Title

Joeri Exelmans®

@ Unwversity of Antwerp, Middelheimlaan 1, 2020 Wilrijk, Belgium

Abstract

Keywords: Statecharts, SCXML, Class Diagrams, UML, Model-Driven
Engineering, Actor Model, Big-Step Modeling Languages

1. Introduction

(INTRO: TODO)

In Section[2] we will explain what statecharts are and how we can use them to
model behavior. Because statecharts by themselves cannot serve as a language
for building real-world, dynamic systems, we will use the actor model to reason
about what is needed to do so, in Section 3] We find that we can use statecharts
to describe the behavior of individual objects, and those objects will abide the
rules of the actor model. The actor model assumes all relationships between
objects (actors) are completely dynamic. We think that it is useful to specify
some bounds on the relationships between objects. In Section 4l we briefly
introduce class diagrams, a well-known formalism that we will use to specify
the structure of our objects, and the relationships between them.

2. Statecharts

Statecharts are a visual formalism for expressing behavior. They were first
introduced by David Harel in 1987 [3]. Statecharts are interesting because
they allow complex behavior to be expressed with a relatively small number of
language artifacts.

Before going into detail on the syntax and semantics, we will first compare
statecharts with a formalism the reader is likely familiar with: State machines.

2.1. State Machines

Statecharts are somewhat similar to (deterministic) state machines from
language & automata theory. A state machine contains a finite number of
nonhierarchical states. When running, we always start in the same initial state
(or default state). Upon receiving input characters, the state machine makes
transitions labeled by those characters, changing the current state. Eventually,
when all characters are consumed, we check if the current state is in the set of

Preprint submitted to Elsevier May 3, 2014

a b
X W @

Figure 1: An example state machine. X is the default state, {Z} is the set of accepting states.
The language represented is {ab, abab, ababab, ...}, or, in regex form: (ab)+

accepting states. If and only if this is the case, the string of consumed characters
is part of the language represented by the state machine.

Statecharts differ from state machines in the sense that there are no ac-
cepting states. A statechart is more like a computer program, running as long
as necessary, and producing side effects while doing so. Statecharts respond
to incoming events by making transitions, just like state machines do, but in
contrast to state machines, statechart events aren’t necessarily known from the
start: A statechart simply waits for incoming events, in realtime. In statecharts,
a transition can also cause side effects, like generating new events (that can be
sensed by e.g. another statechart).

Statecharts can be hierarchical, i.e. states can have children states, and
statecharts can have orthogonal components, i.e. multiple current states at the
same level of hierarchy. We will not go into detail on these features yet.

To make statecharts a complete alternative to a programming language, stat-
echarts can also perform computation: a statechart can keep ”local” variables,
and events can carry parameter values (this way, a received event is like an
asynchronous procedure call). As a side-effect of making a transition, simple
subroutines can be executed, operating on variables.

In the next section, we will introduce the composed hierarchical transition
system (CHTS) normal form syntax [B] [2]. It differs from Harel’s original paper
only in terminology. A motivation for doing so will follow later, in Section ?7.

2.2. Syntax and Semantics

We will now explain the CHTS normal form syntax. We will refer to CHTS
models simply as statecharts from now on.

Formally, a statechart consists of

1. A composition tree of control states
2. A set of transitions between the control states
3. (implicitly) A set of events.

Until we introduce hierarchy, the composition tree will always be a single
root node with all other control states as its direct children.

2.2.1. Fvents

An event is a named artifact of communication; the name of an event serves
merely as an identifier. During execution, a statechart communicates with
the outside world (e.g. the execution environment and other statecharts) only
through events. Events can also be used for communication between different
parts of the same statechart (see Orthogonality, Section [2.2.7).

2.2.2. Control States

There are 3 different types of control states. For now, we will only be
concerned with 1 type, called basic states.

During execution, a statechart instance will have a set of current states.
Until we introduce hierarchy and orthogonality, the number of current states
will always be equal to 1.

At the top level of hierarchy (and for now the only level of hierarchy), every
statechart has a single default state. The default state is a state that becomes
the current state when an instance of the statechart is first initialized. In this
paper, the default state will be indicated syntactically with an incoming ar-
row, coming from nowhereﬂ similar to state machine notation in language &
automata theory.

2.2.3. Transitions
A transition is a tuple consisting of

. A source control state

. A destination control state
(optionally) An event trigger
(optionally) A guard condition
(optionally) A set of generated events
(optionally) A set of actions

e

We will treat guard conditions and actions later.
During execution, a transition can be enabled or disabled. A transition is
enabled if all of the following are true:

1. Its source control state is in the statechart’s set of current states
2. If an event trigger is specified, the event has to be present at the moment
3. If a guard condition is specified, it has to evaluate to true.

If a transition is enabled, it can trigger (or ”fire”). The triggering of a
transition causes the following things to happen:

1. The source state unbecomes a current state, the destination state becomes
a current state

2. If a set of generated events is specified, they become present

3. If a set of actions is specified, they are executed.

The execution history of a statechart can be captured as an ordered sequence
of triggered transitions.

