copy of the symmetric difference of the two sets;

• {any} set.intersect(set e)
Return a copy of the intersection of the two sets;
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• void set.union update(set e)
Update the current set to the union of the two sets;

• void set.difference update(set e)
Update the current set to the difference of the two sets;

• void set.symm diff update(set e)
Update the current set to the symmetric difference of the two sets;

• void set.intersect update(set e)
Update the current set to the intersection of the two sets;

• bool set.contains(any e)
Return a boolean indicating if a given element i is in the current set;

• bool set.issubset(set s)
Return a boolean indicating if a given set is a subset of the current set;

• bool set.issuperset(set s)
Return a boolean indicating if a given set is a superset of the current set;

• int set.size()
Return the size of the set.

Sequence operations:

• void seq.append(any e)
Append an element to the sequence;

• void seq.extend(seq e)
Extend the sequence with another sequence;

• void seq.insert(int index, any e)
Insert an element at a given index position;

• void seq.delete(any e)
Delete an element in the sequence;

• void seq.delete index(int i)
Delete an element in the sequence using an index;

• any seq.pop()
Pop the first element of a sequence;

• int seq.count(any e)
Count the amount of times an element occurs in the sequence;

• any seq.get(int i)
Get an element at index i;

57



• int seq.size()
Return the size of the sequence;

• bool seq.contains(any e)
Return a boolean indicating if a given element occurs in the sequence;

• void seq.reverse()
Reverse the sequence;

• void seq.sort()
Sort the sequence.

Map operations:

• {any} map.get keys()
Return a set containing the keys of the map;

• {any} map.keys()
Return a set containing the keys of the map;

• {any} map.get values()
Return a set containing the values of the map;

• {any} map.values()
Return a set containing the values of the map;

• any map.get(any key)
Return an element of the map using a key;

• void map.set(any key, any value)
Set an element of the map.

• int seq.size()
Return the size of the map;

A small example using a couple of sequence functions:

1 [any] l =[1,2,[5,3]]
2

3 l.append(99)
4 l.remove(1)
5 l.extend([1,2])
6 l.insert(0,808)

Other basic functions are:

• print to print out expressions in the console.

Usage: print "hello";

• floor, ceil to round a number down.

Usage: floor(1.9);

58



• abs to get the positive number of a value.

Usage: abs(-1.8);

• round to round a number.

Usage: round(1.7);

• in returns True if a certain value is in the collection (set, map, sequence).

E.g. 1 in [1,2,3] returns True;

• len to get the length of a collection.

Usage: len([1,2,3]]).

6.3.10. Type Casting

Another feature of the HUTN is type casting. This particularly useful to

cast an instance to one of its subclasses. For instance, the meta-model below

defines some animals and a zoo.

1 package animalpark
2 class Animal
3

4 class Zoo
5 [Animal] animals
6

7 class Bear
8

9 class Tiger
10 int special_attribute = 0

Suppose one wants to loop over the animals and print the special attribute
of the Tiger class. Then casting is needed to cast an instance of animal to an

instance of Tiger. Otherwise the attribute cannot be accessed. An example of

type casting is given below:

1 Zoo myZoo
2 myZoo.animals.append(new Tiger)
3

4 for animal in myZoo.animals:
5 # type casting
6 Tiger t = (Tiger) animal
7 print t.special_attribute

6.3.11. Model Manipulation Operators

Last but not least the model manipulation operators are handled. First of

all, the CRUD operations are discussed. To create instances, the keyword new
is used. Each time a new instance is created, it is added to the current package.

Reading, updating or navigating a model element is done by defining the path

separated by dots. Finally the delete keyword is used to delete an element in
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the current package. For instance, animalpark.Zoo refers to the Zoo class in

package animalpark. An example of creating 100 tigers and deleting 1 tiger

using the previous zoo example is given below:

1 package test
2 action tigerpark
3 animalpark.Zoo myZoo = new animalpark.Zoo
4 int i = 0
5 while i < 100:
6 animalpark.Tiger t = new animalpark.Tiger
7 myZoo.animals.append(t)
8 i = i + 1
9

10 delete myZoo.animals.pop()

Using the meta-model of ArkM3, it is possible to get an attribute using a string:

1 myZoo.get_PropertyValue("animals").get_value()

Other semantic model operators which are supported in HUTN:

• elem.get all instances() gets all instances of an element type;

• elem1.is kind(elem2) checks if an element is an instance of an ele-

ment or one of it subclasses;

• elem1.is instance(elem2) checks if an element is an instance of an

element;

• elem1.is identical(elem2) checks if two elements are identical.

6.4. Interface of HUTN class

The HUTN class has four important functions and they all return the ArkM3

object that is parsed:

1. parse(string)
parses a string which conforms to the HUTN;

2. parseFile(filename)
parses a HUTN file;

3. parseAction(string)
parses a string which conforms to the Action language of the HUTN;

4. parseActionFile(filename)
parses an Action language file;

5. compileFile(filename)
parses a HUTN file and generates Python code.
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7. Implementation of HUTN

This section will explain the implementation of the HUTN. The program-

ming language that is used is Python and after comparison of different compiler-

compilers [7] PLY [8] was used to construct the parser and lexer.

7.1. Code Structure

HUTN file AST ArkM3
Python

Compiler

Himesis

Figure 20: HUTN Overview

Figure 20 gives a good overview of what happens when a HUTN file is parsed.

The process will be briefly described in a number of steps:

1. An input file is parsed using PLY to construct an Abstract Syntax Tree.

Syntax errors and illegal characters will be recognized in this process;

2. The AST is visited by an AST Visitor. This visitor will visit all the nodes

of the AST, detects type errors and generates the ArkM3 structure. It

has two functions:

i. Populating the metaverse by using the ArkM3 interface which is re-

sponsible for CRUD operations on the metaverse. Elements in the

metaverse are the elements of the ArkM3 Object package: packages,

classes, associations, compositions, instances, actions, contraints and

properties;

ii. The elements belonging to the Action Language, i.e. the body of

actions, constraints or functions, are mapped to the corresponding

ArkM3 classes.

3. Every ArkM3 class has a Himesis representation (developed by Simon Van

Mierlo);

4. The execution of the models is achieved by mapping the ArkM3 structure

to executable Python code.
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1..1

actionparser

1..1

1..1

expression-actionparser

1..1HUTNParser HUTNLexer ActionParser ActionLexer

TypeExpressionParser TypeExpressionLexer

Figure 21: Parser and lexer inheritance

The dashed lines indicates pretty printing. Using a visitor on the ArkM3 tree,

the appropriate HUTN input file could be generated. This is useful for both

testing purposes as for the transformation of graphically defined ArkM3 models

(which have no textual notation). At this moment there is only pretty printing

from the ArkM3 tree to the HUTN, but in the future it is useful to generate

Javascript files too. Because Javascript is already used in the current version

of AToMPM and users who use the HUTN could check if their HUTN file

corresponds to the Javascript file.

7.2. Lexing and Parsing of HUTN File

For this project PLY is used as parser-generator, which was already intro-

duced in Section 1.2.2. This section will describe some noteworthy aspects of

the parsing process.

7.2.1. Parser Inheritance

Section 1.2.2 discussed the definition of a parser and lexer class using PLY.

The class diagram for the HUTN parser and lexer is given in Figure 21. The

separation of the parsers (and lexers) corresponds to three different packages of

ArkM3, see Section II. There are three parsers, i.e. HUTNParser, Action-
Parser and TypeExpressionParser. They correspond respectively to the

Object Language, Action Language and Data Type package. The TypeExpr-
essionParser is the superclass of the other two parsers as these two parsers

need to parse type expression. Due to inheritance, one should note that a parser

can override methods of its superclass. This means overriding grammar rules

that can change the grammar and the behaviour of the parser.

Note that parser inheritance is not the same as island grammars (see Sec-

tion 1.2.1). Parser inheritance implies a single parser with inherited grammar

rules, which eventually can be overridden by the subclass parser. The concept

of island grammars defines two (or more) separate parsers.

7.2.2. Island Grammars

The HUTNLexer in Figure 21 has two attributes, namely expression-
actionparser and actionparser. The former is an instance of Action-
Parser, which only allows single-line expressions. This parser is used for the
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assignment of attributes. The latter allows all Action Language constructs

and is the normal instance of the ActionParser. In contrast to the Type-
ExpressionParser, which is inherited by the HUTNParser, the two action

parsers are attributes of the HUTNLexer. The action parsers are attributes,

because they are used as island grammars and are invoked when an action

language construct occurs. This occurrence is noticed by the HUTNLexer using

lexer states.

Lexer States

PLY provides a feature where lexers can have different states. Lexer states

can change the initial lexing behaviour, i.e. each state can have its own tokens

and lexer rules. In this way, a certain token can, for instance, trigger a different

kind of lexing. There are two types of lexer states: inclusive and exclusive. An

inclusive state adds additional tokens and rules to the lexer. An exclusive state

completely overrides the default behaviour. The lexer will only apply rules

and tokens defined for that state. Exclusive lexer states are used within the

HUTNLexer and the basic steps of the lexer are:

1. The HUTNLexer starts in the normal lexer state;

2. If the HUTNLexer identifies the start of action code, then the lexer will

change to an exclusive state named actioncode;

3. When the HUTNLexer is in the exclusive actioncode state, the lexer

only uses rules defined for this state. These rules should invoke the ap-

propriate ActionParser;

4. When the ActionParser is finished, the HUTNLexer state returns to

the normal state and the lexer continues.

Identify Start of Action Code (step 2)

There are two cases when the Action Language could occur. Firstly, the

body of an action, constraint or function. Secondly, the assignment of a value/-

expression to an attribute. In the first situation, the Action Language body is

always preceded by a colon. So when the lexer matches a colon token, it can

change his state to actioncode. There is only one remark, the colon must be

placed at the end of the current line (ignoring whitespaces at the end). Listing 33

is an extract of the HUTNLexer where the first function matches the lexemes

with a colon at the end of the line and changes the state to actioncode. The

second function describes the normal behaviour (if the colon is not at the end

of the line).

Listing 33: Change lexer state for action body

1 def t_COLON(self,t):
2 r’\:(?=\s*$)’
3 self.change_state(’actioncode’)
4 return t
5
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6 def t_COLON_normal(self,t):
7 r’\:’
8 t.type = ’COLON’
9 return t

The second case was the assignment of a value to an attribute. In this case the

Action Language is preceded by an equals operator. When the lexer matches

the equals operator it should change the state, except when it is followed by a

colon on the same line. This is due to function definitions, where the equals

operator is followed by the parameter types and then the colon with function

body (e.g. f = int i: void:).

Listing 34: Change lexer state for action assignment

1 def t_EQ(self, t):
2 r’=(?!.*\:\s*$)’
3 self.change_state(’actioncode’)
4 return t
5

6 def t_EQ_normal(self,t):
7 r’=’
8 t.type = "EQ"
9 return t

Invoke the Appropriate ActionParser (step 3-4)

When the lexer state is changed to the exclusive state actioncode, only

lexer rules for this state will be reachable. The HUTNLexer needs two lexer rules

in accordance with the two different ActionParser instances. One rule for the

single-line expression ActionParser (attribute assignment) and another rule

for the normal ActionParser (action, constraint, function). Listing 35 defines

the two lexer rules. Remark that each lexer rule has a prefix actioncode.

The prefix indicates that these functions are lexer rules for the exclusive state

actioncode.

The first function is the lexer rule for the single-line expression Action-
Parser, i.e. t actioncode expressionaction. The aim of this function

is to parse an expression of an attribute assignment. It should invoke the ap-

propriate ActionParser and parse the expression using this parser, which

will return an AST. This AST is assigned to the token value. In this way, the

HUTNParser does not have to create the AST of the expression.

On line 2 in Listing 35 the pattern of the token is defined as a regular ex-

pression. This regular expression matches all characters (except new line) after

the assignment symbol “=”. The type of the token is set to ACTION ISLAND-
GRAMMAR, which will be used later in a parser rule of the HUTNParser. The

lexeme g.value, which represents the matched expression, is passed to the

ActionParser that will return the AST. The AST is assigned to token value.

Finally, the lexer state is changed back to its normal INITIAL state. Note
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Listing 35: Invoke the Appropriate ActionParser

1 def t_actioncode_expressionaction(self, g):
2 r’(?<==).*’
3 g.type = ’ACTION_ISLAND_GRAMMAR’
4

5 self.eap.clear()
6 parsed = self.eap.parse(g.value.lstrip(),lineno=g.lexer

.lineno)
7 g.value = parsed
8 self.change_state(’INITIAL’)
9

10 return g
11

12 def t_actioncode_normalaction(self, g):
13 r’(?<=\:)\s*’
14 g.type = ’ACTION_ISLAND_GRAMMAR’
15 self.ap.clear()
16

17 # search start of action code
18 lexeme = g.lexer.lexdata[g.lexpos:]
19 stripped_lexeme = lexeme.lstrip("\t").lstrip(" ")
20 pos = g.lexpos + (len(lexeme) - len(stripped_lexeme))
21 # parse
22 parsed = self.ap.parse(stripped_lexeme,lineno=g.lexer.

lineno)
23 g.value = parsed
24 # if multiple scopes were ended in action parser
25 self.lexer.lineno = self.ap.clex.lexer.lineno - 1
26 if self.ap.clex.latest_endscope != -1:
27 self.lexer.lexpos = pos + self.ap.clex.

latest_endscope.lexpos
28 else:
29 self.lexer.lexpos = self.ap.clex.lexer.lexpos -

1
30 self.change_state(’INITIAL’)
31

32 return g
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that, in order to maintain the line numbers between the different parsers, the

line number of the current HUTNLexer is passed on to the ActionParser.

Another remark is that the leading whitespace characters of the lexeme, i.e.

g.value, are stripped before parsing using lstrip.

The second function is the lexer rule for the normal ActionParser, i.e.

t actioncode normalaction. The aim of this rule is to parse Action Lan-

guage constructs used within constraints, actions and functions (statements,

expressions, etc.). The implementation of this function is approximately similar

to the first function. This time, the regular expression only matches the start

position of the action code language, i.e. right after the colon symbol “:”. The

ActionParser starts parsing from this point until the end of the action code.

The starting point must be a new line character, since the ActionParser uses

the scope, i.e. indentation size, of the action to determine the end of the action

code. Due to the new line character, only leading tabs and spaces are stripped

before parsing. The last difference corresponding to the previous rule is that

the lexer position of the HUTNLexer should be changed to the position of the

ActionLexer.

The two lexer rules in HUTNLexer produce a token of type ACTION ISL-
AND GRAMMAR. This token type is used within the HUTNParser. Listing 36

shows two parser rules where the ACTION ISLAND GRAMMAR token is used.

The value of this token is the AST produced by the ActionParser.

Listing 36: Parser rules in HUTNParser for attribute assignment and action

1 def p_attribute_instance(self, p):
2 ’attribute_instance : ID EQ ACTION_ISLAND_GRAMMAR’
3 p[0] = AttributeInstance(name=p[1], value=p[3], lineno=

p.lineno(1))
4

5 def p_action_language_action(self, p):
6 ’action_language_term_action : ACTION ID COLON

ACTION_ISLAND_GRAMMAR’
7 p[0] = Action(p[2], p[4], p.lineno(1))

7.2.3. Tab or indent handling in PLY

A Python-like language uses indents to define the different scopes instead of

curly brackets. The word indent is used instead of tab, because a tab is a char-

acter and the indentation of scope consists of tabs and spaces. The recognition

of the beginning and ending of a scope is done in the lexer. The lexer class has

two attributes: a scope and tab width. The latter defines how many spaces a

tab is worth, in this case it is four. In other words, four spaces are equal to one

tab for the lexer. Scopes are defined by calculating the indentation size. For

instance, if the previous line had an indentation of four spaces and the current

line has an indentation of 6 spaces, then a new scope is defined.
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The lexer has an attribute scope, which is a stack, and stores the previous

indent sizes (i.e. the previous scopes). When the lexer recognises a new line, it

starts calculating the indentation size by counting the tabs and spaces. If the

size of the current indent is calculated (remember that a tab is the equivalent of

four spaces), then it checks the previous scope. Now there are three possibilities:

1. The current scope has an indentation which is the same as the current

indentation, this means the lexer is still in the same scope;

2. The current scope has an indentation which is smaller than the current

indentation, this means the previous scope is closed;

3. The current scope has an indentation which is greater than the current

indentation, this means a new scope has started.

If a new scope is started, the lexer emits a BEGIN SCOPE token to identify the

new scope and the new indentation size is pushed on to the scope stack. After-

wards the lexer moves on.

If the previous scope is closed, the previous indentation is popped from the

scope stack and the lexer emits an END SCOPE token. Now the lexer needs to

check if the indentation which is now on top of the stack is not greater than the

current indentation. If this is not the case, the lexer can move on. Otherwise

this means that another scope is also closed and the lexer needs to emit another

END SCOPE token. In this case, PLY causes trouble. A lexer cannot emit two

tokens in the same lexer rule. In order to circumvent this problem, the lexer’s

position in the current input text is changed to the previous position. Now the

lexer will emit one END SCOPE token and will return to the same lexer rule.

The same rule will then recognise that a scope is closed and start all over again

until all scopes are closed. The lexer rule described in this paragraph is given

in Listing 37. The regular of expression of this lexer rule seems a little bit odd,

due to the different symbols for a new line in operating systems. A new line

symbol in Windows is \r\n, in UNIX this is \n and sometimes \r is used as

a new line. The regular expression ((\r\n) | \n | \r) covers these three

types. The second part of the expression [\t\\] matches tabs and spaces.

Listing 37: Lexer rule for handling indents

1 def t_NLTAB(self, t):
2 r’(( (\r\n) | \n | \r )[\t\\ ]*)+’
3

4 # the regular expression above matches the beginning of
a newline

5 # count the indentation size
6 t.lexer.lineno += self._count_lines(t.value)
7 tabsize = self._count_tabsize(t.value)
8 t.type = ’NL’
9 empty = self.scope.empty()
10
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11 # scope indentation < current
12 if((empty and tabsize > 0) or (not(empty) and self.

scope.peek() < tabsize)):
13 self.scope.push(tabsize)
14 t.type = ’BEGIN_SCOPE’
15

16 # scope indentation > current
17 elif(not(empty) and self.scope.peek() > tabsize):
18 self.scope.pop()
19 # if multiple scopes are ended, go back and

generate a new END_SCOPE token
20 if(not(self.scope.empty()) and self.scope.peek() >

tabsize):
21 self.helper_rollback_one_token(t)
22 t.type = ’END_SCOPE’
23 return t

7.2.4. Type Expression Parser

In this section the grammar of the type expression parser is discussed. The

grammar definition of the type expression parser using EBNF-like syntax is

given below.

1 typeExpression := [’immutable’] typeExpressionSpec
2 typeExpressionSpec := primitiveTypeExpr | compositeTypeExpr
3 primitiveTypeExpr := IntegerType | RealType | BooleanType |

StringType | AnyType | VoidType | typeName
4 compositeTypeExpr := UnionType | SetType | SequenceType |

MappingType | ProductType | BracketedType
5 UnionType := typeExpression ’|’ typeExpression [...]
6 SetType := ’{’ typeExpression ’}’
7 SequenceType := ’[’ typeExpression [size] ’]’
8 MappingType := typeExpression ’:’ typeExpression
9 ProductType := typeExpression ’*’ typeExpression [...]
10 BracketedType := ’(’ typeExpression ’)’

In this grammar typeName can be a custom type or the name of a metamodel.

Listing 38 describes a part of the Type Expression parser. The grammar rules

of the parser are defined in the docstring of the methods. Each method accepts

a single argument p which represents a sequence containing the values of each

grammar symbol in the corresponding rule. Listing 38 illustrates an excerpt of

the Type Expression Parser.

Listing 38: Excerpt of the Type Expression Parser

1 def p_type_Expression(self,p):
2 ’typeExpression : IMMUTABLE typeExpression’
3 # p[0] p[1] p[2]
4 p[0] = TypeImmutable(p[2])
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5

6 def p_type_ExpressionSpec(self,p):
7 ’’’typeExpression : primitiveTypeExpr
8 | compositeTypeExpr’’’
9 p[0] = p[1]
10

11 def p_type_compositeTypeExpr(self,p):
12 ’’’compositeTypeExpr : SetType
13 | UnionType
14 | SequenceType
15 | MappingType
16 | ProductType
17 | BracketedType’’’
18 p[0] = p[1]
19

20 def p_type_UnionType(self,p):
21 ’UnionType : typeExpression VERTICAL_BAR typeExpression’
22 p[0] = TypeUnion(p[1],p[3],p.lineno(1))
23

24 def p_type_SetType(self,p):
25 ’SetType : L_ACCOL typeExpression R_ACCOL’
26 p[0] = TypeSet(p[2],p.lineno(1))
27

28 def p_type_SequenceTypeLimit(self,p):
29 ’SequenceType : L_SQ_BRACKET typeExpression INT R_SQ_BRACKET ’
30 p[0] = TypeSeq(p[2],size=p[3],lineno=p.lineno(1))
31

32 def p_type_SequenceType(self,p):
33 ’SequenceType : L_SQ_BRACKET typeExpression R_SQ_BRACKET ’
34 p[0] = TypeSeq(p[2],lineno=p.lineno(1))
35

36 [..]

7.3. Abstract Syntax Tree Visitor

The HUTNParser9 builds an AST which is visited by the AST Visitor.

This visitor is influenced by the Python built-in ast.NodeVisitor, see Listing 39.

First, the Python visitor is introduced and in the next section the AST Visitor
is discussed.

7.3.1. The Python Built-in ast.NodeVisitor

The NodeVisitor class has two methods: visit and generic visit.

The visit method takes the class name of the node and calls the method:

visit classname, where “classname” is the name of the node’s class. The

9The ActionParser and TypeExpressionParser also build an AST
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Listing 39: Python ast.NodeVisitor

1 class NodeVisitor(object):
2 def visit(self, node):
3 """Visit a node."""
4 method = ’visit_’ + node.__class__.__name__
5 visitor = getattr(self, method, self.generic_visit)
6 return visitor(node)
7

8 def generic_visit(self, node):
9 """Called if no explicit visitor function exists for a node

."""
10 for field, value in iter_fields(node):
11 if isinstance(value, list):
12 for item in value:
13 if isinstance(item, AST):
14 self.visit(item)
15 elif isinstance(value, AST):
16 self.visit(value)

generic visit method is called when the class does not provide a method

for the appropriate class name. One drawback of this implementation is that it

does not consider inheritance, this implies that one has to create a method for

each subclass. However, it is possible to extend the generic visit method to

eliminate this drawback. The generic visit method can search for methods

for one of the node’s subclasses.

An example of an ast.NodeVisitor

Assume there is visitor v and v visits the node root, which is an instance of

the class Root. Then the visitor attempts to call method visit Root(node).

If this method is not implemented in the visitor, then the generic visit
method will be executed on this node. For example, if the AST looks like

Figure 22 and our visitor is the one defined in Listing 40, then the output will

be: visited root 1 999.

Root

Leaf
(body=1)

Leaf
(body=999)

Figure 22: Simple Tree Example
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Listing 40: Example of a Visitor

1 class Root(object):
2 def __init__(self,l,r):
3 self.left = l
4 self.right = r
5

6 class Leaf(object):
7 def __init__(self,x)
8 self.body = x
9

10 class Visitor(ast.NodeVisitor):
11 def visit_Root(self,node):
12 print "visited root"
13 a = self.visit(node.left)
14 b = self.visit(node.right)
15 print a, b
16 def visit_Leaf(self,node):
17 return node.body
18 [..]

7.3.2. The HUTN AST Visitor

The AST Visitor differs from the Python built-in visitor, see Listing 41. The

AST Visitor consists of two visit methods. The first method visit is a public

visit method and resets all the attributes of the visitor. The second one visit
conforms to the method of the built-in NodeVisitor. Another difference between

the AST Visitor and the built-in NodeVisitor is the generic visit method.

This method throws an exception in the AST Visitor, because it is only called

when a particular type of the AST is not implemented.

The task of the AST Visitor is to map the AST tree to ArkM3 classes.

Section 41 describes two functions. Firstly, the visitor maps the elements of the

Action Language to the corresponding ArkM3 classes. Secondly, the ArkM3

interface is used to perform CRUD operations on the metaverse. An example

of the former, where an if-else condition statement is mapped on to an ArkM3

class, is given in Listing 42. This method returns a ConditionStmt instance,

which is an ArkM3 class. The ArkM3 interface has four functions corresponding

to the CRUD operations. The first one, is the create function which has three

parameters: location, type and params. The create functions creates

an element at a given location in the metaverse, where the type of the element

together with the parameters to construct the type are given. An example of a

visit method that uses the ArkM3 interface is given in Listing 43. This listing

illustrates the creation of packages and its elements. The variable nameList
contains a list with the consecutive package names, where the first package name

is the parent of the second package name and so on. For instance, a package

sub is created within package super (syntax is package super.sub), then
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Listing 41: AST Visitor

1 class AST_Visitor(object):
2 def visit(self, node, debug=False):
3 self.clear()
4 return self._visit(node, debug)
5

6 def _visit(self, node, debug=False):
7 """Visit a node."""
8 if(debug):
9 self.logger.debug("Visiting %s" % node.__class__)
10 method = ’visit_’ + node.__class__.__name__
11 self.history.append(node.__class__.__name__)
12 visitor = getattr(self, method, self.generic_visit)
13 return visitor(node)
14

15 def generic_visit(self, node):
16 self.logger.debug("Not implemented %s" % node.__class__

)
17 self.logger.debug("Node: %s"% node)
18 self.logger.debug("History:")
19 for x in self.history:
20 self.logger.debug("%s"%x)
21 raise Exception("Visitor not implemented error for type

: %s %s %s" % (node.__class__, node, self.history))
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Listing 42: The visit method in the AST Visitor for a Condition Statement

1 def visit_ConditionStatement(self, node):
2 prevInsideStmt = self.helper_PreStmt()
3 self._symboltable_push()
4 ifbody = self.helper_SequenceValueVisitor(node.getIf())
5 self._symboltable_pop()
6 if(node.getElse() is None):
7 return self.helper_PostStmt(prevInsideStmt,

ConditionStmt(self._visit(node.getTest()),
ifbody, SequenceValue()))

8 else:
9 if isinstance(node.getElse(), ConditionStatement):
10 self._symboltable_push()
11 elsebody = self.helper_SequenceValueVisitor([

node.getElse()])
12 self._symboltable_pop()
13 else:
14 self._symboltable_push()
15 elsebody = self.helper_SequenceValueVisitor(

node.getElse())
16 self._symboltable_pop()
17 return self.helper_PostStmt(prevInsideStmt,

ConditionStmt(self._visit(node.getTest()),
ifbody, elsebody))

the first element of the list is super and the last element is sub. When all

necessary packages of the sub package are created, in this case it is only the

super package, all package elements are visited. Finally the visitor returns the

package using the read function of the ArkM3 interface. This function reads

an element of the metaverse using its location (separated by dots).

One last remark, concerning the AST Visitor, is that the AST Visitor uses

a separate Type Expression Visitor for visiting types and type expressions.

7.4. Compiler to Python

In order to execute actions, constraints or functions, a PythonCompile-
Visitor is used. This visitor works in the same way as the AST Visitor,

except that it transforms ArkM3 elements to Python files.

7.4.1. Mapping from ArkM3 to Python

Each ArkM3 Package is mapped on to a Python package. Each Clabject,

Association and Composition is a separate Python file within the Python pack-

age of its ArkM3 Package. The Python file contains its Actions, Constrains and

Functions as Python functions. There is also a function within the file which

create an instance of the corresponding ArkM3 element. Actions, Constraints
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Listing 43: The visit method in the AST Visitor for a Package

1 def visit_Package(self, node):
2 # set current location to package
3 nameList = node.getName()
4 # self.current_scope.set(nameList)
5 # add corresponding packages to metaverse
6 location = ""
7 if self.current_scope.peek() != "":
8 location = "." + self.current_scope.peek()
9 for pname in nameList:
10 self.current_scope.push(pname)
11 self.metaverse.create(location[1:], ArkM3.PACKAGE,

pname)
12 location += "." + pname
13

14 # visit package contents
15 for i in node.getChildren():
16 self._visit(i)
17

18 for pname in nameList:
19 self.current_scope.pop()
20

21 location = []
22 if self.current_scope.peek() != "": location.append(

self.current_scope.peek())
23 location.append(node.getName()[0])
24 return self.metaverse.read(".".join(location))._object
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and Functions within a Package are written in a Python file within the corre-

sponding Python package, where the name of the file is equal to the name of

the package.

7.4.2. Execute

Actions, Constraints and Function can be executed. They all have a method

execute which uses the execute method of the PythonCompileVisitor, see

Listing 44. This method will link the ArkM3 element, i.e. Action, Constraint
or Function, to the generated Python function. If the Python code is not

yet generated, the PythonCompileVisitor will first generate the necessary

Python code.

The execute function will first check if the ArkM3 element has the attribute

hostElement. This refers to the parent element. For instance: a package or

a clabject. Then it will check if the execute attribute is available. This is the

function that is linked to the generated Python function. If it is available, then

it is already linked. Otherwise we need to check if the generated Python files

are present. This is done in the try-block. When the import fails, the Python

files will be generated using the visitor and the appropriate Python function is

linked to the execute attribute.

Listing 44: Execute method of the PythonCompileVisitor

1 def execute(self, element, *args):
2 if not hasattr(element, "_hostelement") or element.

_hostelement == None: raise Exception("Host Element
is not set")

3 if not hasattr(element, "_execute"):
4 modulelist = self._parent_module.split(".")
5 modulelist.extend(element._hostelement.get_location

().get_value().split("."))
6 from arkm3.Object import Package
7 if isinstance(element._hostelement,Package):
8 modulelist.append(element._hostelement.get_name

().get_value())
9 modulelist.append(element.get_name().get_value())
10

11 module = ".".join(modulelist[:-1])
12 fnames = modulelist[1:]
13 # import python files if available
14 try:
15 i = __import__(module,globals(),locals())
16 for attr in fnames:
17 reload(i)
18 i = getattr(i,attr)
19 element._execute = i
20 except:
21 # generate python files and import
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22 element._hostelement.accept(self)
23 i = __import__(module,globals(),locals())
24 for attr in fnames:
25 reload(i)
26 i = getattr(i,attr)
27 element._execute = i
28 if isinstance(element._hostelement,Package):
29 return element._execute(*args)
30 else:
31 return element._execute(element._hostelement,*args)
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8. Tests

During the development of the HUTN. Different aspects need to be tested

to ensure the system is stable. The typical steps of test execution are described

in [30]:

0. (a) determine the coverage goal, (b) unit testing;

1. Establish that the implementation under test is minimally operational by

exercising the interfaces between it parts;

2. Execute the test suite and fix tests which do not pass;

3. Use a coverage tool to instrument the implementation under test;

4. Develop additional tests to exercise uncovered code;

5. Stop testing when the coverage goal is met and all tests pass.

There are different test strategies, but they should all combine responsibility-

based test cases and implementation-based test cases. The former defines test

cases from the view of responsibilities of a class. The latter looks at the im-

plementation to provide test cases. Code coverage analysis is an example of

implementation-based testing. Another example of implementation-based test-

ing are test cases that trigger and test exceptions. The drawback of implementation-

based testing is that coverage metrics is a guideline and does not imply the ab-

sence of faults. That is why they should be combined with responsibility-based

test cases, which are more focused on the functionality, requirements and the

contract of the class.

During testing there are also two kinds of intentions to test. The first one is

fault-directed testing, which means tests should reveal faults through failures.

A fault is a piece of missing or incorrect code, whereas a failure is the manifested

inability of a program to function well. The second one is conformance-direct

testing that demonstrates conformance to the requirements. These two inten-

tions does not necessarily exclude each other. For instance, there can be a test

case which is both fault- and conformance-directed.

8.1. Testing the HUTN

Python provides a built-in testing framework. It defines test cases that are

used to group different tests together. These test cases are executed within a

test suite. The test suite for HUTN consists of following test cases:

• ExceptionTest: tests the Exceptions of ArkM3;

• ParserTest: consists of tests that check if the input is correctly parsed;

• PrettyPrinterTest: tests if the Pretty Printer returns the correct output.

PrettyPrintTest also consists of automated generated test cases;
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Figure 23: Dependencies bottom-up integration

• ActionVisitorTest: tests each construct of the Action Language using the

ActionParser after they has been visited by the AST Visitor. There

are tests that trigger exceptions, in case of incorrect input. Other tests

compare the generated ArkM3 objects and test if they are equal or not

equal;

• VisitorIntegrationTest: checks if all the tests of the ActionVisitorTest are

still running for the HUTNParser;

• VisitorTest: tests each construct of the Object Language using the HUTN-
Parser;

• PythonCompileVisitorIntegrationTest: checks if all the tests of the Ac-

tionVisitorTest and VisitorTest are still running;

• PythonCompileVisitorTest: tests the execution of Actions, Constraints

and Functions.

The code coverage for these tests is checked using the Python Code Coverage

module [31].

8.2. Test pattern: Bottom-up Integration

The testing pattern, Bottom-up Integration, is applied during this project.

This pattern is described in [32] and the intent is:
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“Demonstrate stability by adding components to the system under

test in uses dependency order, beginning with components having

the fewest dependencies” - Robert V. Binder

Using this pattern the components with the least number of dependencies are

tested first. If all tests pass, then the components on the next higher level are

tested. This process repeats until the root is reached and the entire system

is exercised. The test model for this pattern is a dependency tree and the

dependencies of the parsers are shown in Figure 23. First the Action Parser was

tested, then the HUTN (or object) parser and finally the Python Compiler.

8.3. Examples of Different Test Types

In this paragraph, some examples are given of different test types.

• Trigger exception test, this test asserts that a certain exception is throwed.

This useful to test the error detection of the parsers. The listing below

parses a file, where a variable is used without its declaration. The parser

should raise an Exception;

1 def testDeclarationNotFound(self):
2 with self.assertRaises(Exception) as cm:
3 self.parse("../hutn/test/files/action/

declarationnotfound.arkm3")
4 the_exception = cm.exception
5 self.assertTrue(str(the_exception).endswith("No

declaration found for i"))

• Comparing abstract syntax trees and test whether they are equal or not

equal. The listing below gives an example of an AST equal test;

1 def testDeclarationScope(self):
2 """
3 if True:
4 int i
5 else:
6 bool i
7 """
8 d = self.parse("../hutn/test/files/action/

declarationscope.arkm3")
9 a = Action()
10 d1 = DeclarationStatement(
11 IntegerType(),
12 Identifier(

StringValue
("i")))

13 d2 = DeclarationStatement(
14 BooleanType(),
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15 Identifier(
StringValue
("i")))

16 a.add_statement(
17 ConditionStmt(test=self._literal(True),
18 ifbody=SequenceValue([d1]),
19 elsebody=SequenceValue([d2

])
20 )
21 )
22

23 self.assertTrue(d.equals(a,debug=True))

• Oracles are equal or not equal. This used to test if the correct output was

given. The code example below illustrates a test for the PrettyPrinter,

where the input should be equal to the output;

1 def testPrintVisitor(self):
2 r = self.parse(’../hutn/test/files/prettyprint/

testType.arkm3’, self.dp)
3 r.accept(self._pv)
4 oracle = file("../hutn/test/files/prettyprint/

testType.arkm3", "r").read()
5 self.assertEqual(oracle, str(self._pv))

• Rerun the visitor tests for the Python Compiler.

1 def parse(self, fileName):
2 action = VisitorRegressionActionTest.parse(self,

fileName)
3 pyfile = fileName.rsplit("/",1)[1].split(".")[0]+

".py"
4 cv = PythonCompileVisitor(filename = self.dir + os.

sep + pyfile)
5 action.accept(cv)
6 cv.write()
7 self.runPython(cmd="Action()",pyfile = self.dir +

os.sep + pyfile)
8 return action
9

10 def runPython(self, cmd = "", pyfile = None):
11 try:
12 f = open(pyfile)
13 string = f.read()
14 string += os.linesep + cmd
15 code = compile(string, ’<string>’, ’exec’)
16 ns = {}
17 exec code in ns
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Name Statements Missed Statements Cover

Nodes.py 747 85 88,6%

DataTypeLexer.py 48 12 75%

DataTypeParser.py 62 6 90,3%

ActionLexer.py 160 13 91,9%

ActionParser.py 281 24 91,5%

HUTN.py 100 1 99%

HUTNLexer.py 170 17 90%

HUTNParser.py 174 9 94,8%

TypeMatcher.py 79 11 86,1%

TypeVisitor.py 125 18 85,6%

Visitor.py 867 166 80,9%

TOTAL 2813 362 87,1%

Table 3: Coverage for the HUTN parsers

18 except Exception as e:
19 traceback.print_exc(file=sys.stdout)
20 raise e

8.4. Coverage

The coverage of the three HUTN parsers and its visitors is given in Table 3.

The coverage is not yet complete and some additional tests need to be added.

The Nodes.py file contains the classes of the AST. This file is not completely

covered because the equals function is not executed. The TypeMatcher is the

class that checks if certain types conform to each other according to the Liskov

substitution principle. All the other class files are classes that were already

discussed in the previous section.
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9. Extending the HUTN

There are various motivations for extending the HUTN. A first one is to add

elements to the ArkM3 Action language for your particular models. For exam-

ple, the addition of new timed operators like ”crosses from below” or ”crosses

from above”. These temporal operators return True if a certain variable crosses

a certain value from below or above. To add this functionality not only the

ArkM3 metamodel should be extended, but there should also be a textual no-

tation which define the operators. Another motivation is to add syntactic sugar

for custom models and build a small domain specific language by defining cus-

tom syntax. It is possible to extend different components of the HUTN (lexers

parsers, visitors). In the next paragraph the different phases will be revealed to

extend the HUTN. The example of the two operators (”crosses from below” and

”crosses from above”) will be used as a common thread. This are interesting

operators, because they are timed. They not only look to their current value,

but also at their previous value.

9.1. Extend the ArkM3 metamodel

In this step, the ArkM3 metamodel is going to be extended. The new oper-

ators need to be defined. These classes should extend the right ArkM3 classes.

Because an operator is an action, the right class is located in the ArkM3 Action

module, i.e. ComparisonOp. The ComparisonOp class is used as superclass

for the CrossesFromBelow and CrossesFromAbove class, see Listing 45.

Note that these classes extend the ComparisonOp class with an self. id
attribute. This a unique identifier for each timed operator and is necessary to

store and retrieve the previous value of the operator.

Listing 45: Two new classes extending the original ArkM3 metamodel

1 class ComparisonOp(BinaryOperator):
2

3 def __init__(self, child1 = None, child2 = None, container
= None, init_id = None):

4

5 BinaryOperator.__init__(self, child1, child2, container
, init_id)

6 self.set_type(BooleanType())
7

8 class CrossesFromBelow(Action.ComparisonOp):
9 def __init__(self, child1=None, child2=None, name=None,

container=None, init_id=None):
10 Action.ComparisonOp.__init__(self, child1=child1,

child2=child2, container=container, init_id=init_id)
11 self._id = name
12

13 class CrossesFromAbove(Action.ComparisonOp):
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14 def __init__(self, child1=None, child2=None, name=None,
container=None, init_id=None):

15 Action.ComparisonOp.__init__(self, child1=child1,
child2=child2, container=container, init_id=init_id)

16 self._id = name

9.2. Extend the parsers and lexers

Next, the parser and lexer need to be extended. In the HUTN, there are

two parsers. The HUTN parser and his corresponding lexer which is used to

parse ArkM3 Object statements and on the other hand the Action parser and

corresponding lexer which is used to parse ArkM3 Action statements. They are

both extendable, but in case of operators only the Action parser and lexer need

to be extended.

Just like the original parser and lexer, the extended version is written in

Python using PLY. It is recommended that the original parser and lexer are su-

per classes of the extended version. In this way all original properties are inher-

ited. The textual notation for the CrossesFromBelow and CrossesFrom-
Above operator will be denoted as respectively >! and <!. These tokens are

defined in the lexer. The extended parser contains the grammar rules. These

rules map the expressions to intermediate AST nodes, which will be visited by

the extended visitor in the next phase.

Listing 46: Extended parser and lexer

1 class Extended_Lexer(ActionLexer):
2 tokens = ActionLexer.tokens + [’CROSSES_BELOW’, ’

CROSSES_ABOVE’, ’INSTATE’]
3

4 def t_CROSSES_BELOW(self, t):
5 r’\>!’
6 return t
7

8 def t_CROSSES_ABOVE(self, t):
9 r’\<!’
10 return t
11

12

13 class Extended_Parser(ActionParser):
14

15 precedence = ((’nonassoc’, ’CROSSES_BELOW’, ’CROSSES_ABOVE’)
,) + ActionParser.precedence

16

17 def p_expr_crosses_below(self, p):
18 ’expr : expr CROSSES_BELOW expr’
19 p[0] = ASTCrossesFromBelow(p[1], p[3], p.lineno)
20

21 def p_expr_crosses_above(self, p):
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22 ’expr : expr CROSSES_ABOVE expr’
23 p[0] = ASTCrossesFromAbove(p[1], p[3], p.lineno)
24

25

26 class ASTCrossesFromBelow(ASTBinaryOperator):
27 def __repr__(self):
28 return "%s >! %s" % (repr(self.lhs), repr(self.rhs))
29

30 class ASTCrossesFromAbove(ASTBinaryOperator):
31 def __repr__(self):
32 return "%s <! %s" % (repr(self.lhs), repr(self.rhs))

9.3. Extend the visitors

HUTN contains two visitors: a TypeVisitor that handles type expressions

and a general AST Visitor that actually visits all the other nodes in the AST

(Action and Object). These two visitors are both extendable and the TypeVis-

itor is called when the AST Visitor encounters an TypeExpression node in the

tree. For the current example it suffices to extend the AST Visitor. Note that

it is also required to have the original visitor as a superclass of the extended

visitor and that for each node the visitor calls the method visit appended by

the node’s classname. The extended visitor needs to visit the two AST classes,

i.e. ASTCrossesFromBelow and ASTCrossesFromAbove, see Listing 47.

Listing 47: Extended visitor

1 class Extended_Visitor(AST_Visitor):
2 def __init__(self, debug=None, typevisitor=None,

pythonvisitor=None):
3 AST_Visitor.__init__(self, debug=debug, typevisitor=

typevisitor, pythonvisitor=pythonvisitor)
4 self.crosses = set()
5

6 def _generate_crosses_id(self):
7 id_length = 6
8 id = self.metaverse._id_generator(id_length)
9 while id in self.crosses:
10 id_length += 1
11 id = self.metaverse._id_generator(id_length)
12 self.crosses.add(id)
13 return id
14

15 def visit_ASTCrossesFromBelow(self, node):
16 id = StringValue(self._generate_crosses_id())
17 return CrossesFromBelow(self._visit(node.getLhs()), self.

_visit(node.getRhs()), id)
18

19 def visit_ASTCrossesFromAbove(self, node):
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20 id = StringValue(self._generate_crosses_id())
21 return CrossesFromAbove(self._visit(node.getLhs()), self.

_visit(node.getRhs()), id)

9.4. Extend the ArkM3-to-Python compiler

This is also a visitor, i.e. PythonCompileVisitor, which maps each ArkM3

class to Python code. Listing 48 illustrates the Python implementation of the

timed operators.

Listing 48: Extended Python compile visitor

1 class Extended_Python_Visitor(PythonCompileVisitor):
2 def visit_CrossesFromBelow(self, node):
3 self._add_abs_import("hutn.extended.ExtendedParser")
4 self._write_chars("P_CrossesFrom.get_instance(%s).

checkBelow("%node._id)
5 self.visit(node._child[0])
6 self._write_chars(",")
7 self.visit(node._child[1])
8 self._write_chars(")")
9

10 def visit_CrossesFromAbove(self, node):
11 self._add_abs_import("hutn.extended.ExtendedParser")
12 self._write_chars("P_CrossesFrom.get_instance(%s).

checkAbove("%node._id)
13 self.visit(node._child[0])
14 self._write_chars(",")
15 self.visit(node._child[1])
16 self._write_chars(")")
17

18 class P_CrossesFrom(object):
19 instances = dict()
20

21 @staticmethod
22 def get_instance(instance_id):
23 cls = P_CrossesFrom
24 if cls.instances.has_key(instance_id):
25 return cls.instances[instance_id]
26 else:
27 i = cls()
28 cls.instances[instance_id] = i
29 return i
30

31 def __init__(self):
32 self.value = VoidValue()
33 self.prev = VoidValue()
34

35 def checkBelow(self, value, value2):
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36 if self.prev == VoidValue():
37 self.prev = value
38 self.value = value2
39 return False
40 elif self.prev <= self.value and value > self.value:
41 self.prev = value
42 return True
43 self.prev = value
44 return False
45

46 def checkAbove(self, value, value2):
47 if self.prev == VoidValue():
48 self.prev = value
49 self.value = value2
50 return False
51 elif self.prev >= self.value and value < self.value:
52 self.prev = value
53 return True
54 self.prev = value
55 return False

9.5. Instantiate the extended HUTN

As a final step, the HUTN needs to know it uses extended classes. HUTN

is the class which contains all the different parsers. In this step, the HUTN is

instantiated with three arguments (i.e. the classnames) specifying the extended

components (Extended Parser, Extended Visitor, Extended Python Visitor and

Extended Lexer), see Listing 49. This modification allows the textual notation

to read and evaluate these new operators, see Listing 50. The complete extended

HUTN can be found in Appendix C.

It should be noted that the constructor of HUTN supports more parameters

to extend corresponding components. The possible parameters are listed in

Table 4. This example showed a way to extend the ArkM3 metamodel. But

in the extended AST visitor, it is also possible to create elements of your own

metamodel using your own syntax that is defined in your extended parser. In

this way you can create your own domain specific languages.

Listing 49: Extended HUTN Instance

1 hutn = HUTN(actionparser=Extended_Parser, visitor=
Extended_Visitor, actionlexer=Extended_Lexer,
pythonvisitor=Extended_Python_Visitor)

2 hutn.parseFile(’files/testCrossesFrom.txt’)
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Parameter Default parameter Function

hutnlexer HUTNLexer Definition of tokens for the Object language
(lexer).

hutnparser HUTNParser Definition of Object language grammar
(parser).

actionlexer ActionLexer Definition of tokens for the Action language
(lexer).

actionparser ActionParser Definition of Action language grammar
(parser).

visitor AST Visitor Definition of general AST visitor which creates
the arkm3 structure.

typevisitor AST TypeVisitor Definition of the type visitor who is responsi-
ble for the arkm3 types.

pythonvisitor PythonCompileVisitor Definition of the visitor for Python execution

Table 4: Parameters for extending the HUTN

Listing 50: testCrossesFrom.txt: Simple crosses from below/above example

1 package atompmTest
2 action a:
3 [int] temps = [10,20,30,40,50]
4 for i in temps:
5 if i >! 30:
6 print "crosses from above "+string(i)
7 temps.reverse()
8 for i in temps:
9 if i <! 30:
10 print "crosses from below "+string(i)
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Part IV

Conclusion
10. Conclusion & Future Work

Textual meta-modelling tools get more and more important. They have be-

come a good alternative for the graphical meta-modelling tools. AToMPM is

still under development, but this Human Usable Textual Notation can be used

to create your own ArkM3 modes. this thesis represents a first proposal for

the HUTN. The HUTN provides three parsers: a TypeExpressionParser,

an ActionParser and a HUTNParser. Each parser can be used separately.

One can use the TypeExpressionParser to parse type expressions or the

ActionParser to parse action code. The HUTNParser is used to parse HUTN

files or strings. These three parser can be extended or even be replaced by other

parsers. In this way users are able to modify the HUTN and create their own

DSLs. The Python Visitor Compiler of the HUTN, which is responsible for

evaluating the action code, could also be extended or replaced.

The HUTN provides all mandatory concepts compared to other textual meta-

modelling tools. Like in EOL, CRUD operations are allowed. Users can write

actions, constraints or functions that are attached to a class (context-defined) or

in package (context-less). Like in metaDepth, all model elements in the HUTN

are linguistic instances of Clabject. It is also possible to have multiple meta-

levels in your model. Listing 51 illustrates this using the the ProductType

example of the metaDepth paper, see Section 2.2.1.

Listing 51: Multiple meta-levels: ProductType example in HUTN

1 package product
2 class ProducType
3 float VAT
4 float price
5

6 ProductType Book
7 VAT = 7
8

9 ProductType CD
10 VAT = 1.5
11

12 Book mobyDick
13 price = 10
14

15 CD TheSuburbs
16 price = 16
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In the future, a Domain Specific Language could be developed using the

HUTN interface that is described in Section 9 Extending the HUTN. An ex-

tension that allows to import OCL constraints in the HUTN, like the require
mechanism in Kermata, could be a possibility. Potencies, like in metaDepth,

can be added to ArkM3 and the HUTN. There is also an issue concerning types,

the primitive types should be singleton types. But at the moment this is impos-

sible, because a singleton node has no Himesis presentation. Some other future

work is a pretty printer that prints ArkM3 to Javascript, because AToMPM is

written in Javascript. An editor for the HUTN with syntax highlighting and

early error detection is also a nice feature for in the future.
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12. Appendix

Appendix A. Comparison

Comparison of compiler-compilers
with Python support

Jelle Slowack

Abstract

Writing a compiler from scratch is a lot of work and compiler-compilers or compiler generators
address this problem. A compiler-compiler is a tool that uses a formal description of a language
to generate a parser. Thereafter this parser could be used to build a compiler. This report
focusses on three tools that generate python code or in other words where python code is the
target language. The three tools are SableCC, ANTLR and PLY. Different criteria will be used
to compare these tools: workflow, tree construction, visitor pattern, elegance, python support,
tool support, documentation, island grammars and scalability.

Keywords: compiler-compiler, compiler generator, parser generator, ANTLR, SableCC, PLY,
Python
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1. Introduction

1.1. Compilers, Lexers and Parsers

“To translate a program from one language into another, a compiler must first pull it
apart and understand its structure and meaning, then put it together in a different
way.”

Andrew W. Appel (Lexical Analysis)[1]

A compiler usually consists of a lexer and parser. The lexer pulls an input stream apart by break-
ing it into tokens. This process of forming tokens from an input stream is called tokenization.
An example of tokens that are formed from an input stream that contains following expression
total = 4 + 8.2 is given below:

1 I d e n t i f i e r AssignmentOperator I n t e g e r PlusOperator Real

These tokens correspond to the input stream, namely:

• Identifier corresponds to total;

• AssignmentOperator corresponds to =;

• Integer corresponds to 4;

• PlusOperator corresponds to +;

• Real corresponds to 8.2.

This token stream is passed onto the parser. The parser has mainly two functions:

1. conformance checking: it checks if the token stream conforms to the definition of the
language (ie. the syntax);

2. building a parse tree: this tree represents the syntactic structure of a token stream.

In this report, the language definition is described using a context-free grammar, this grammar
defines the structure of the language by means of grammar rules (ie. productions). A grammar
supporting the structure of previous expression (total = 4 + 8) is of the form:

1 ass ignment −> I d e n t i f i e r AssignmentOperator expr
2 expr −> number PlusOperator number
3 number −> I n t e g e r | Real

The example provides three productions: assignment, expr and number. A production starts
with the name of the production on the left-hand side (eg. assignment). The right-hand side
is the specification of the production. This specification has zero or more terminals and/or
nonterminals. A terminal refers to a token type (eg. Identifier) and a nonterminal refers to a
production rule that has the same name (eg. number).

A parser uses these grammars and his productions to do conformance checking and to build
up a parse tree. The parse tree could be seen as the path of the parser through the grammar.
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expr

PlusOperatornumber number

Integer Real

AssignmentOperator

assignment

Identifier expr

Figure 1: Parse tree for total = 4 + 8.2 using the previous grammar

compiler-
compiler

grammar generated
parser

input file

parse tree

Figure 2: Schematic overview of a parser generator

1.2. Compiler-Compiler

Writing a compiler from scratch is a lot of work, because the programmer has to write the
grammar and the code for the parser and lexer. Compiler-compilers or compiler generators
address this problem. These tools use a formal language description to generate a compiler.
In this description the user defines the tokens and productions. In this way, the programmer
does not have to write the basic code for the parser and lexer. The most common form of a
compiler-compiler is a parser generator. The output of a parser generator is the source code of
the parser (and lexer). The input is a formal description that is defined in a grammar. The
generated parser is able to parse an input file according to the syntax defined in the grammar.
A schematic overview can be found in Figure 2.

1.3. Tree Construction

As mentioned in the previous paragraphs a parser generates a parse tree or in other words
a syntax tree (because it represents the syntax). There are two kinds of syntax trees, namely a
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Integer Real

assignment

Identifier plus

Figure 3: AST for total = 4 + 8.2 using the previous grammar

concrete syntax tree (CST) and an abstract syntax tree (AST). A CST is a normal parse tree
that conforms exactly with the syntactic structure of the grammar. An AST is more an abstract
representation of the syntactic structure, ie. it does not represent every detail that appears in
the real syntax. Figure 1 is the CST for the expression total = 4 + 8.2 and Figure 3 is the
AST.

1.4. Types of Parsers

There are essentially two types of parsing[2]:

1.4.1. Top-down parsers

Top-down parsers generate a parse tree by starting at the root of the tree (the start sym-
bol), expanding the tree by applying productions in a depth-first manner. A top-down parse
corresponds to a preorder traversal of the parse tree. The weakness of top-down parsing is its
predictiveness, because parsers have to predict the production that is to be matched. LL parsers
are examples of top-down parsers. The L stands for ”Left to right” as the parser reads the input
from left to right and the L stands for Leftmost derivation, this means the leftmost nonterminal1

is always derived;

1.4.2. Bottom-up parsers

Bottom-up parsers generate a parse tree by starting at the tree’s leaves and working toward
its root. This technique is more powerful because the predictiveness is eliminated. These parsers
only select a production if the entire right-hand side matches. A bottom-up parse corresponds to
a postorder traversal of the parse tree. The most common bottom-up parsers are the shift-reduce
parsers. The parser shifts symbols onto the parse stack and reduces a string of symbols located at
the top of the stack to one of the grammar’s nonterminals. The following example2, in Listing 1
and Listing 2, explains the shift and reduce actions.

1Terminal symbols describe the input, while nonterminal symbols describe the tree structure behind the input.
2Example adapted from http://en.wikipedia.org/wiki/Bottom-up parsing
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Listing 1: Sentence Grammar

1 Sentence := NounPhrase VerbPhrase
2 NounPhrase := Art Noun
3 VerbPhrase := Verb | Adverb Verb
4 Art := ’ the ’ | ’ a ’
5 Verb := ’ jumps ’ | ’ s ings ’
6 Noun := ’ dog ’ | ’ cat ’

Listing 2: Bottom-up parsing using shift and reduce on input: ”the dog jumps”

1 Stack Input Sequence
2 ( ) ( the dog jumps )
3 ( the ) ( dog jumps ) SHIFT word onto s tack
4 ( Art ) ( dog jumps ) REDUCE us ing grammar r u l e
5 ( Art dog ) ( jumps ) SHIFT . .
6 ( Art Noun) ( jumps ) REDUCE. .
7 ( NounPhrase ) ( jumps ) REDUCE
8 ( NounPhrase jumps ) ( ) SHIFT
9 ( NounPhrase Verb ) ( ) REDUCE

10 ( NounPhrase VerbPhrase ) ( ) REDUCE
11 ( Sentence ) ( ) SUCCESS

LR parsers are examples of bottom-up parsers. The L stands for ”Left to right” as the parser
reads the input from left to right and the R stands for Rightmost derivation, this means the
rightmost nonterminal is always derived. There are different types of LR parsers[2]:

• SLR parsers or Simple LR parsers have the simplest implementation. They do not have
to scan through the possible reductions, because there is at most one reduction;

• LALR parsers are the intermediate form. They have smaller parse tables, because they
reduce the amount of reductions. LALR parsers can handle more languages than SLR
parsers and they are very efficient;

• LR parsers are the most powerful parsers. They can parse a larger set of languages com-
pared with LALR and SLR, however they have much bigger parse tables which results in
low efficiency.

1.4.3. Top-down (LL) vs. Bottom-up (LR)

A big difference between LL and LR grammars is that an LL grammar requires:

• eliminating left recursion: LL can’t handle left recursion, because it will recurse forever
due to the leftmost derivation;

Listing 3: Expression grammar using left recursion

1 Expr := Expr + Number
2 | Expr − Number
3 | Number

Listing 4: Expression grammar without left recursion

1 Expr := Number Expr 2
2 Expr 2 := + Number Expr 2 ? | − Number Expr 2 ?

• factoring common prefixes: this is required when two or more grammar rule choices
share a common prefix string. This is necessary because LL parsing requires selecting an
alternative based on a fixed number of input tokens. The if-then-else-grammar is a
famous example that shares a common prefix string.
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Figure 4: A hierarchy of grammar classes[1]

Listing 5: if-then-else grammar

1 S := i f expr then S e l s e S
2 | i f expr then S
3 | other

Listing 6: The left-factored form of the if-then-else grammar

1 S := i f expr then S E | other
2 E := ( e l s e S )?

LR parsing can handle a larger range of languages than LL parsing. Figure 4 shows the
difference between the several grammar classes. The number (0,1,k) between parentheses denotes
the lookahead. This is the amount of tokens that the parser can look ahead at the next tokens
in order to decide what to do.

1.5. Island Grammars

There is also a special type of grammar that allows to embed another grammar in itself,
this is called island grammars. For instance a HTML grammar should support the embedding
of javascript code. In this case there are two grammars: a HTML grammar and a javascript
grammar. The javascript grammar is embedded in the HTML grammar.
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2. SableCC3

2.1. Workflow

Steps to build a compiler using SableCC3:

1. Create a SableCC grammar containing the lexical definitions and the productions of the
language to be compiled. The productions will define the concrete syntax tree and it is
possible to modify this tree in an abstract syntax tree via rewrite rules, see section 2.2;

2. Launch SableCC on the grammar file to generate a framework. Use SableCC.altgen[3] (not
the normal SableCC version) to generate Python code: eg. java -jar lib/sablecc.jar

-t python grammar.g. This command will generate the parser, lexer and walkers corre-
sponding to the language defined in the grammar;

3. Create one or more working classes, possibly inheriting from classes generated by SableCC.
Write the action code here;

4. Create a main compiler class that activates lexer, parser and working classes.

2.2. Tree construction

This section will handle the construction of a concrete syntax tree and subsequently an
abstract syntax tree in SableCC3.

2.2.1. Concrete Syntax Tree

The concrete syntax tree is defined in an EBNF-like syntax in the productions section of a
grammar. The CST is explained by means of an example for simple arithmetic expressions such
as (1 + 2). This example is adapted from an article written by Nat Pryce[4].

Listing 7: Example Simple Expressions in SableCC3

1 Tokens
2 add = ’+ ’ ;
3 sub = ’− ’ ;
4 mul = ’ ∗ ’ ;
5 div = ’ / ’ ;
6 l e f t p a r e n = ’ ( ’ ;
7 r i g h t p a r e n = ’ ) ’ ;
8 number = [ ’ 0 ’ . . ’ 9 ’ ]+ ;
9 whitespace = ( ’ ’ ) ∗ ;

10

11

12 Ignored Tokens
13 whitespace ;
14

15

16 Product ions
17 expr = {add} [ l e f t ] : expr add [ r i g h t ] : f a c t o r
18 | { sub} [ l e f t ] : expr sub [ r i g h t ] : f a c t o r
19 | { f a c t o r } f a c t o r ;
20

21 f a c t o r= {mul} [ l e f t ] : f a c t o r mul [ r i g h t ] : va lue
22 | {div } [ l e f t ] : f a c t o r div [ r i g h t ] : va lue
23 | { value } value ;
24

25 value = {number} number
26 | {paren} l e f t p a r e n expr r i g h t p a r e n ;

• In this example expr is a production that has 3 alternatives;
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• An alternative has zero or more elements and each element is either a production name or
a token name;

• An alternative is named by placing the name between curly brackets at the beginning of
the alternative. If there is no name for an alternative, then SableCC will give it the name
of the production prefixed by an ’A’. So when there is more than one alternative, it is
obliged to give each alternative a name. Otherwise SableCC will generate two classes with
the same name and you will get an error.
Example: production factor has three alternatives named mul, div, value;

• The name of each element is defined inside square brackets followed by a colon and the
element itself. The naming of elements is required when there is more than one element of
the same type.

When a grammar is finished, it is time for SableCC3 to generate the framework. The gener-
ated parser class will automatically build a typed CST, while parsing the input. The nodes in the
tree are represented by the Node class. Each production is represented by an abstract production
class (that inherits from the Node class) and each alternative of a production is represented by
a alternative class (that inherits from the production class). 3

These alternative and production classes have names, SableCC naming rules are as follows:

• The classname of a production:
Form: P<production-name-capitalized>
Example: PExpr

• The classname of an alternative:
Form: A<alternative-name-capitalized><production-name-capitalized>
Example: AAddExpr
(alternative: expr = {add} [left]:expr add [right]:factor )

The CST for the expression grammar defined above will look like Figure 5 on page A - 11.
The CST is quite large for such a simple expression, so this is not efficient for our walker. So the
next section will point out the transformation from a CST to an AST.

2.2.2. Abstract Syntax Tree

In SableCC3 it is possible to rewrite the CST (the production rules define the CST) into an
abstract syntax tree (AST) using rewrite rules. Rewrite rules are added to the productions to
define how the CST is translated into the AST. The AST itself is defined in the Abstract Syntax
Tree section. Below is an adjusted example using an AST[4]:

Listing 8: Example Simple Expressions in SableCC3 using an AST

1 Tokens
2 add = ’+ ’ ;
3 sub = ’− ’ ;
4 mul = ’ ∗ ’ ;
5 div = ’ / ’ ;
6 l e f t p a r e n = ’ ( ’ ;
7 r i g h t p a r e n = ’ ) ’ ;
8 number = [ ’ 0 ’ . . ’ 9 ’ ]+ ;
9 whitespace = ( ’ ’ ) ∗ ;

3If python output is generated, then there is no abstract production class. Instead, each alternative inherits
directly from the Node class.
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AFactorExpr

AMulFactor

AValueFactor

AParenValue

“(” AAddExpr

AFactorExpr

AValueFactor

ANumberValue

3

+ AValueFactor

ANumberValue

6

“)”

AValueFactor

ANumberValue

9

Figure 5: Concrete Syntax Tree for expression: (3+6)*9
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10

11

12 Ignored Tokens
13 whitespace ;
14

15

16 Product ions
17 expr {−> expr} =
18 {add} [ l ] : expr add [ r ] : f a c t o r {−> New expr . add ( l . expr , r . expr )}
19 | { sub} [ l ] : expr sub [ r ] : f a c t o r {−> New expr . sub ( l . expr , r . expr )}
20 | { f a c t o r } f a c t o r {−> f a c t o r . expr } ;
21

22 f a c t o r {−> expr} =
23 {mul} [ l ] : f a c t o r mul [ r ] : va lue {−> New expr . mul ( l . expr , r . expr )}
24 | {div } [ l ] : f a c t o r div [ r ] : va lue {−> New expr . div ( l . expr , r . expr )}
25 | { value } value {−> value . expr } ;
26

27 value {−> expr} =
28 {number} number {−> New expr . number ( number )}
29 | {parens } l e f t p a r e n expr r i g h t p a r e n {−> expr . expr } ;
30

31

32 Abstract Syntax Tree
33

34 expr = {add} [ l e f t ] : expr [ r i g h t ] : expr
35 | { sub} [ l e f t ] : expr [ r i g h t ] : expr
36 | {mul} [ l e f t ] : expr [ r i g h t ] : expr
37 | {div } [ l e f t ] : expr [ r i g h t ] : expr
38 | {number} number ;

First of all, each production is translated into an abstract expr production. This abstract
production is defined below in the Abstract Syntax Tree section.
eg. factor {-> expr} = [..]

Note: the concrete and abstract syntax reside in separate namespaces, i.e. the expr in curly
brackets written in the productions section points to the expr production defined in the Abstract
Syntax Tree and not to expr in the Productions section.

Secondly, the alternatives of a production (defined in the Productions section of a grammar)
need to match the alternatives of the abstract expr production (defined in the Abstract Syntax
Tree section). These rewrite rules are specified between curly brackets at the end of an alternative.

1 [ . . ]
2 f a c t o r {−> expr} =
3 {mul} [ l ] : f a c t o r mul [ r ] : va lue {−> New expr . mul ( l . expr , r . expr )}
4 [ . . ]

The New keyword defines a new node, in the example above an AMulExpr node is created
and the arguments are the children of this node. In other words, expr.mul matches the mul

alternative in the expr production defined in the Abstract Syntax Tree. The arguments l.expr
and r.expr identify the transformed nodes in the abstract syntax tree, more generally <name

of child>.<transformed type>. It is also possible to ignore an alternative in the Productions
section i.e., this alternative will not appear in the AST. To ignore an alternative, his name
is simply enclosed in parentheses instead of brackets. In the following example the number

alternative is ignored, so the AST will not contain any numbers.

Listing 9: Number alternative ignored

1 expr =
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Figure 6: Abstract Syntax Tree for expression: (3+6)*9

2 [ . . ]
3 | ( number ) number ;

The AST for the same expression we used in Figure 5 can be found in Figure 6 .

2.3. Visitor Pattern

SableCC uses an extended visitor design pattern, that is described in the the thesis ”SableCC,
An Object-Oriented Compiler Framework” by Etienne Gagnon [5]. It is called “extended”,
because it is more generic. The visitors are tree-walkers. By default, SableCC provides two
tree-walker classes. One that visits the nodes in a normal depth-first traversal (i.e. Depth-
FirstAdapter). The second class visits the AST nodes in the reverse depth-first traversal (i.e.
ReversedDepthFirstAdapter). These walkers have methods that are called just before and after
visiting a node while walking in the AST. These methods are named inXxx and outXxx respec-
tively, where Xxx are the types of grammar alternatives (i.e. the types of nodes in the AST). It
is easy to extend the class and override this methods. In this way it is possible to execute action
code before and after the nodeis visited. This approach isolates action code and tree walking
code in their own separate classes. An example of extending the DepthFirstAdapter class can
be found in section 2.8.

2.4. Elegance

In this section the elegance and special features in SableCC are discussed.

2.4.1. Walkers

By default, SableCC provides two tree-walker classes. See previous section 2.3 Visitor Pattern.

2.4.2. Separation action versus grammar

In SableCC it is not possible to write action code in the grammar. Action code is written
by extending the generated SableCC classes. The advantage of this approach is that it is easier
to debug, because the debugging cycle is smaller due to the separation of grammar and action
code, see Figure 7. This enables interactive debugging in an IDE. Separating the code from the
grammar is cleaner than writing code in the grammar.
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Figure 7: Traditional versus SableCC actions debugging cycle[5]
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2.4.3. Lexer States

Each state is associated with a set of tokens. When the lexer is in a state, only the tokens
associated with this state are recognized. States can be used for many purposes. For example,
they can help detecting a “beginning of line”-state, and recognize some tokens only if they ap-
pear at the beginning of a line. Lexer States are also very useful for making island grammars
(see 2.8). Of course, if there are states, there must be a mechanism to have transitions from one
state to another state. In SableCC, state transitions are triggered by token recognition. Every
time a token is recognizing, the lexer applies the transition specified for the current state and
the recognized token. States and state transitions are defined in curly brackets before the token.

The purpose of the following example is to recognize when the parser is at the beginning of
a line. There are two states: bol (beginning of line) and inline. The char token defines
all characters except the line feed (10) and carriage return (13) character, because those two
characters start a new line. If the char token is recognized and the current state is:

1. bol, then state inline should be selected, because there is no new line. This is defined by
bol->inline on line 4.

2. inline, then we stay in this state, because there is no new line. This is defined by inline

on line 4.

The eol token defines the characters that start a new line.

Listing 10: Example Beginning of Line state

1 Sta t e s
2 bol , i n l i n e ;
3 Tokens
4 {bol−>i n l i n e , i n l i n e } char = [ [ 0 . . 0 x f f f f ] − [ 10 + 1 3 ] ] ;
5 {bol , i n l i n e−>bol } e o l = 10 | 13 | 10 13 ;

2.5. Python support

There is an external module that supports alternative output, developed by Indrek Man-
dre [3]. The python backend is developed by Fidel Viegas. The problem is that it is built on
SableCC3-beta3 and the last update was on 14-11-2004. In 2005, SableCC3.0 was released and
meanwhile there is SableCC3.2. So there is no Python support for this version.

Another problem is that the generated parser contains a bug, ie. the read method in Push-
backReader is broken. You can fix this by replacing the generated read method by the method
provided in Listing 11.

Listing 11: Fixed PushbackReader read method

1 c l a s s PushbackReader ( ob j e c t ) :
2 [ . . ]
3 de f read ( s e l f , l =1): #f i x e d
4 i f ( l en ( s e l f . s t a c k ) > 0 ) :
5 r e turn s e l f . s t a c k . pop ( )
6 r e turn s e l f . r e a d e r . read ( l ) #f i x e d

To conclude, there is Python third-party support for SableCC but it’s unreliable (bugs, not
maintained,..).

2.6. Tool Support

There is no specific tool support for SableCC3, but once the code is generated you can make
use of the tools of the appropriate programming language (debugging, syntax highlighting,..).
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2.7. Documentation

Documentation is scarce. There is a thesis [5] and there are some links to tutorials on the
official site [6]. For Python generation there is no documentation and there are no examples.

2.8. Island Grammars

Using an example, this section will explain that it is possible to create island grammars in
SableCC3. This example will extend the existing SableCC 3 grammar for simple arithmetic
expressions by allowing PHP[7] expressions. The evaluation of the PHP expressions is done by
another existing PHP4 grammar[8].

In the original simple arithmetic grammar it is possible to write the following expressions:

1 + (2 ∗ 3 ) ;
55 / 1 ;
5

The goal is to adjust this grammar so that it is also possible to write PHP expressions:

1 + (2 ∗ 3 ) ;
55 / 1 ;
<?php echo ” bla ” ; ?>;
5

PHP expressions are written within the <?php .. ?> tag. The key to island grammars in
SableCC are lexer states. In this example there are two lexer states: php and normal. The php
state is used to recognize the <?php .. ?> tag and the normal state is used for expressions (i.e.
the normal behavior of the grammar). The following listing contains the original token list of
the simple expressions grammar:

1 Tokens
2 l p a r = ’ ( ’ ;
3 r pa r = ’ ) ’ ;
4 plus = ’+ ’ ;
5 minus = ’− ’ ;
6 mult = ’ ∗ ’ ;
7 div = ’ / ’ ;
8 semi = ’ ; ’ ;
9

10 blank = blank ;
11 number = d i g i t +;

First of all there should be two states: php and normal. Secondly three tokens need to be added
for recognition of the PHP expression:

1. php start: this is the start tag <?php and handles the transition to the php state.

2. php body: this contains the php code.

3. php end: this is the end tag ?> and handles the transition to the normal state.

Now the modified token list of our grammar looks like this:

1 Sta t e s
2 normal , php ;
3

4 Tokens
5 {normal−>php , php} php s ta r t = ’<?php ’ ;
6 {php} php body =[ a l l − [ ’ ? ’ + ’ > ’ ] ]∗ ;
7 {php−>normal , normal} php end = ’? > ’ ;
8

9 {normal} l p a r = ’ ( ’ ;
10 {normal} r pa r = ’ ) ’ ;
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11 {normal} plus = ’+ ’ ;
12 {normal} minus = ’− ’ ;
13 {normal} mult = ’ ∗ ’ ;
14 {normal} div = ’ / ’ ;
15 {normal} semi = ’ ; ’ ;
16

17 {normal} blank = blank ;
18 {normal} number = d i g i t +;

Our modified grammar is finished and it is time for SableCC to generate the Python classes
(parser, tree, node, walkers). Once this is done, it is important to change the “read” bug in the
PushbackReader class as mentioned in Listing 11 on page A - 15. The last step is the creation
of the compiler class in Python using the generated classes (Listing 12).

• On line 3: import the parser.py file, this file contains all generated classes.

• On line 5: define that the file to compile is given as an argument, so the compiler script is
used in this way:
$ python compiler.py test.php

• On line 9: define the walker class, this class overrides the outAPhpExp method. These
methods are explained in section 2.3. In this case it means, that outAPhpExp is called
right after the node APhpExp is visited. In this way it is possible to get the body of the
PHP expression (node.getPhpBody() on line 11) and compile it using a PHP compiler.
Because the PHP4 SableCC parser[8] is written in Java and not in Python, the .jar file
is executed via commands[9]. In Python it would be easier, because we just had to call a
python compiler class.

Listing 12: compiler.py

1 import sys
2 import commands
3 from par s e r import ∗
4

5 #f i l ename as argument
6 f = sys . argv [ 1 ]
7 t = open ( f , ” r ”)
8

9 c l a s s MyPhpWalker( DepthFirstAdapter ) :
10 de f outAPhpExp( s e l f , node ) :
11 phpcode = node . getPhpBody ( ) . getText ( ) . r e p l a c e ( ’ ” ’ , ’\\” ’ )
12 cmd = ’ echo ”<?php ’+phpcode+’?>” | ’ ;
13 cmd += ’ java −cp php4/ l i b / php4sablecc . j a r : : php4/ c l a s s e s / TestParser ’
14 d = commands . ge t s ta tusoutput (cmd)
15 pass
16

17 #c r e a t e par s e r
18 p = Parser ( Lexer ( PushbackReader ( t ) ) )
19

20 #parse !
21 t r e e = p . parse ( )
22

23 #apply the walker .
24 t r e e . apply (MyPhpWalker ( ) )

The original simple arithmetic expressions grammar can be found in Appendix A on page A
- 37, the modified grammar in Appendix B on page A - 41
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2.9. Scalability

SableCC is a LALR(1) parser (bottom-up). LR parsing can handle a larger range of languages
than LL parsing.

2.10. SableCC4

Currently Etienne M. Gagnon is working on a complete rewrite of SableCC (i.e. SableCC4)
that has many new features:

• Improved lexer engine (additional operators, lookahead, and more).

• Improved parser engine (linear approximate LR(K) parsing, semantic selectors, and more).

• Improved conflict reporting (enabling LR grammar debugging).

• Flexible code generation (to enable back-ends for various languages).

• Improved syntax for CST-AST transformations.

But the date of the release of SableCC4 is not known.
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3. ANTLRv3

3.1. Workflow

Steps to build a compiler using ANTLRv3:

1. Open the ANTLRWorks IDE and create a grammar which contains the tokens, parser and
lexer rules. Make sure the target language is set to Python. This is discussed in more
detail in section 3.2;

2. Generate the parser and lexer code using shortcut CTRL+Shift+G or by clicking in
the menu bar. It is also possible to generate your code via command-line: java -jar

antlr-3.1.3.jar grammar.g;

3. Create a Python file and import the lexer and parser. An example is given in Listing 13;

4. Start building a compiler.

Listing 13: ANTLR example that prints the syntax tree

1 import sys
2 import a n t l r 3
3 from te s tLexe r import t e s tLexe r
4 from t e s t P a r s e r import t e s t P a r s e r
5 f = sys . argv [ 1 ]
6 t = open ( f , ” r ”)
7 char stream = a n t l r 3 . ANTLRInputStream( t )
8 l e x e r = te s tLexe r ( char stream )
9 tokens = a n t l r 3 . CommonTokenStream( l e x e r )

10 par s e r = t e s t P a r s e r ( tokens )
11 t ry :
12 r = par s e r . expr ( )
13 pr in t r . t r e e . toSt r ingTree ( )
14 except a n t l r 3 . Recognit ionExcept ion :
15 t raceback . p r i n t s t a c k ( )

3.2. Tree construction

3.2.1. Grammar Basics

As in SableCC, this section will also consider a simple grammar that accepts simple arithmetic
expressions. Grammars in ANTLR have four important sections:

1. Options, here the target language (Python) of the compiler compiler, the output of the
parser (AST) and eventually other options are defined;

2. Tokens contains the list of tokens;

3. Parser rules define the matching rules for the parser (these are like the productions in
SableCC) and they start with a lowercase letter. Parser rules can have multiple alternatives
and ANTLR takes care of the names. Parser rules may reference literals, parser and lexer
rules, but never only literals;

4. Lexer rules define the matching rules for the lexer and they start with an uppercase letter.
Lexer rules contain only either literals or references to other lexer rules.

Listing 14: Example simple expressions in ANTLRv3

1 grammar SimpleCalc ;
2

3 opt ions {
4 language = Python ;
5 output=AST;
6 }
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7

8 tokens {
9 PLUS = ’+ ’ ;

10 MINUS = ’− ’ ;
11 MULT = ’∗ ’ ;
12 DIV = ’/ ’ ;
13 }
14

15 /∗−PARSER RULES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
16 expr : term ( ( PLUS | MINUS ) term )∗ ;
17 term : f a c t o r ( ( MULT | DIV ) f a c t o r )∗ ;
18 f a c t o r : NUMBER ;
19

20

21 /∗−LEXER RULES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
22 NUMBER : (DIGIT)+ ;
23 fragment DIGIT : ’ 0 ’ . . ’ 9 ’ ;
24 WS : ( ’ ’ | ’ \ t ’ | ’ \ n ’ )+ ;

The default behavior of ANTLR is that the lexer rule names are automatically elevated into token
status. The only difference between the lexer rules and the token section is that the token section
is prioritized over the lexer rule. For instance, suppose there is token defined that only matches
the keyword “import”. Then it would also match the more general lexer rule “(’a’..’z’)+”.
But due to the prioritization the import token will be used and not the lexer rule.

In Listing 14, DIGIT is prefixed by the keyword fragment. This means that the lexer rule is
not elevated into token status. In other words, it cannot be used by a parser rule and is used to
improve the readability of the grammar.

3.2.2. Abstract Syntax Tree

ANTLR provides two mechanisms for the creation of Abstract Syntax Trees: via operators
or via rewrite rules. There are two kinds of operators:

• ! excludes a node or subtree;

• ^ makes the node root of subtree.

In the following listing, PLUS or MINUS is the root in each expr (parser rule) and DIV or MULT
is the root in each term (parser rule).

1 /∗−PARSER RULES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
2 expr : term ( ( PLUS | MINUS )ˆ term )∗ ;
3 term : f a c t o r ( ( MULT | DIV )ˆ f a c t o r )∗ ;
4 f a c t o r : NUMBER ;

Figure 8 on page A - 21 shows the AST for expression 3*2+5.
The rewrite rules are something similar like the SableCC rewrite rules. The rewrite syntax is

more powerful than the operators, because now it is possible to reorder the elements in a rule.
Suppose that variables are also supported in our grammar and tokens NEWLINE and TYPE
are added. In this case rewrite rules are used:

1 s t a t : expr NEWLINE −> expr
2 | TYPE ID ’= ’ expr NEWLINE −> ˆ( ’= ’ ID TYPE expr )

This is impossible when using operators, because it is impossible to rearrange the order of
elements in a rule.

3.3. Visitor Pattern

It is possible to apply the visitor pattern, but you have to write a tree walker all by yourself[10].
This is not user-friendly because the parser is rather complicated.
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Figure 8: Abstract Syntax Tree for expression: 3*2+5

3.4. Elegance

In this section the elegance and special features in ANTLR are discussed.

3.4.1. Actions

It is possible to add action code in your grammar written in the target language4. In our
case the target language is Python. These actions are executed when the parsers encounters it.
Actions are written between curly brackets. The following example just prints out the number.

1 /∗−PARSER RULES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
2 expr : term ( ( PLUS | MINUS ) term )∗ ;
3 term : f a c t o r ( ( MULT | DIV ) f a c t o r )∗ ;
4 f a c t o r : NUMBER { pr in t $NUMBER. getText ( ) } ;

3.4.2. Syntactic Predicates

A syntactic predicate specifies the validity of applying a rule. Suppose we would write our
expr rule of Listing 14 in this way:

1 expr : term (PLUS term )∗
2 | term (MINUS term ) ∗ ;

ANTLR would give an error stating that the following alternatives can never be matched. Be-
cause ANTLR is a LL parser and alternatives cannot have common prefixes, see “factoring
common prefixes” on page A - 7. In this case both alternatives have a common prefix (i.e.
term). To get rid of this conflict, syntactic predicate are used. ANTLR evaluates the predicate
and if the predicate matches his token stream, the alternative of the predicate will be selected.
A syntactic predicate is of the form: (PREDICATE) => RULE

Listing 15: Modified expr rule using a syntactic predicate

1 expr : ( term PLUS term)=> term (PLUS term )∗
2 | term (MINUS term ) ∗ ;

3.4.3. Semantic Predicates

A semantic predicate is a way to enforce extra (semantic) rules upon grammar actions using
plain code.

There are 3 types of semantic predicates (note that RULE is a placeholder for a parse rule):

4The target language of ANTLR is defined in the options section of your grammar.
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1. Validating semantic predicates :
RULE {boolean-expression}?
If the boolean expression returns false, then a FailedPredicateException is thrown and
parsing fails.

2. Gated semantic predicates :
{boolean-expression}?=> RULE

If the boolean expression returns false, then a syntax error is produced and parsing fails.
The difference with a validating semantic predicate is that the boolean expression is before
the rule (instead of after the rule) and a syntax error is produced (instead of an exception).

3. Disambiguating semantic predicates :
{boolean-expression}? RULE

If the boolean expression returns false, the rule is ignored.

An example of a disambiguating semantic predicate (line 13) is given below. In this example the
parser wants a distinction between low and high numbers.

Listing 16: An example of a disambiguating semantic predicate

1 grammar Numbers ;
2

3 parse
4 : atom ( ’ , ’ atom )∗ EOF
5 ;
6

7 atom
8 : low {System . out . p r i n t l n (” low = ” + $low . t ext ) ; }
9 | high {System . out . p r i n t l n (” high = ” + $high . t ex t ) ; }

10 ;
11

12 low
13 : { I n t e g e r . valueOf ( input .LT( 1 ) . getText ( ) ) <= 500}? Number
14 ;
15

16 high
17 : Number
18 ;
19

20 Number
21 : D ig i t D ig i t D ig i t
22 | Dig i t D ig i t
23 | Dig i t
24 ;
25

26 fragment Dig i t
27 : ’ 0 ’ . . ’ 9 ’
28 ;
29

30 WhiteSpace
31 : ( ’ ’ | ’\ t ’ | ’\ r ’ | ’\n ’ ) { sk ip ( ) ; }
32 ;

3.5. Python support

Python is a standard target language in ANTLR maintained by Benjamin Niemann[11]. Right
now the Python target is only functional up to v3.1.3, while the latest version of ANTLR is v3.4.
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3.6. Tool Support

ANTLRWorks[12] provides syntax highlighting and completion on grammar elements. It
allows the programmer to enter test fragments to parse. However there is no highlighting/com-
pletion for the code inside actions.

The ANTLRWorks debugger for Python is still in early development[11]. Tree parsers are
currently not supported, but token parsers should work (with and without AST generation).
There is also an Eclipse plugin for ANTLR (ANTLR IDE[13]) that supports some simple syntax
highlighting for Python.

3.7. Documentation

The amount of documentation is huge. There is a large website5, containing lots of infor-
mation. Most of the documentation is for the target language Java, but that is not a problem
because the construction of (tree) grammars in ANTLR is important and that is for each tar-
get language (almost) the same6. Moreover, there is enough documentation for target language
Python:

• Antlr3PythonTarget:
http://www.antlr.org/wiki/display/ANTLR3/Antlr3PythonTarget

• Python ANTLR Run-Time documentation:
http://www.antlr.org/wiki/display/ANTLR3/Python+runtime

• Python ANTLR API documentation:
http://www.antlr.org/api/Python/index.html

Sometimes the example and instructions are outdated. There is also a book[14] about ANTLR.

3.8. Island Grammars

Island grammars are possible in ANTLR. This section will explain it using an example inspired
from an existing example7. In our existing SimpleCalc grammar, defined in Listing 14, it is not
possible to use PHP expressions. A SimplePHP grammar will be embedded into the existing
grammar to solve this problem. There is no PHP grammar available at this moment and writing
a new PHP grammar in PLY is outside the scope of this report. Thus SimplePHP is just a
simple grammar that can parse the echo expression. Below is an example of an input file that
conforms to the new SimpleCalc grammar, followed by the modified SimpleCalc grammar.

Listing 17: Input file

1 1+1
2 <?php echo ” t e s t ” ; ?>
3 1∗5

Listing 18: Modified SimpleCalc grammar

1 grammar SimpleCalc ;
2

3 opt ions {
4 language = Python ;

5http://www.antlr.org/wiki/display/ANTLR3/ANTLR+3+Wiki+Home
6The names can sometimes be different, eg. org.antlr.runtime.CharStream.EOF in Java vs. antlr3.EOF in

Python
7Python Island Grammar in http://www.antlr.org/download/examples-v3.tar.gz
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5 output=AST;
6 }
7

8 tokens {
9 PLUS = ’+ ’ ;

10 MINUS = ’− ’ ;
11 MULT = ’∗ ’ ;
12 DIV = ’/ ’ ;
13 }Z
14

15 /∗−PARSER RULES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
16 expr : term ( ( PLUS | MINUS ) term )∗ ;
17 term : f a c t o r ( ( MULT | DIV ) f a c t o r )∗ ;
18 f a c t o r : NUMBER ;
19

20

21 /∗−LEXER RULES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
22 NUMBER : (DIGIT)+ ;
23 fragment DIGIT : ’ 0 ’ . . ’ 9 ’ ;
24 WS : ( ’ ’ | ’ \ t ’ | ’ \ n ’ )+ ;
25

26 PHP : ’<?php ’
27 {
28 pr in t ” ente r PHP”
29 import SimplePHPLexer
30 import SimplePHPParser
31 j = SimplePHPLexer . SimplePHPLexer ( s e l f . input )
32 tokens = CommonTokenStream( j )
33 tokens . discardTokenType ( SimplePHPLexer .WS)
34 p = SimplePHPParser . SimplePHPParser ( tokens )
35 p . s t a r t ( )
36

37 $channel = PHP CHANNEL
38 }
39 ;

The only thing that has changed is that there is a new lexer rule PHP at the bottom of the
grammar. This new rule contains an action to call the lexer and parser of the second grammar,
ie. SimplePHP grammar. If the SimplePHP parser recognizes the PHP endtag ?>, the grammar
will change its token via an action in the EOF TOKEN. This will stop the SimplePHP parser
and will return to our SimpleCalc grammar parser.

Listing 19: Javadoc Grammar

1 grammar SimplePHP ;
2

3 opt ions {
4 language=Python ;
5 }
6

7

8 s t a r t : echo ;
9

10 echo : ’ echo ” ’ ID { pr in t $ID . t ext } ’ ” ; ’ ;
11

12 ID : ( ’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’ )+ ;
13

14 END : ’?> ’ { s e l f . s t a t e . token = EOF TOKEN}
15 { pr in t ” e x i t PHP”}
16 ;
17

18 WS : ( ’ ’ | ’ \ t ’ | ’ \ n’)+
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19 ;

Our mini-compiler only uses the SimpleCalc lexer and parser, because the SimplePHP parser
is called inside the SimpleCalc grammar. So the python file will look like this:

Listing 20: compiler.py

1 import sys
2 import a n t l r 3
3 from SimpleCalcLexer import SimpleCalcLexer
4 from SimpleCalcParser import SimpleCalcParser
5

6 cStream = a n t l r 3 . Str ingStream ( open ( sys . argv [ 1 ] ) . read ( ) )
7 l e x e r = SimpleCalcLexer ( cStream )
8 tStream = a n t l r 3 . CommonTokenStream( l e x e r )
9 par s e r = SimpleCalcParser ( tStream )

10 par s e r . expr ( )

3.9. Scalability

ANTLR is a LL(*) parser (top-down). The asterisk defines that it the parser is not restricted
to look only k tokens ahead to make parse decisions. As we have seen in the introduction, LL
parsing can handle less languages than LL parsers, but the generated code of the parser is easier
to understand.

3.10. ANTLRv4

Currently Terence Parr is working on a complete rebuild of ANTLRv3[15].
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4. PLY

4.1. Workflow

PLY (Python-Lexx-Yacc) consists of two separate modules, lex.py and yacc.py, both of which
are found in a Python package called ply. The lex.py (lexer) module is used to break input text
into a collection of tokens specified by a collection of regular expression rules. The yacc.py
(parser) module is used to recognize language syntax that has been specified in the form of a
context free grammar. The two tools are meant to work together. Specifically, lex.py provides
an external interface in the form of a token() function that returns the next valid token on the
input stream. yacc.py calls this repeatedly to retrieve tokens and invoke grammar rules. The
output of yacc.py is often an Abstract Syntax Tree (AST). However, this is entirely up to the
user. If desired, yacc.py can also be used to implement simple one-pass compilers.8

4.2. Tree construction

As mentioned in the previous section: first step is defining a lexer using the lex.py module
and the second step is to define the parser that will output the AST. In this section lexer,
parser and tree construction will be explained by means of an adjusted example from the official
documentation[16]. This example will compile simple arithmetic expressions.

4.2.1. Lexer

Listing 21 defines our lexer for the simple expressions language.

Listing 21: Simple Arithmetic Expressions Lexer: exprlex.py

1 import ply . l e x as l ex
2

3 # L i s t o f token names . This i s always r equ i r ed
4 tokens = (
5 ’NUMBER’ ,
6 ’PLUS’ ,
7 ’MINUS’ ,
8 ’MULT’ ,
9 ’DIV ’ ,

10 )
11

12 # Regular exp r e s s i on r u l e s f o r s imple tokens
13 t PLUS = r ’\+ ’
14 t MINUS = r ’− ’
15 t MULT = r ’\∗ ’
16 t DIV = r ’ / ’
17

18 # A r e g u l a r exp r e s s i on r u l e with some ac t i on code
19 de f t NUMBER( t ) :
20 r ’\d+’
21 t . va lue = i n t ( t . va lue )
22 r e turn t
23

24 # Def ine a r u l e so we can track l i n e numbers
25 de f t new l i n e ( t ) :
26 r ’\n+’
27 t . l e x e r . l i n e n o += len ( t . va lue )
28

29 # A s t r i n g conta in ing ignored c h a r a c t e r s ( spaces and tabs )
30 t i g n o r e = ’ \ t ’

8This introduction is adapted from the official site: http://www.dabeaz.com/ply/ply.html
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31

32 # Error handl ing r u l e
33 de f t e r r o r ( t ) :
34 pr in t ” l i n e ” , t . l e x e r . l ineno , ” : i l l e g a l cha rac t e r ” , t . va lue [ 0 ]
35 t . l e x e r . sk ip (1 )
36

37 # Build the l e x e r
38 l e x e r = l ex . l e x ( )

The tokens variable is just a list of our token names, but it does not define them. Each token is
specified by a regular expression rule. The name of the declaration that specifies a certain token
must have a prefix t followed by the token name. For simple tokens we could write:

1 t DIV = r ’ / ’

Alternatively, if some kind of action code needs to be executed, then a token rule could be
specified as a function:

1 de f t NUMBER( t ) :
2 r ’\d+’
3 t . va lue = i n t ( t . va lue )
4 r e turn t

This token rule matches every number that has one or more digits. Its value is converted to
an int. There is also an important difference between the use of functions or strings, because
functions are matched in order of specification, whereas strings are added after the functions and
are sorted by decreasing regular expression length (longer expressions are added first).

Next there are three special functions defined in our lexer:

1. t newline(t) specifies how the lexer should count line numbers;

2. t ignore is a string that contains ignored characters. Alternatively, it is also possible to
ignore a certain token by prefixing the token with t ignore instead of t or a token rule
that does not return any value is also ignored;

3. t error(t) specifies how the lexer should handle lexer errors. In the example above the
character is skipped and the lexer continues.

There are no reserved words in our lexer, but suppose there were reserved words like IF,
THEN and ELSE. Then there should be a single rule to match an identifier and the type of the
token should be modified if it is a reserver word. In the Listing below, function t ID(t) checks
for reserved words. If it is a reserved word, it changes the token type to the type of the reserved
word. Otherwise it will keep its type ID.

Listing 22: Reserved words

1 r e s e rved = {
2 ’ i f ’ : ’ IF ’ ,
3 ’ then ’ : ’THEN’ ,
4 ’ e l s e ’ : ’ELSE’ ,
5 ’ whi le ’ : ’WHILE’ ,
6 }
7

8 tokens = [ ’MINUS’ , ’PLUS ’ , . . . , ’ ID ’ ] + l i s t ( r e s e rved . va lue s ( ) )
9

10 de f t ID ( t ) :
11 r ’ [ a−zA−Z ] [ a−zA−Z 0−9]∗ ’
12 t . type = re s e rved . get ( t . value , ’ ID ’ ) # Check f o r r e s e rved words
13 r e turn t

This approach reduces the number of regular expression rules.
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4.2.2. Parser

Listing 23 defines our parser for the simple expressions language.

Listing 23: Simple Arithmetic Expressions Parser: expr.py

1 import ply . yacc as yacc
2

3 # Get the token map from the l e x e r . This i s r equ i r ed .
4 from expr l ex import tokens
5

6 de f p e x p r e s s i o n p l u s (p ) :
7 ’ e xp r e s s i on : exp r e s s i on PLUS term ’
8 p [ 0 ] = p [ 1 ] + p [ 3 ]
9

10 de f p expre s s i on minus (p ) :
11 ’ e xp r e s s i on : exp r e s s i on MINUS term ’
12 p [ 0 ] = p [ 1 ] − p [ 3 ]
13

14 de f p expre s s i on t e rm (p ) :
15 ’ e xp r e s s i on : term ’
16 p [ 0 ] = p [ 1 ]
17

18 de f p term t imes (p ) :
19 ’ term : term MULT fac to r ’
20 p [ 0 ] = p [ 1 ] ∗ p [ 3 ]
21

22 de f p term div (p ) :
23 ’ term : term DIV fac to r ’
24 p [ 0 ] = p [ 1 ] / p [ 3 ]
25

26 de f p t e r m fac to r (p ) :
27 ’ term : f a c to r ’
28 p [ 0 ] = p [ 1 ]
29

30 de f p f a c t o r (p ) :
31 ’ f a c t o r : NUMBER’
32 p [ 0 ] = p [ 1 ]
33

34 # Error r u l e f o r syntax e r r o r s
35 de f p e r r o r (p ) :
36 pr in t ”Syntax e r r o r in input ! ”
37

38 # Build the par s e r
39 par s e r = yacc . yacc ( )
40

41 whi le True :
42 t ry :
43 s = raw input ( ’ c a l c > ’ )
44 except EOFError :
45 break
46 i f not s : cont inue
47 r e s u l t = par s e r . parse ( s )
48 pr in t r e s u l t

This python program will ask for an expression and calculate this expression, this is done in the
while-loop. Each grammar rule is defined as a function and prefixed with p . The first function
is the start symbol. In each function the docstring contains the CFG specification of the rule.
The statements after the string are the actions of that rule. The argument p contains the values
of each symbol in the rule:

1 de f p e x p r e s s i o n p l u s (p ) :
2 ’ e xp r e s s i on : exp r e s s i on PLUS term ’
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3 # ˆ ˆ ˆ ˆ
4 # p [ 0 ] p [ 1 ] p [ 2 ] p [ 3 ]
5

6 p [ 0 ] = p [ 1 ] + p [ 3 ]

In function p expression plus(p) our action code is adding our “expression” (p[1] to the
“term” (p[3]). Because a plus expression is similar to a minus, mult and div expression, this
could be combined:

1 de f p b i n a r y o p e r a t o r s (p ) :
2 ’ ’ ’ e xp r e s s i on : exp r e s s i on PLUS term
3 | exp r e s s i on MINUS term
4 term : term MULT f a c t o r
5 | term DIV fac to r ’ ’ ’
6 i f p [ 2 ] == ’+ ’ :
7 p [ 0 ] = p [ 1 ] + p [ 3 ]
8 e l i f p [ 2 ] == ’− ’ :
9 p [ 0 ] = p [ 1 ] − p [ 3 ]

10 e l i f p [ 2 ] == ’ ∗ ’ :
11 p [ 0 ] = p [ 1 ] ∗ p [ 3 ]
12 e l i f p [ 2 ] == ’ / ’ :
13 p [ 0 ] = p [ 1 ] / p [ 3 ]

4.2.3. Abstract Syntax Tree

PLY provides no special functions for generating an AST. The programmer should construct
it. A very simple way to construct a tree is to propagate a tuple in each grammar rule:

1 de f p e x p r e s s i o n p l u s (p ) :
2 ’ e xp r e s s i on : exp r e s s i on PLUS term ’
3 p [ 0 ] = ( ’+ ’ ,p [ 1 ] , p [ 3 ] )
4

5 de f p expre s s i on minus (p ) :
6 ’ e xp r e s s i on : exp r e s s i on MINUS term ’
7 p [ 0 ] = ( ’− ’ ,p [ 1 ] , p [ 3 ] )
8 . . .

4.3. Visitor Pattern

It is possible, but PLY does not generate a concrete or abstract syntax tree. So first of all
you have to create a tree. Secondly, because PLY does not generate trees it certainly does not
generate walkers or visitors. The programmer has to write everything on its own.

4.4. Elegance

In this section the elegance and special features in PLY are discussed.

4.4.1. Precedence Rules

The expression grammar in section 4.2.2 has been written to eliminate ambiguity (i.e. the
parser does not have multiple options to parse a string), but PLY can handle ambiguity if
there are proper precedence rules defined. This means, if the parser has multiple options, then
precedence rules define the order of precedence for tokens.

Listing 24 shows our modified ambiguous expression specification. It is ambigous because the
parser does not know how to handle for example 1+4*6. Does it means (1+4)*6 or 1+(4*6)?
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Listing 24: Ambiguous Expression Grammar

1 exp r e s s i on : exp r e s s i on PLUS expr e s s i on
2 | exp r e s s i on MINUS expr e s s i on
3 | exp r e s s i on MULT expr e s s i on
4 | exp r e s s i on DIV expr e s s i on
5 | NUMBER

In PLY, a precedence rule assigns a token to a certain precedence level and associativity.
Associativity defines how the parser should handle multiple tokens sharing the same precedence.
There are three types of associativity: left, right and nonassoc. Listing 25 defines the prece-
dence rules in PLY. There are two rules and these rules are ordered from lowest to highest
precedence (eg. 1+2*3 is parsed as 1+(2*3), because MULT has a higher precedence). Each rule
has a left associativity (eg. 1+2-3+4 is parsed as ((1+2)-3)+4. If the associativity of PLUS and
MINUS was set to right, then the expression would be parsed as 1+(2-(3+4)). If it was set to
non-associative, then these tokens (PLUS, MINUS) could not be chained and a syntax error is
raised for this expression).

Listing 25: Precedence Rules

1 precedence = (
2 ( ’ l e f t ’ , ’PLUS’ , ’MINUS’ ) ,
3 ( ’ l e f t ’ , ’MULT’ , ’DIV ’ ) ,
4 )

4.4.2. Parser Library and Encapsulation

PLY is a parser library and not a parser generator (like ANTLR and SableCC). It does not
generate a specific parser using a grammar as input. It provides a Python parser and lexer class,
which are extended by the programmer. Lexer rules are defined in the lexer class, parser rules in
the parser class. This leads to an easy creation of parsers for several different grammars and to
make instances of that parser at the same time. Because it is written by the programmer, it is
easy to understand his own code and he could write the “optimal” parser for his grammar. This
is not the case when using parser generators. Here the code for our parser is generated and it is
harder to understand. It is even harder to change the generated parser to the “optimal” parser.

4.5. Python support

PLY is completely in Python and it is well maintained (last release 17/2/2011).

4.6. Tool Support

There are no tools, just two python modules (lex and yacc). The lexx() and yacc() com-
mands have a debug mode that can be enabled using the debug flag (lex.lex(debug=True)).

4.7. Documentation

The official website9 offers enough documentation and examples.

9http://www.dabeaz.com/ply/

A - 30

121



4.8. Island Grammars

Island grammars are possible in PLY. Section 4.2 defines the expression grammar. A modi-
fication of this grammar that supports php expressions using another php parser is described in
Listing 26 and Listing 27. The PHP token is added to the lexer and a php expression is written
between <? .. ?> tags. In the parser one parse rule is added (p expression php) that will
match the php expressions. The begin and end tag are deleted and the string is passed onto a
PHP parser.

Listing 26: Modified Expression Lexer

1 tokens = [
2 ’NUMBER’ ,
3 ’PLUS’ ,
4 ’MINUS’ ,
5 ’MULT’ ,
6 ’DIV ’ ,
7 ’PHP’ ,
8 ]
9

10 de f t PHP( t ) :
11 r ’<\? .∗ \?> ’
12 r e turn t
13

14 . .

Listing 27: Modified Expression Parser

1 de f p expre s s i on php (p ) :
2 ’ e xp r e s s i on : PHP’
3

4 # s t r i p ’<? ’ and ’?> ’ tags
5 phpst r ing = s t r (p [ 1 ] )
6 phpst r ing = phpstr ing . r e p l a c e (”<?” ,””)
7 phpst r ing = phpstr ing . r e p l a c e (”?>” ,””)
8

9 #parse php
10 par s e r = php parser . PHPParser ( )
11 r e s u l t = par s e r . parse ( phpstr ing )
12 pr in t r e s u l t
13

14 . .

4.9. Scalability

In PLY the programmer may choose between LALR(1) (default) or SLR parsing. Andrew
Dalke stated in his article[17] that in a certain case PLY is 3.7 times faster than ANTLR. This
was expected, because PLY is much lighter. It is actually a Python library and the speed of the
parser is more the responsability of the programmer.
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5. Other Tools

This section will briefly discuss some tools that did not satisfy the criteria, but are still worth
to mention.

5.1. Yapps

Yapps[18] claims that it is designed to be used when regular expressions are not enough
and other parser systems are too much. But this report aims to search for a descent (large)
parser system. Yapps uses LL(1) parsing, which is less powerful than all the other parsing types
discussed in the previous sections.

5.2. PyParsing

The parsing module of PyParsing[19] provides a library of classes that are used to construct
the grammar directly in Python. Disadvantages of using PyParsing:

1. there is no difference between lexer and parser;

2. it is ideal for small and simple grammars;

3. indentation-style blocking is discouraged, PyParsing is not meant to parse indentation-style
blocks.

5.3. Spoofax

Spoofax[20] is a very powerful language workbench for developing textual domain-specific
languages in Eclipse. The programmer can edit and use his language in Eclipse. Spoofax has a
lot of nice features like custom errors, syntax directed editor generation and deploying your own
editor as an Eclipse plugin.

The only problem, in the scope of this report, is that the created language must be used
within Eclipse. There is no generated parser written in Python. The compiler of your language
is actually the Spoofax plugin within Eclipse. This report focusses on an editor-independent
compiler.
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6. Conclusion

SableCC3 ANTLRv3 PLY

Python support ++ ++++ +++++
(unstable) (stable) (python library)

Tree construction +++ +++++ +
(rewrite rules) (rewrite rules, opera-

tors)
(create own tree)

Visitor pattern +++++ ++ +
(extended visitor pat-
tern)

(create own visitor) (create own visitor)

Elegance +++ +++ +++
(walkers, separation
action vs. grammar)

(grammar actions, tree
grammars, predicates)

(precedence rules, en-
capsulation, parser li-
brary)

Tools + +++ ++
(python tools) (ANTLRWorks) (debugger, python

tools)

Documentation + +++++ +++
(no python documen-
tation)

(internet,books) (internet)

Island Grammars ++++ +++ +++++
(lexer states) (it is possible, but

dirty)
(call other parser class)

Scalability +++ +++ ++++
LALR(1) LL(k) LALR(1)

The Python generated code in SableCC3 contains bugs and the alternative output package uses
a beta version of SableCC. In ANTLRv3 the Python support is better: it uses ANTLRv3.1.3
(the latest version is 3.4) and is very stable. The python support for PLY is excellent, because
it is just a Python library.

For tree construction ANTLRv3 does not only offer rewrite rules (like SableCC), but also
operators. The visitor pattern is the flagship of SableCC and the amount of work to achieve this
in ANTLRv3 is high. Trees in PLY are manually created therefore the visitor pattern in PLY is
even harder than in ANTLR (because first a tree class have to be created, before implementing
the visitor pattern).

SableCC is elegant by separating the grammar from the action code, ANTLRv3 is elegant by
giving so much features in the ANTLRWorks IDE and it also supports predicates and actions
inside a grammar. There are many tools available for ANTLRv3, unfortunately the tools for the
Python target language is rather limited. SableCC does not provide any tools, but thanks to the
separation of grammar and action code language-specific tools (like a debugger) could be used.
This is also the case for PLY, additionally there is debug-mode option.

The documentation for SableCC is very scarce and the documentation for the Python target
language does not exist. ANTLRv3 has a gold mine of documentation. PLY provides enough
basic documentation.

Through lexer states it is possible to make island grammars in SableCC in a very clean way.
In ANTLRv3 it is not so clean and action code is used to achieve this. In PLY it is very simple
by calling just another parser class.

In general the python target for SableCC cannot be used, because of bugs. ANTLRv3 is the
most powerful and easiest tool among these three tools (easy tree construction, mixed gram-
mar containing actions and predicates). Using ANTLR the creation of the compiler is quickly
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launched, but when the code is generated and there is a need for walkers visiting the AST, it is
not so straightforward anymore. In the end PLY is faster and it can handle island grammars in
a very clean way. In PLY all the code is just python code and could be easily debugged. There
is more responsability for the programmer. He has to code more, but he also gets more freedom
in his code. Another difference is that ANTLR needs a java program to generate the parser and
PLY is actually just a python library. In my opinion PLY is the best tool for making a compiler
in python.

A - 34

125



7. Bibliography

References

[1] A. W. Appel, Modern compiler implementation in Java, 1997.

[2] C. N. Fischer, R. K. Cytron, J. Richard J. LeBlanc, Crafting a Compiler, 2010.

[3] Indrek Mandre, Indrek’s SableCC page: Alternative output for SableCC 3 (2004).
URL http://www.mare.ee/indrek/sablecc/#altgen

[4] Nat Pryce, Concrete to Abstract Syntax Transformations with SableCC (2005).
URL http://nat.truemesh.com/archives/000531.html

[5] E. Gagnon, Sablecc, an object-oriented compiler framework (March).

[6] SableCC, SableCC Documentation Page.
URL http://sablecc.org/wiki/DocumentationPage

[7] Rasmus Lerdorf, PHP: Hypertext Preprocessor.
URL http://php.net/

[8] Indrek Mandre, Indrek’s SableCC page: PHP 4 grammar for SableCC 3 complete with
transformations (2003).
URL http://www.mare.ee/indrek/sablecc/#php4

[9] Python, 35.16. commands Utilities for running commands Python v2.7.2 documentation.
URL http://docs.python.org/library/commands.html

[10] A. Tripp, Manual Tree Walking Is Better Than Tree Grammars (2006).
URL http://www.antlr.org/article/1170602723163/treewalkers.html

[11] B. Niemann, Antlr3PythonTarget - ANTLR 3 - ANTLR Project.
URL http://www.antlr.org/wiki/display/ANTLR3/Antlr3PythonTarget

[12] Jean Bovet, ANTLRWorks: The ANTLR GUI Development Environment.
URL http://www.antlr.org/works/index.html

[13] E. Espina, ANTLR IDE. An eclipse plugin for ANTLR grammars.
URL http://antlrv3ide.sourceforge.net/

[14] T. Parr, The Definitive Antlr Reference: Building Domain-Specific Languages, Pragmatic
Bookshelf; 1 edition, 2007.

[15] T. Parr, ANTLR v4 plans - Terence Parr - ANTLR Project.
URL http://www.antlr.org/wiki/display/ admin/ANTLR+v4+plans

[16] David M. Beazley, ply official documentation.
URL http://www.dabeaz.com/ply/ply.html

[17] Andrew Dalke, More ANTLR - Java, and comparisons to PLY and PyParsing (2007).
URL http://www.dalkescientific.com/writings/diary/archive/2007/11/03/antlr java.html

[18] A. Patel, Parsing with Yapps.
URL http://theory.stanford.edu/ amitp/yapps/

A - 35

126



[19] P. McGuire, PyParsing.
URL http://pyparsing.wikispaces.com/

[20] E. V. Lennart C. L. Kats, Spoofax.
URL http://spoofax.org

A - 36

127



A
p

p
e
n

d
ix

A
.

O
ri

g
in

a
l

S
im

p
le

A
ri

th
m

e
ti

c
E

x
p

re
ss

io
n

s
G

ra
m

m
a
r

1
/

/
2

/
/

T
h

is
is

a
d

e
m

o
n

s
t
r
a

t
io

n
g
ra

m
m

a
r

f
i
l
e

w
it

h
t
r
a

n
s
fo

r
m

a
t
io

n
r
u

le
s

fo
r

t
h

e
3

/
/

n
ew

S
a

b
le

C
C

3
p

a
r
s
e

r
g

e
n

e
r
a

t
o

r
(

r
e

l
s
a

b
le

c
c
−3
−

b
e
t
a

.3
.

a
lt

g
e

n
.2

0
0

4
0

3
2

7
)

4
/

/
5

/
/

P
o

in
t
s

t
o

re
m

e
m

b
e
r

:
6

/
/

7
/

/
∗

W
h
y

C
S
T

a
n

d
A

S
T

?
D

u
e

t
o

li
m

it
a

t
io

n
s

o
f

p
a

r
s
e

r
t
e

c
h

n
o

lo
g

y
t
h

e
8

/
/

h
u

m
a
n

d
e

s
c

r
ib

e
d

g
ra

m
m

a
r

d
o

e
s

n
o

t
r
e

p
r
e

s
e

n
t

t
h

e
”

p
e

r
fe

c
t

”
a

b
s
t
r
a

c
t

9
/

/
fo

rm
o

f
t
h

e
la

n
g

u
a

g
e

p
a

r
s
e
d

.
T

o
g

e
t

t
h

e
A

S
T

t
r
a

n
s
fo

r
m

a
t
io

n
s

a
r
e

d
o

n
e

.
1
0

/
/

(A
S
T
−

A
b

s
t
r
a

c
t

S
y

n
ta

x
T

re
e

;
C

S
T
−

C
o

n
c
r
e
t
e

S
y

n
ta

x
T

re
e

)
1
1

/
/

1
2

/
/
∗

T
h

e
A

S
T

s
e

c
t
io

n
m

u
st

b
e

c
o

m
p

le
t
e

,
n

o
t
h

in
g

fr
o

m
P

r
o

d
u

c
t
io

n
s

is
1
3

/
/

a
u

t
o

m
a

t
ic

a
ll

y
p

la
c

e
d

t
h

e
r
e

.
1
4

/
/

1
5

/
/
∗

In
c

u
r
ly

b
r
a

c
e

s
a

r
e

t
h

in
g

s
r
e

la
t
e

d
t
o

A
S
T

,
e
g

.
w

e
b

u
il

t
t
h

e
A

S
T

in
1
6

/
/

t
h

o
s
e

t
h

in
g

s
,

s
o

e
v

e
r
y

t
h

in
g

is
b

u
il

t
/

t
r
a

n
s
fo

r
m

e
d

fr
o

m
t
h

e
le

a
v

e
s

t
o

1
7

/
/

r
o

o
t

.
1
8

/
/

1
9

/
/
∗

T
r
a

n
s
fo

r
m

a
t
io

n
is

d
iv

id
e

d
in

t
o

tw
o

p
a

r
t
s
−

p
r
o

d
u

c
t

t
r
a

n
s
fo

r
m

a
t
io

n
2
0

/
/

d
e

c
la

r
a

t
io

n
t
h

a
t

d
e

c
la

r
e

s
w

h
a
t

t
h

e
a

lt
e

r
n

a
t
iv

e
s

s
h

o
u

ld
b

e
2
1

/
/

t
r
a

n
s
fo

r
m

e
d

t
o

a
n

d
a

lt
e

r
n

a
t
iv

e
s

t
r
a

n
s
fo

r
m

a
t
io

n
s

d
e

f
in

it
io

n
s

t
h

a
t

2
2

/
/

d
e

fi
n

e
h

o
w

t
h

e
t
r
a

n
s
fo

r
m

is
a

c
t
u

a
ll

y
d

o
n

e
.

2
3

/
/

2
4

/
/
∗

A
p

r
o

d
u

c
t
io

n
c
a

n
b

e
t
r
a

n
s
fo

r
m

e
d

t
o

m
u

lt
ip

le
e

le
m

e
n

t
s

a
s

s
e

e
n

in
t
h

e
2
5

/
/

’r
a

n
d

o
m

x
2

’
r
u

le
.

2
6

/
/

2
7

/
/
∗

P
r
o

d
u

c
t
io

n
s

w
it

h
sa

m
e

s
t
r
u

c
t
u

r
e

a
s

in
t
h

e
A

S
T

c
a

n
b

e
d

ir
e

c
t

ly
2
8

/
/

t
r
a

n
s
fo

r
m

e
d

t
o

A
S
T
−

s
e

e
t
h

e
’
t
e

x
t
u

a
l

’
r
u

le
.

W
h
a
t

r
e

a
ll

y
h

a
p

p
e
n

s
is

2
9

/
/

t
h

a
t

fo
r

p
r
o

d
u

c
t
io

n
s

a
n

d
a

lt
e

r
n

a
t
iv

e
s

w
it

h
o

u
t

t
r
a

n
s
fo

r
m

s
p

e
c

if
ic

a
t

io
n

3
0

/
/

d
e

fa
u

lt
t
r
a

n
s
fo

r
m

a
t
io

n
r
u

le
s

a
r
e

g
e

n
e

r
a

t
e

d
.

T
h

is
a

ls
o

m
e
a
n

s
t
h

a
t

y
o
u

3
1

/
/

c
o

u
ld

o
m

it
t
h

e
t
r
a

n
s
fo

r
m

d
e

c
la

r
a

t
io

n
a

t
e
x

p
r
u

le
.

3
2

/
/

3
3

/
/
∗

L
is

t
s

it
s
e
e
m

s
a

r
e

r
e

p
r
e

s
e

n
t
e

d
w

it
h

b
r
a

c
k

e
t
s

’[
e
le

m
1

,
e
le

m
2

,
.
.

]
’

a
n

d
3
4

/
/

n
o

t
p

a
r
e

n
t
h

e
s
is

a
s

d
e

s
c

r
ib

e
d

in
t
h

e
d

o
c

.
I
f

e
le

m
e
n

t
is

a
ls

o
a

l
i
s

t
it

3
5

/
/

is
a

u
t
o

m
a

t
ic

a
ll

y
e
x

p
a

n
d

e
d

a
n

d
u

s
e
d

.
E

m
p

ty
l
i
s

t
is

[
]
.

3
6

/
/

3
7

/
/
∗

T
h

e
o

u
t
p

u
t

w
e

g
e

t
fr

o
m

t
h

e
p

a
r
s
e

r
is

a
s

d
e

s
c

r
ib

e
d

in
t
h

e
A

S
T

.
W

e
o

n
ly

3
8

/
/

h
a

v
e

t
o

w
o
rk

w
it

h
t
h

a
t

.
T

h
e

p
r
o

d
u

c
t
io

n
s

s
e

c
t
io

n
is

n
o

lo
n

g
e

r
u

s
e
d

.
3
9

/
/

4
0

/
/
∗

W
h
en

y
o
u

ju
s
t

w
a
n

t
t
o

g
e

t
r
id

o
f

a
p

r
o

d
u

c
t
io

n
d

e
c

la
r
e

a
n

d
d

e
fi

n
e

4
1

/
/

it
a
n

d
it

s
a

lt
e

r
n

a
t
iv

e
s

a
s
{−

>
}

o
r

w
it

h
t
h

e
n

e
w

e
r

s
a

b
le

c
c

r
e

le
a

s
e

A - 37

128



4
2

/
/

y
o
u

c
a

n
ju

s
t

le
a

v
e

it
w

it
h

o
u

t
a
n

y
r
u

le
s

.
S

e
e

t
h

e
’
s
e

p
a

r
a

t
o

r
’

r
u

le
.

4
3

/
/

4
4

/
/
∗

Y
o
u

c
a

n
’
t

p
la

c
e

n
u

ll
−

s
in

t
o

l
i
s

t
s

.
W

h
en

t
h

e
e

x
p

r
e

s
s
io

n
is

n
u

ll
4
5

/
/

(
e

it
h

e
r

b
y

?
)

o
r

d
ir

e
c

t
ly

s
e

t
in

t
r
a

n
s
fo

r
m

a
t
io

n
a
n

d
is

la
t

e
r

a
d

d
e
d

4
6

/
/

t
o

a
l
i
s

t
−

it
is

e
li

m
in

a
t
e

d
b

y
S

a
b

le
C

C
.

4
7

/
/

4
8

/
/
∗

W
it

h
t
h

e
la

t
e

s
t

s
a

b
le

c
c

r
e

le
a

s
e

’?
’

a
n

d
’+

’
a

r
e

s
u

p
p

o
r
t
e
d

in
4
9

/
/

t
h

e
A

S
T

s
e

c
t
io

n
.

T
h

e
y

a
r
e

a
ls

o
e

n
fo

r
c

e
d

fr
o

m
p

r
o

d
u

c
t
io

n
s

.
5
0

/
/

Y
o
u

’
l
l

s
e

e
w

h
en

e
r
r
o

r
s

s
t
a

r
t

p
o

p
p

in
g

u
p

.
5
1

/
/

5
2

/
/
∗

In
t
h

e
p

r
o

d
u

c
t

t
r
a

n
s
fo

r
m

a
t
io

n
d

e
c

la
r
a

t
io

n
y

o
u

c
a

n
s

im
il

a
r

il
y

u
s
e

5
3

/
/

r
e
n

a
m

in
g

in
t
h

e
s
t
y

le
’p

ro
d

u
c
tn

a
m

e
{

.
.

[
u

s
e

n
a

m
e

]
:
n

a
m

e
.
.
}

=
.
.

’
5
4

/
/

T
h

is
c
a

n
b

e
v

e
r
y

u
s
e

fu
l

w
h

en
u

s
in

g
m

u
lt

ip
le

e
le

m
e

n
t
s

o
f

t
h

e
sa

m
e

t
y

p
e

5
5

/
/

a
t

t
r
a

n
s
fo

r
m

.
S

e
e

t
h

e
’r

a
n

d
o

m
x

2
’

r
u

le
fo

r
e
x

a
m

p
le

.
5
6

/
/

5
7

/
/

W
r
it

t
e
n

b
y

In
d

r
e
k

M
a
n

d
re

<
in

d
r
e

k
(

a
t

)
m

a
re

.
e
e
>

in
J

u
ly
−

A
u

g
u

st
2

0
0

3
5
8

/
/

E
x

a
m

p
le

c
o

n
s
t
r
u

c
t
e

d
fr

o
m

t
h

e
S

a
b

le
C

C
d

o
c
s
/

K
e
v

in
A

g
b

a
k
p

em
a
n

d
5
9

/
/

E
t
ie

n
n

e
B

e
r
g

e
r
o

n
e−

m
a

il
.

h
t
t
p

:/
/
w

w
w

.
m

a
re

.
e
e

/
in

d
r
e

k
/

s
a

b
le

c
c

/
6
0

/
/

6
1

6
2

P
a

c
k

a
g

e
e

x
p

r
e

s
s
io

n
;

6
3

6
4

H
e

lp
e

r
s

6
5

6
6

d
ig

it
=

[
’0

’
.
.

’9
’]

;
6
7

t
a

b
=

9
;

6
8

c
r

=
1

3
;

6
9

l
f

=
1

0
;

7
0

e
o

l
=

c
r

l
f
|

c
r
|

l
f

;
7
1

7
2

b
la

n
k

=
(

’
’
|

t
a

b
|

e
o

l
)
+

;
7
3

7
4

T
o

k
e
n

s
7
5

l
p

a
r

=
’(

’;
7
6

r
p

a
r

=
’)

’;
7
7

p
lu

s
=

’+
’;

7
8

m
in

u
s

=
’
−

’;
7
9

m
u

lt
=

’∗
’;

8
0

d
iv

=
’/

’;
8
1

s
e
m

i
=

’;
’;

8
2

8
3

b
la

n
k

=
b

la
n

k
;

8
4

n
u

m
b

e
r

=
d

ig
it

+
;

A - 38

129



8
5

8
6

o
n

e
=

’o
n

e
’
;

8
7

tw
o

=
’t

w
o

’
;

8
8

t
h

r
e

e
=

’
t
h

r
e

e
’
;

8
9

9
0

ra
n

d
o
m

=
’
r
a

n
d

o
m

d
ig

it
’
;

9
1

9
2

9
3

I
g

n
o

r
e

d
T

o
k

e
n

s
9
4

9
5

b
la

n
k

;
9
6

9
7

P
r
o

d
u

c
t
io

n
s

9
8

9
9

g
ra

m
m

a
r

=
e

x
p

li
s

t
{−

>
N

ew
g
ra

m
m

a
r

(
[

e
x

p
li

s
t

.
e
x

p
])
}

1
0
0

;
1
0
1

1
0
2

e
x

p
li

s
t

{−
>

e
x

p
∗}

=
1
0
3

{
l
i
s

t
}

e
x

p
li

s
t

s
e

p
a

r
a

t
o

r
e
x

p
{−

>
[

e
x

p
li

s
t

.
e
x

p
,

e
x

p
.
e
x

p
]
}

1
0
4

|
{s

in
g

le
}

e
x

p
{−

>
[
e
x

p
.
e
x

p
]
}

1
0
5

;
1
0
6

1
0
7

e
x

p
{−

>
e
x

p
}

=
1
0
8

{p
lu

s
}

e
x

p
p

lu
s

fa
c

t
o

r
{−

>
N

ew
e
x

p
.

p
lu

s
(

e
x

p
.
e
x

p
,

fa
c

t
o

r
.
e
x

p
)
}

1
0
9

|
{m

in
u

s
}

e
x

p
m

in
u

s
fa

c
t
o

r
{−

>
N

ew
e
x

p
.
m

in
u

s
(

e
x

p
.
e
x

p
,

fa
c

t
o

r
.
e
x

p
)
}

1
1
0

|
{f

a
c

t
o

r
}

fa
c

t
o

r
{−

>
fa

c
t
o

r
.
e
x

p
}

1
1
1

;
1
1
2

1
1
3

fa
c

t
o

r
{−

>
e
x

p
}

=
1
1
4

{m
u

lt
}

fa
c

t
o

r
m

u
lt

te
rm

{−
>

N
ew

e
x

p
.
m

u
lt

(
fa

c
t
o

r
.
e
x

p
,

te
rm

.
e
x

p
)
}

1
1
5

|
{d

iv
}

fa
c

t
o

r
d

iv
te

rm
{−

>
N

ew
e
x

p
.
d

iv
(

fa
c

t
o

r
.
e
x

p
,

te
rm

.
e
x

p
)
}

1
1
6

|
{t

e
rm
}

te
rm

{−
>

te
rm

.
e
x

p
}

1
1
7

;
1
1
8

1
1
9

te
rm

{−
>

e
x

p
}

=
1
2
0

{n
u

m
b

e
r
}

n
u

m
b

e
r

{−
>

N
ew

e
x

p
.
n

u
m

b
e
r
(
n

u
m

b
e
r
)
}

1
2
1

|
{e

x
p
}

l
p

a
r

e
x

p
r

p
a

r
{−

>
e
x

p
.
e
x

p
}

1
2
2

|
{t

e
x

t
u

a
l}

t
e

x
t
u

a
l+

{−
>

N
ew

e
x

p
.

t
e

x
t
u

a
l

(
[

t
e

x
t
u

a
l

])
}

1
2
3

|
{r

a
n

d
o

m
x

2
}

ra
n

d
o

m
x

2
1
2
4

{−
>

N
ew

e
x

p
.
ra

n
d

o
m

x
2

(
ra

n
d

o
m

x
2

.
ra

n
1

,
ra

n
d

o
m

x
2

.
r
a

n
2

)
}

1
2
5

;
1
2
6

1
2
7

t
e

x
t
u

a
l

=

A - 39

130



1
2
8

{t
1
}

o
n

e
1
2
9

|
{t

2
}

tw
o

1
3
0

|
{t

3
}

t
h

r
e

e
1
3
1

;
1
3
2

1
3
3

ra
n

d
o

m
x

2
{−

>
[
r
a

n
1

]
:
ra

n
d

o
m

[
r
a

n
2

]
:
ra

n
d

o
m
}

=
1
3
4

[
r
a

n
1

]
:
ra

n
d

o
m

[
r
a

n
2

]
:
ra

n
d

o
m
{−

>
r
a

n
1

r
a

n
2
}

1
3
5

;
1
3
6

1
3
7

s
e

p
a

r
a

t
o

r
{−

>
}

=
1
3
8

{s
e

m
ic

o
lo

n
}

s
e
m

i
{−

>
}

1
3
9

;
1
4
0

1
4
1

1
4
2

A
b

s
t
r
a

c
t

S
y

n
ta

x
T

re
e

1
4
3

1
4
4

g
ra

m
m

a
r

=
e
x

p
+

1
4
5

;
1
4
6

1
4
7

e
x

p
=

1
4
8

{p
lu

s
}

[
l

]
:

e
x

p
[
r

]
:

e
x

p
|

1
4
9

{m
in

u
s
}

[
l

]
:

e
x

p
[
r

]
:

e
x

p
|

1
5
0

{d
iv
}

[
l

]
:

e
x

p
[
r

]
:

e
x

p
|

1
5
1

{m
u

lt
}

[
l

]
:

e
x

p
[
r

]
:

e
x

p
|

1
5
2

{t
e

x
t
u

a
l}

t
e

x
t
u

a
l+
|

1
5
3

{r
a

n
d

o
m

x
2
}

[
r
1

]
:
ra

n
d

o
m

[
r
2

]
:
ra

n
d

o
m
|

1
5
4

{n
u

m
b

e
r
}

n
u

m
b

e
r

1
5
5

;
1
5
6

1
5
7

t
e

x
t
u

a
l

=
1
5
8

{t
1
}

o
n

e
1
5
9

|
{t

2
}

tw
o

1
6
0

|
{t

3
}

t
h

r
e

e
1
6
1

;
1
6
2

1
6
3

/
/

1
6
4

/
/

A
fe

w
w

o
rd

s
a

b
o

u
t

t
h

is
g
ra

m
m

a
r

i
t

s
e

l
f

:
1
6
5

/
/
−

I
t

is
s
u

p
p

o
s
e
d

t
o

b
e

a
l
i
t

t
l
e

in
t
e

g
e

r
b

a
s
e
d

c
a

lc
u

la
t
o

r
w

it
h

a
fe

w
o
d

d
1
6
6

/
/

e
x

t
e

n
s
io

n
s

t
o

d
e
m

o
n

s
t
r
a

t
e

s
a

b
le

c
c

t
r
a

n
s
fo

r
m

a
t
io

n
s

1
6
7

/
/
−

Y
o
u

c
a

n
u

s
e

t
e

x
t
u

a
l

w
o

rd
s

t
o

b
u

il
d

u
p

n
u

m
b

e
rs

(
tw

o
o

n
e

t
h

r
e

e
−>

2
1

3
)

1
6
8

/
/

I
d

id
n

’
t

r
e

a
ll

y
b

o
t
h

e
r

t
o

s
p

e
c

if
y

a
ll

t
h

e
d

e
c
im

a
l

t
e

x
t
u

a
l

n
u

m
b

e
rs

1
6
9

/
/
−

T
h

e
ra

n
d

o
m

n
u

m
b

e
r

r
u

le
is

a
b

it
s

u
p

e
r

f
ic

ia
l

,
it

ju
s
t

e
x

p
e

c
t
s

u
s
e

r
t
o

1
7
0

/
/

t
y

p
e

’
r
a

n
d

o
m

d
ig

it
r
a

n
d

o
m

d
ig

it
’

a
n

d
p

r
o

d
u

c
e
s

a
tw

o
−

d
ig

it
ra

n
d

o
m

A - 40

131



1
7
1

/
/

n
u

m
b

e
r

.
I

d
id

n
’
t

fi
g

u
r
e

o
u

t
a
n

y
b

e
t
t
e

r
w

a
y

t
o

m
a
k
e

t
h

e
m

u
lt

ip
le

1
7
2

/
/

e
le

m
e
n

t
t
r
a

n
s
fo

r
m

r
u

le
”

in
t
e

r
e

s
t
in

g
”

;)
1
7
3

/
/

1
7
4

/
/

V
a

li
d

e
x

p
r
e

s
s
io

n
s

:
1
7
5

/
/

(
1

+
1

4
/

(
3

+
4

)
)
∗

1
4

−>
4

2
1
7
6

/
/

o
n

e
+

3
−

tw
o

−>
2

1
7
7

/
/

tw
o

o
n

e
+

t
h

r
e

e
−>

2
4

1
7
8

/
/

r
a

n
d

o
m

d
ig

it
r
a

n
d

o
m

d
ig

it
−>

?
?

1
7
9

/
/

r
a

n
d

o
m

d
ig

it
r
a

n
d

o
m

d
ig

it
+

1
−>

?
?

1
8
0

/
/

1
+

3
;

1
;

4
+

5
−>

4
;

1
;

9
1
8
1

/
/

1
8
2

/
/

In
t
h

e
C

a
lc

u
la

t
e

.
ja

v
a

is
t
h

e
im

p
le

m
e
n

t
a

t
io

n
o

f
t
h

e
t
r
e

e
v

is
it

o
r

t
h

a
t

1
8
3

/
/

c
a

lc
u

la
t
e

s
t
h

e
v

a
lu

e
s

.
1
8
4

/
/

A
p

p
e
n

d
ix

B
.

M
o
d

ifi
e
d

S
im

p
le

A
ri

th
m

e
ti

c
E

x
p

re
ss

io
n

s
G

ra
m

m
a
r

1
/

/
2

/
/

T
h

is
is

a
d

e
m

o
n

s
t
r
a

t
io

n
g
ra

m
m

a
r

f
i
l
e

w
it

h
t
r
a

n
s
fo

r
m

a
t
io

n
r
u

le
s

fo
r

t
h

e
3

/
/

n
ew

S
a

b
le

C
C

3
p

a
r
s
e

r
g

e
n

e
r
a

t
o

r
(

r
e

l
s
a

b
le

c
c
−3
−

b
e
t
a

.3
.

a
lt

g
e

n
.2

0
0

4
0

3
2

7
)

4
/

/
5

/
/

P
o

in
t
s

t
o

re
m

e
m

b
e
r

:
6

/
/

7
/

/
∗

W
h
y

C
S
T

a
n

d
A

S
T

?
D

u
e

t
o

li
m

it
a

t
io

n
s

o
f

p
a

r
s
e

r
t
e

c
h

n
o

lo
g

y
t
h

e
8

/
/

h
u

m
a
n

d
e

s
c

r
ib

e
d

g
ra

m
m

a
r

d
o

e
s

n
o

t
r
e

p
r
e

s
e

n
t

t
h

e
”

p
e

r
fe

c
t

”
a

b
s
t
r
a

c
t

9
/

/
fo

rm
o

f
t
h

e
la

n
g

u
a

g
e

p
a

r
s
e
d

.
T

o
g

e
t

t
h

e
A

S
T

t
r
a

n
s
fo

r
m

a
t
io

n
s

a
r
e

d
o

n
e

.
1
0

/
/

(A
S
T
−

A
b

s
t
r
a

c
t

S
y

n
ta

x
T

re
e

;
C

S
T
−

C
o

n
c
r
e
t
e

S
y

n
ta

x
T

re
e

)
1
1

/
/

1
2

/
/
∗

T
h

e
A

S
T

s
e

c
t
io

n
m

u
st

b
e

c
o

m
p

le
t
e

,
n

o
t
h

in
g

fr
o

m
P

r
o

d
u

c
t
io

n
s

is
1
3

/
/

a
u

t
o

m
a

t
ic

a
ll

y
p

la
c

e
d

t
h

e
r
e

.
1
4

/
/

1
5

/
/
∗

In
c

u
r
ly

b
r
a

c
e

s
a

r
e

t
h

in
g

s
r
e

la
t
e

d
t
o

A
S
T

,
e
g

.
w

e
b

u
il

t
t
h

e
A

S
T

in
1
6

/
/

t
h

o
s
e

t
h

in
g

s
,

s
o

e
v

e
r
y

t
h

in
g

is
b

u
il

t
/

t
r
a

n
s
fo

r
m

e
d

fr
o

m
t
h

e
le

a
v

e
s

t
o

1
7

/
/

r
o

o
t

.
1
8

/
/

1
9

/
/
∗

T
r
a

n
s
fo

r
m

a
t
io

n
is

d
iv

id
e

d
in

t
o

tw
o

p
a

r
t
s
−

p
r
o

d
u

c
t

t
r
a

n
s
fo

r
m

a
t
io

n
2
0

/
/

d
e

c
la

r
a

t
io

n
t
h

a
t

d
e

c
la

r
e

s
w

h
a
t

t
h

e
a

lt
e

r
n

a
t
iv

e
s

s
h

o
u

ld
b

e
2
1

/
/

t
r
a

n
s
fo

r
m

e
d

t
o

a
n

d
a

lt
e

r
n

a
t
iv

e
s

t
r
a

n
s
fo

r
m

a
t
io

n
s

d
e

f
in

it
io

n
s

t
h

a
t

2
2

/
/

d
e

fi
n

e
h

o
w

t
h

e
t
r
a

n
s
fo

r
m

is
a

c
t
u

a
ll

y
d

o
n

e
.

2
3

/
/

2
4

/
/
∗

A
p

r
o

d
u

c
t
io

n
c
a

n
b

e
t
r
a

n
s
fo

r
m

e
d

t
o

m
u

lt
ip

le
e

le
m

e
n

t
s

a
s

s
e

e
n

in
t
h

e
2
5

/
/

’r
a

n
d

o
m

x
2

’
r
u

le
.

2
6

/
/

A - 41

132



2
7

/
/
∗

P
r
o

d
u

c
t
io

n
s

w
it

h
sa

m
e

s
t
r
u

c
t
u

r
e

a
s

in
t
h

e
A

S
T

c
a

n
b

e
d

ir
e

c
t

ly
2
8

/
/

t
r
a

n
s
fo

r
m

e
d

t
o

A
S
T
−

s
e

e
t
h

e
’
t
e

x
t
u

a
l

’
r
u

le
.

W
h
a
t

r
e

a
ll

y
h

a
p

p
e
n

s
is

2
9

/
/

t
h

a
t

fo
r

p
r
o

d
u

c
t
io

n
s

a
n

d
a

lt
e

r
n

a
t
iv

e
s

w
it

h
o

u
t

t
r
a

n
s
fo

r
m

s
p

e
c

if
ic

a
t

io
n

3
0

/
/

d
e

fa
u

lt
t
r
a

n
s
fo

r
m

a
t
io

n
r
u

le
s

a
r
e

g
e

n
e

r
a

t
e

d
.

T
h

is
a

ls
o

m
e
a
n

s
t
h

a
t

y
o
u

3
1

/
/

c
o

u
ld

o
m

it
t
h

e
t
r
a

n
s
fo

r
m

d
e

c
la

r
a

t
io

n
a

t
e
x

p
r
u

le
.

3
2

/
/

3
3

/
/
∗

L
is

t
s

it
s
e
e
m

s
a

r
e

r
e

p
r
e

s
e

n
t
e

d
w

it
h

b
r
a

c
k

e
t
s

’[
e
le

m
1

,
e
le

m
2

,
.
.

]
’

a
n

d
3
4

/
/

n
o

t
p

a
r
e

n
t
h

e
s
is

a
s

d
e

s
c

r
ib

e
d

in
t
h

e
d

o
c

.
I
f

e
le

m
e
n

t
is

a
ls

o
a

l
i
s

t
it

3
5

/
/

is
a

u
t
o

m
a

t
ic

a
ll

y
e
x

p
a

n
d

e
d

a
n

d
u

s
e
d

.
E

m
p

ty
l
i
s

t
is

[
]
.

3
6

/
/

3
7

/
/
∗

T
h

e
o

u
t
p

u
t

w
e

g
e

t
fr

o
m

t
h

e
p

a
r
s
e

r
is

a
s

d
e

s
c

r
ib

e
d

in
t
h

e
A

S
T

.
W

e
o

n
ly

3
8

/
/

h
a

v
e

t
o

w
o
rk

w
it

h
t
h

a
t

.
T

h
e

p
r
o

d
u

c
t
io

n
s

s
e

c
t
io

n
is

n
o

lo
n

g
e

r
u

s
e
d

.
3
9

/
/

4
0

/
/
∗

W
h
en

y
o
u

ju
s
t

w
a
n

t
t
o

g
e

t
r
id

o
f

a
p

r
o

d
u

c
t
io

n
d

e
c

la
r
e

a
n

d
d

e
fi

n
e

4
1

/
/

it
a
n

d
it

s
a

lt
e

r
n

a
t
iv

e
s

a
s
{−

>
}

o
r

w
it

h
t
h

e
n

e
w

e
r

s
a

b
le

c
c

r
e

le
a

s
e

4
2

/
/

y
o
u

c
a

n
ju

s
t

le
a

v
e

it
w

it
h

o
u

t
a
n

y
r
u

le
s

.
S

e
e

t
h

e
’
s
e

p
a

r
a

t
o

r
’

r
u

le
.

4
3

/
/

4
4

/
/
∗

Y
o
u

c
a

n
’
t

p
la

c
e

n
u

ll
−

s
in

t
o

l
i
s

t
s

.
W

h
en

t
h

e
e

x
p

r
e

s
s
io

n
is

n
u

ll
4
5

/
/

(
e

it
h

e
r

b
y

?
)

o
r

d
ir

e
c

t
ly

s
e

t
in

t
r
a

n
s
fo

r
m

a
t
io

n
a
n

d
is

la
t

e
r

a
d

d
e
d

4
6

/
/

t
o

a
l
i
s

t
−

it
is

e
li

m
in

a
t
e

d
b

y
S

a
b

le
C

C
.

4
7

/
/

4
8

/
/
∗

W
it

h
t
h

e
la

t
e

s
t

s
a

b
le

c
c

r
e

le
a

s
e

’?
’

a
n

d
’+

’
a

r
e

s
u

p
p

o
r
t
e
d

in
4
9

/
/

t
h

e
A

S
T

s
e

c
t
io

n
.

T
h

e
y

a
r
e

a
ls

o
e

n
fo

r
c

e
d

fr
o

m
p

r
o

d
u

c
t
io

n
s

.
5
0

/
/

Y
o
u

’
l
l

s
e

e
w

h
en

e
r
r
o

r
s

s
t
a

r
t

p
o

p
p

in
g

u
p

.
5
1

/
/

5
2

/
/
∗

In
t
h

e
p

r
o

d
u

c
t

t
r
a

n
s
fo

r
m

a
t
io

n
d

e
c

la
r
a

t
io

n
y

o
u

c
a

n
s

im
il

a
r

il
y

u
s
e

5
3

/
/

r
e
n

a
m

in
g

in
t
h

e
s
t
y

le
’p

ro
d

u
c
tn

a
m

e
{

.
.

[
u

s
e

n
a

m
e

]
:
n

a
m

e
.
.
}

=
.
.

’
5
4

/
/

T
h

is
c
a

n
b

e
v

e
r
y

u
s
e

fu
l

w
h

en
u

s
in

g
m

u
lt

ip
le

e
le

m
e

n
t
s

o
f

t
h

e
sa

m
e

t
y

p
e

5
5

/
/

a
t

t
r
a

n
s
fo

r
m

.
S

e
e

t
h

e
’r

a
n

d
o

m
x

2
’

r
u

le
fo

r
e
x

a
m

p
le

.
5
6

/
/

5
7

/
/

W
r
it

t
e
n

b
y

In
d

r
e
k

M
a
n

d
re

<
in

d
r
e

k
(

a
t

)
m

a
re

.
e
e
>

in
J

u
ly
−

A
u

g
u

st
2

0
0

3
5
8

/
/

E
x

a
m

p
le

c
o

n
s
t
r
u

c
t
e

d
fr

o
m

t
h

e
S

a
b

le
C

C
d

o
c
s
/

K
e
v

in
A

g
b

a
k
p

em
a
n

d
5
9

/
/

E
t
ie

n
n

e
B

e
r
g

e
r
o

n
e−

m
a

il
.

h
t
t
p

:/
/
w

w
w

.
m

a
re

.
e
e

/
in

d
r
e

k
/

s
a

b
le

c
c

/
6
0

/
/

6
1

6
2

P
a

c
k

a
g

e
e

x
p

r
e

s
s
io

n
;

6
3

6
4

H
e

lp
e

r
s

6
5

a
ll

=
[0

.
.

0
x

f
f
f
f

]
;

6
6

d
ig

it
=

[
’0

’
.
.

’9
’]

;
6
7

t
a

b
=

9
;

6
8

c
r

=
1

3
;

6
9

l
f

=
1

0
;

A - 42

133



7
0

e
o

l
=

c
r

l
f
|

c
r
|

l
f

;
7
1

7
2

b
la

n
k

=
(

’
’
|

t
a

b
|

e
o

l
)
+

;
7
3

7
4

S
t
a

t
e

s
7
5

n
o

rm
a

l
,
p

h
p

;
7
6

7
7

T
o

k
e
n

s
7
8

{n
o

rm
a

l−
>

p
h

p
,

p
h

p
}

p
h

p
s
t
a

r
t

=
’<

?
p

h
p

’;
7
9

{p
h

p
}

p
h

p
b

o
d

y
=

[
a

ll
−

[
’?

’
+

’
>

’]
]∗

;
8
0

{p
h

p
−>

n
o

rm
a

l
,

n
o

rm
a

l}
p

h
p

e
n

d
=

’?
>

’;
8
1

{n
o

rm
a

l}
l

p
a

r
=

’(
’;

8
2

{n
o

rm
a

l}
r

p
a

r
=

’)
’;

8
3

{n
o

rm
a

l}
p

lu
s

=
’+

’;
8
4

{n
o

rm
a

l}
m

in
u

s
=

’
−

’;
8
5

{n
o

rm
a

l}
m

u
lt

=
’∗

’;
8
6

{n
o

rm
a

l}
d

iv
=

’/
’;

8
7

{n
o

rm
a

l}
s
e
m

i
=

’;
’;

8
8

8
9

{n
o

rm
a

l}
b

la
n

k
=

b
la

n
k

;
9
0

{n
o

rm
a

l}
n

u
m

b
e
r

=
d

ig
it

+
;

9
1

9
2

{n
o

rm
a

l}
o

n
e

=
’o

n
e

’
;

9
3

{n
o

rm
a

l}
tw

o
=

’t
w

o
’
;

9
4

{n
o

rm
a

l}
t
h

r
e

e
=

’
t
h

r
e

e
’
;

9
5

9
6

{n
o

rm
a

l}
ra

n
d

o
m

=
’
r
a

n
d

o
m

d
ig

it
’
;

9
7

9
8

9
9

I
g

n
o

r
e

d
T

o
k

e
n

s
1
0
0

1
0
1

b
la

n
k

;
1
0
2

1
0
3

P
r
o

d
u

c
t
io

n
s

1
0
4

1
0
5

g
ra

m
m

a
r

=
e

x
p

li
s

t
{−

>
N

ew
g
ra

m
m

a
r

(
[

e
x

p
li

s
t

.
e
x

p
])
}

1
0
6

;
1
0
7

1
0
8

e
x

p
li

s
t

{−
>

e
x

p
∗}

=
1
0
9

{
l
i
s

t
}

e
x

p
li

s
t

s
e

p
a

r
a

t
o

r
e
x

p
{−

>
[

e
x

p
li

s
t

.
e
x

p
,

e
x

p
.
e
x

p
]
}

1
1
0

|
{s

in
g

le
}

e
x

p
{−

>
[
e
x

p
.
e
x

p
]
}

1
1
1

;
1
1
2

A - 43

134



1
1
3

e
x

p
{−

>
e
x

p
}

=
1
1
4

{p
lu

s
}

e
x

p
p

lu
s

fa
c

t
o

r
{−

>
N

ew
e
x

p
.

p
lu

s
(

e
x

p
.
e
x

p
,

fa
c

t
o

r
.
e
x

p
)
}

1
1
5

|
{m

in
u

s
}

e
x

p
m

in
u

s
fa

c
t
o

r
{−

>
N

ew
e
x

p
.
m

in
u

s
(

e
x

p
.
e
x

p
,

fa
c

t
o

r
.
e
x

p
)
}

1
1
6

|
{f

a
c

t
o

r
}

fa
c

t
o

r
{−

>
fa

c
t
o

r
.
e
x

p
}

1
1
7

|
{p

h
p
}

p
h

p
s
t
a

r
t

p
h

p
b

o
d

y
p

h
p

e
n

d
{−

>
N

ew
e
x

p
.
p

h
p

(
p

h
p

b
o

d
y

)
}

1
1
8

;
1
1
9

1
2
0

fa
c

t
o

r
{−

>
e
x

p
}

=
1
2
1

{m
u

lt
}

fa
c

t
o

r
m

u
lt

te
rm

{−
>

N
ew

e
x

p
.
m

u
lt

(
fa

c
t
o

r
.
e
x

p
,

te
rm

.
e
x

p
)
}

1
2
2

|
{d

iv
}

fa
c

t
o

r
d

iv
te

rm
{−

>
N

ew
e
x

p
.
d

iv
(

fa
c

t
o

r
.
e
x

p
,

te
rm

.
e
x

p
)
}

1
2
3

|
{t

e
rm
}

te
rm

{−
>

te
rm

.
e
x

p
}

1
2
4

;
1
2
5

1
2
6

te
rm

{−
>

e
x

p
}

=
1
2
7

{n
u

m
b

e
r
}

n
u

m
b

e
r

{−
>

N
ew

e
x

p
.
n

u
m

b
e
r
(
n

u
m

b
e
r
)
}

1
2
8

|
{e

x
p
}

l
p

a
r

e
x

p
r

p
a

r
{−

>
e
x

p
.
e
x

p
}

1
2
9

|
{t

e
x

t
u

a
l}

t
e

x
t
u

a
l+

{−
>

N
ew

e
x

p
.

t
e

x
t
u

a
l

(
[

t
e

x
t
u

a
l

])
}

1
3
0

|
{r

a
n

d
o

m
x

2
}

ra
n

d
o

m
x

2
1
3
1

{−
>

N
ew

e
x

p
.
ra

n
d

o
m

x
2

(
ra

n
d

o
m

x
2

.
ra

n
1

,
ra

n
d

o
m

x
2

.
r
a

n
2

)
}

1
3
2

;
1
3
3

1
3
4

t
e

x
t
u

a
l

=
1
3
5

{t
1
}

o
n

e
1
3
6

|
{t

2
}

tw
o

1
3
7

|
{t

3
}

t
h

r
e

e
1
3
8

;
1
3
9

1
4
0

ra
n

d
o

m
x

2
{−

>
[
r
a

n
1

]
:
ra

n
d

o
m

[
r
a

n
2

]
:
ra

n
d

o
m
}

=
1
4
1

[
r
a

n
1

]
:
ra

n
d

o
m

[
r
a

n
2

]
:
ra

n
d

o
m
{−

>
r
a

n
1

r
a

n
2
}

1
4
2

;
1
4
3

1
4
4

s
e

p
a

r
a

t
o

r
{−

>
}

=
1
4
5

{s
e

m
ic

o
lo

n
}

s
e
m

i
{−

>
}

1
4
6

;
1
4
7

1
4
8

1
4
9

A
b

s
t
r
a

c
t

S
y

n
ta

x
T

re
e

1
5
0

1
5
1

g
ra

m
m

a
r

=
e
x

p
+

1
5
2

;
1
5
3

1
5
4

e
x

p
=

1
5
5

{p
lu

s
}

[
l

]
:

e
x

p
[
r

]
:

e
x

p
|

A - 44

135



1
5
6

{m
in

u
s
}

[
l

]
:

e
x

p
[
r

]
:

e
x

p
|

1
5
7

{d
iv
}

[
l

]
:

e
x

p
[
r

]
:

e
x

p
|

1
5
8

{m
u

lt
}

[
l

]
:

e
x

p
[
r

]
:

e
x

p
|

1
5
9

{t
e

x
t
u

a
l}

t
e

x
t
u

a
l+
|

1
6
0

{r
a

n
d

o
m

x
2
}

[
r
1

]
:
ra

n
d

o
m

[
r
2

]
:
ra

n
d

o
m
|

1
6
1

{n
u

m
b

e
r
}

n
u

m
b

e
r
|

1
6
2

{p
h

p
}

p
h

p
b

o
d

y
1
6
3

;
1
6
4

1
6
5

t
e

x
t
u

a
l

=
1
6
6

{t
1
}

o
n

e
1
6
7

|
{t

2
}

tw
o

1
6
8

|
{t

3
}

t
h

r
e

e
1
6
9

;
1
7
0

1
7
1

/
/

1
7
2

/
/

A
fe

w
w

o
rd

s
a

b
o

u
t

t
h

is
g
ra

m
m

a
r

i
t

s
e

l
f

:
1
7
3

/
/
−

I
t

is
s
u

p
p

o
s
e
d

t
o

b
e

a
l
i
t

t
l
e

in
t
e

g
e

r
b

a
s
e
d

c
a

lc
u

la
t
o

r
w

it
h

a
fe

w
o
d

d
1
7
4

/
/

e
x

t
e

n
s
io

n
s

t
o

d
e
m

o
n

s
t
r
a

t
e

s
a

b
le

c
c

t
r
a

n
s
fo

r
m

a
t
io

n
s

1
7
5

/
/
−

Y
o
u

c
a

n
u

s
e

t
e

x
t
u

a
l

w
o

rd
s

t
o

b
u

il
d

u
p

n
u

m
b

e
rs

(
tw

o
o

n
e

t
h

r
e

e
−>

2
1

3
)

1
7
6

/
/

I
d

id
n

’
t

r
e

a
ll

y
b

o
t
h

e
r

t
o

s
p

e
c

if
y

a
ll

t
h

e
d

e
c
im

a
l

t
e

x
t
u

a
l

n
u

m
b

e
rs

1
7
7

/
/
−

T
h

e
ra

n
d

o
m

n
u

m
b

e
r

r
u

le
is

a
b

it
s

u
p

e
r

f
ic

ia
l

,
it

ju
s
t

e
x

p
e

c
t
s

u
s
e

r
t
o

1
7
8

/
/

t
y

p
e

’
r
a

n
d

o
m

d
ig

it
r
a

n
d

o
m

d
ig

it
’

a
n

d
p

r
o

d
u

c
e
s

a
tw

o
−

d
ig

it
ra

n
d

o
m

1
7
9

/
/

n
u

m
b

e
r

.
I

d
id

n
’
t

fi
g

u
r
e

o
u

t
a
n

y
b

e
t
t
e

r
w

a
y

t
o

m
a
k
e

t
h

e
m

u
lt

ip
le

1
8
0

/
/

e
le

m
e
n

t
t
r
a

n
s
fo

r
m

r
u

le
”

in
t
e

r
e

s
t
in

g
”

;)
1
8
1

/
/

1
8
2

/
/

V
a

li
d

e
x

p
r
e

s
s
io

n
s

:
1
8
3

/
/

(
1

+
1

4
/

(
3

+
4

)
)
∗

1
4

−>
4

2
1
8
4

/
/

o
n

e
+

3
−

tw
o

−>
2

1
8
5

/
/

tw
o

o
n

e
+

t
h

r
e

e
−>

2
4

1
8
6

/
/

r
a

n
d

o
m

d
ig

it
r
a

n
d

o
m

d
ig

it
−>

?
?

1
8
7

/
/

r
a

n
d

o
m

d
ig

it
r
a

n
d

o
m

d
ig

it
+

1
−>

?
?

1
8
8

/
/

1
+

3
;

1
;

4
+

5
−>

4
;

1
;

9
1
8
9

/
/

1
9
0

/
/

In
t
h

e
C

a
lc

u
la

t
e

.
ja

v
a

is
t
h

e
im

p
le

m
e
n

t
a

t
io

n
o

f
t
h

e
t
r
e

e
v

is
it

o
r

t
h

a
t

1
9
1

/
/

c
a

lc
u

la
t
e

s
t
h

e
v

a
lu

e
s

.
1
9
2

/
/

A - 45

136



Appendix B. Kermeta

Appendix B.1. Metamodel Logo with Kermeta

Example can be found at http://www.kermeta.org/documents/tutorials/
building_dsl_tutorials/logo_tutorial/tutorial_single in sec-

tion “3.2. Metamodel Ecore with Kermeta”.

1 @uri "http://www.kermeta.org/kmLogo"
2 package kmLogo;
3

4 require "kermeta"
5 alias Integer : kermeta::standard::Integer;
6 alias Boolean : kermeta::standard::Boolean;
7 alias String : kermeta::standard::String;
8 package ASM
9 {
10 abstract class Instruction
11 {
12 }
13 abstract class Primitive inherits Instruction
14 {
15 }
16 class Back inherits Primitive
17 {
18 attribute steps : Expression[1..1]
19

20 }
21 class Forward inherits Primitive
22 {
23 attribute steps : Expression[1..1]
24

25 }
26 class Left inherits Primitive
27 {
28 attribute angle : Expression
29

30 }
31 class Right inherits Primitive
32 {
33 attribute angle : Expression
34

35 }
36 class PenDown inherits Primitive
37 {
38 }
39 class PenUp inherits Primitive
40 {
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41 }
42 class Clear inherits Primitive
43 {
44 }
45 abstract class Expression inherits Instruction
46 {
47 }
48 abstract class BinaryExp inherits Expression
49 {
50 attribute lhs : Expression[1..1]
51

52 attribute rhs : Expression[1..1]
53

54 }
55 class Constant inherits Expression
56 {
57 attribute integerValue : Integer
58

59 }
60 class ProcCall inherits Expression
61 {
62 attribute actualArgs : Expression[0..*]
63

64 reference declaration : ProcDeclaration[1..1]#procCall
65

66 }
67 class ProcDeclaration inherits Instruction
68 {
69 attribute name : String
70

71 attribute args : Parameter[0..*]
72

73 attribute block : Block
74

75 reference procCall : ProcCall[0..*]#declaration
76

77 }
78 class Block inherits Instruction
79 {
80 attribute instructions : Instruction[0..*]
81

82 }
83 class If inherits ControlStructure
84 {
85 attribute thenPart : Block[1..1]
86

87 attribute elsePart : Block
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88

89 }
90 class ControlStructure inherits Instruction
91 {
92 attribute condition : Expression
93

94 }
95 class Repeat inherits ControlStructure
96 {
97 attribute block : Block[1..1]
98

99 }
100 class While inherits ControlStructure
101 {
102 attribute block : Block[1..1]
103

104 }
105 class Parameter
106 {
107 attribute name : String
108

109 }
110 class ParameterCall inherits Expression
111 {
112 reference parameter : Parameter[1..1]
113

114 }
115 class Plus inherits BinaryExp
116 {
117 }
118 class Minus inherits BinaryExp
119 {
120 }
121 class Mult inherits BinaryExp
122 {
123 }
124 class Div inherits BinaryExp
125 {
126 }
127 class Equals inherits BinaryExp
128 {
129 }
130 class Greater inherits BinaryExp
131 {
132 }
133 class Lower inherits BinaryExp
134 {
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135 }
136 class LogoProgram
137 {
138 attribute instructions : Instruction[0..*]
139

140 }
141 }

Appendix B.2. Logo Constraints with Kermeta

Example can be found at http://www.kermeta.org/documents/tutorials/
building_dsl_tutorials/logo_tutorial/tutorial_single in sec-

tion “6.2. Implementation in Kermeta”.

1 package kmLogo::ASM;
2 require kermeta
3 require "http://www.kermeta.org/kmLogo"
4

5 aspect class ProcDeclaration{
6 /**
7 * No two formal parameters of a procedure may have the same

name
8 */
9 inv unique_names_for_formal_arguments is
10 do
11 args.forAll{ a1 | args.forAll{ a2 |
12 a1.name.equals(a2.name).implies(a1.equals(a2))}}
13 end
14 }
15

16 aspect class ProcCall{
17 /**
18 * A procedure is called with the same number
19 * of arguments as specified in its declaration
20 */
21 inv same_number_of_formals_and_actuals is do
22 actualArgs.size == declaration.args.size
23 end
24 }
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Appendix C. Extended Parser and Lexer

1 """
2 LEXER
3 """
4 class Extended_Lexer(ActionLexer):
5 tokens = ActionLexer.tokens + [’CROSSES_BELOW’, ’

CROSSES_ABOVE’, ’INSTATE’]
6

7 def t_CROSSES_BELOW(self, t):
8 r’\>!’
9 return t
10

11 def t_CROSSES_ABOVE(self, t):
12 r’\<!’
13 return t
14

15 """
16 PARSER
17 """
18 class Extended_Parser(ActionParser):
19 precedence = ActionParser.precedence + ((’nonassoc’, ’

CROSSES_BELOW’, ’CROSSES_ABOVE’),)
20

21 def p_expr_crosses_below(self, p):
22 ’expr : expr CROSSES_BELOW expr’
23 p[0] = ASTCrossesFromBelow(p[1], p[3], p.lineno)
24

25 def p_expr_crosses_above(self, p):
26 ’expr : expr CROSSES_ABOVE expr’
27 p[0] = ASTCrossesFromAbove(p[1], p[3], p.lineno)
28

29 """
30 AST_VISITOR
31 """
32 class Extended_Visitor(AST_Visitor):
33 def __init__(self, debug=None, typevisitor=None,

pythonvisitor=None):
34 AST_Visitor.__init__(self, debug=debug, typevisitor=

typevisitor, pythonvisitor=pythonvisitor)
35 self.crosses = set()
36

37 def _generate_crosses_id(self):
38 id_length = 6
39 id = self.metaverse._id_generator(id_length)
40 while id in self.crosses:
41 id_length += 1
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42 id = self.metaverse._id_generator(id_length)
43 self.crosses.add(id)
44 return id
45

46 def visit_ASTCrossesFromBelow(self, node):
47 id = StringValue(self._generate_crosses_id())
48 return CrossesFromBelow(self._visit(node.getLhs()), self.

_visit(node.getRhs()), id)
49

50 def visit_ASTCrossesFromAbove(self, node):
51 id = StringValue(self._generate_crosses_id())
52 return CrossesFromAbove(self._visit(node.getLhs()), self.

_visit(node.getRhs()), id)
53

54 """
55 AST NODES
56 """
57 class ASTCrossesFromBelow(BinaryOperator):
58 def __repr__(self):
59 return "CrossesFromBelow(%s, %s)" % (repr(self.lhs),

repr(self.rhs))
60

61 class ASTCrossesFromAbove(BinaryOperator):
62 def __repr__(self):
63 return "CrossesFromAbove(%s, %s)" % (repr(self.lhs),

repr(self.rhs))
64 """
65 ARKM3 NODES
66 """
67 class CrossesFromBelow(Action.ComparisonOp):
68 def __init__(self, child1=None, child2=None, name=None,

container=None, init_id=None):
69 Action.ComparisonOp.__init__(self, child1=child1,

child2=child2, container=container, init_id=init_id)
70 self._id = name
71

72 class CrossesFromAbove(Action.ComparisonOp):
73 def __init__(self, child1=None, child2=None, name=None,

container=None, init_id=None):
74 Action.ComparisonOp.__init__(self, child1=child1,

child2=child2, container=container, init_id=init_id)
75 self._id = name
76

77 """
78 PYTHON COMPILE VISITOR
79 """
80 class Extended_Python_Visitor(PythonCompileVisitor):
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81 def visit_CrossesFromBelow(self, node):
82 self._add_abs_import("hutn.extended.ExtendedParser")
83 self._write_chars("P_CrossesFrom.get_instance(%s).

checkBelow("%node._id)
84 self.visit(node._child[0])
85 self._write_chars(",")
86 self.visit(node._child[1])
87 self._write_chars(")")
88

89 def visit_CrossesFromAbove(self, node):
90 self._add_abs_import("hutn.extended.ExtendedParser")
91 self._write_chars("P_CrossesFrom.get_instance(%s).

checkAbove("%node._id)
92 self.visit(node._child[0])
93 self._write_chars(",")
94 self.visit(node._child[1])
95 self._write_chars(")")
96

97 # >!
98 class P_CrossesFrom(object):
99 instances = dict()
100

101 @staticmethod
102 def get_instance(instance_id):
103 cls = P_CrossesFrom
104 if cls.instances.has_key(instance_id):
105 return cls.instances[instance_id]
106 else:
107 i = cls()
108 cls.instances[instance_id] = i
109 return i
110

111 def __init__(self):
112 self.value = VoidValue()
113 self.prev = VoidValue()
114

115 def checkBelow(self, value, value2):
116 if self.prev == VoidValue():
117 self.prev = value
118 self.value = value2
119 return False
120 elif self.prev <= self.value and value > self.value:
121 self.prev = value
122 return True
123 self.prev = value
124 return False
125
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126 def checkAbove(self, value, value2):
127 if self.prev == VoidValue():
128 self.prev = value
129 self.value = value2
130 return False
131 elif self.prev >= self.value and value < self.value:
132 self.prev = value
133 return True
134 self.prev = value
135 return False
136

137

138 """
139 EXTENDED HUTN
140 """
141 class ExtendedHUTN(HUTN):
142 def __init__(self,path_to_arkm3_mm = "../../../models/arkm3

/"):
143 HUTN.__init__(self, actionparser=Extended_Parser,

visitor=Extended_Visitor, actionlexer=Extended_Lexer
, pythonvisitor=Extended_Python_Visitor,
path_to_arkm3_mm=path_to_arkm3_mm)
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