Note that, although both the event trigger and guard condition are optional,
when none are specified, a transition can always fire whenever its source state

ITools often use a different notation, for instance displaying the default state in a separate
color

toggle

(o] (o)

&
<

toggle

Figure 2: A simple statechart.

is a current state. This is not very interesting behavior, so a transition will
typically have at least one of them specified.

We will discuss guard conditions and actions later. We will first present 2
examples making use of event triggers, and later, generated events.

Example 2.1. Let us look at Figure . It models a simple on/off switch that
can only be toggled. There are 2 basic states: "off” and “on”. The arrow from
“on” to 7oft” with label "toggle” is a transition. Semantically, it means that
whenever the state "off” is the current state and we receive the event "toggle”,
“on” becomes the new current state. The transition in the reverse direction
means that if we receive the event “toggle” one more time, “off” becomes the
current state once again. Finally, state 7off” has an incoming arrow coming
from nowhere. This means that "oft” is the default state in this diagram.

2.2.4. A word on the environment...

In Example the statechart responds to an event called ”toggle”. This
event is coming from the environment. The environment is an abstract entity
surrounding the statechart. Many things can act as an environment: a user
could manually trigger the ”toggle” event in an interactive simulator, or events
could be coming from another statechart (see later). Consider events coming
from the environment as being input for the model.

2.2.5. Hierarchy

Let us now introduce the concept of hierarchy. Recall that there are 3
types of control states. We have already seen basic states. Basic states cannot
have children. The 2 other types of control states, and-states and or-states,
always have 1 or more children. Therefore, they never occur as leaf nodes in the
composition tree. And-states will be covered later; we now focus on or-states.

An or-state is defined such that if the or-state is in the set of current states,
exactly 1 of its children is also in the set of current states. If the or-state is not
in the set of current states, none of its children is a current state. Exactly one
of the children of an or-state must be indicated to be the default state. When
the or-state becomes a current state, then the default state becomes the current
state as well. The root of a statechart composition tree is always (implicitly) an
or-state. Remember we mentioned a statechart to always have a default state

blinking

toggle~light_on
after(1s)”light_on after(1s)~light_off
o el

toggle~light_off toggle~light_on

Figure 3: A slightly more complex statechart.

at the top level in the hierarchy: This default state is actually a property of the
implicit or-state root node.

An or-state can have any kind of control state as a child, so there can be
any (finite) number of hierarchy levels.

2.2.6. Transitions, revisited
The full syntax for the label of a transition is as follows:

trigger|condition]” generated_events/actions

Unspecified parts are simply left out. So far, we have only seen transitions
that specify an event trigger. In the next example, we will introduce generated
events, denoted by the ~ symbol.

When a triggered transition generates events, they can be sensed by the
environment (in this case, we talk about environmental output events), or by
another (part of the) statechart.

Example 2.2. In Figure[3, we see a statechart similar to the one in Ezample
but this time, we added an additional ”blinking” state in the cycle between
Yoff” and "on”, so it resembles a simple controller for e.g. a detachable bicycle
LED light. Initially, the light is off. When the switch is toggled, it starts blinking.
When the switch is toggled again, it keeps burning. When toggled one more time,
the light is off again. The states ”off” and ”on” are basic states just like in
Ezample[2.1} The large rectangle with the word "blinking” in it is an or-state.
It has 2 children, ”blink_on” and ”blink_off”, of which "blink_on” is the default
state.

In this example, we see another new feature: timed transitions. A timed
transition s a transition that doesn’t require an event to be present, but can
be fired after the source state is a current state for a certain amount of time.
In this case, it causes ”blink_on” and ”blink_off” states to alternate being the
current state every 1 second whenever the state ”blinking” is a current state.

/\ counter
tkO input events:
tko
@ @ output events:

done

bit0 tk0~tkl

T
bl tkl
tk1~done

Figure 4: A 2-bit counter statechart with 2 orthogonal components. Based on [2], p.14

The statechart generates 2 events: ”light_on” and ”light_off”. We suppose
these events are picked up by the environment, which in turn feeds it to e.g. a
physical light switch.

Timed transitions are not (explicitly) part of the CHTS normal form syn-
tax/semantics. There are a number of reasons why we include them anyway:

1. They are a part of Harel statecharts

2. They are very useful in many situations, e.g. in the example just discussed

3. They don’t interfere with the rest of the syntax/semantics. We can im-
plement them by generating a timed event request whenever we enter the
source state of a timed transition, for the environment, which in its turn
generates a special event after the specified amount of time has passed,
i.e. timed events can be regarded as regular event triggers.

Hierarchical statecharts can be flattened. This is done by changing the
destination control state of incoming transitions of all or-states to the default
states of those or-states. For each transition whose destination control state
is some state X and whose source control state is an or-state, we create new
transitions whose source control states are the direct children of the or-state,
and whose destinations are X.

2.2.7. Orthogonality

Orthogonality allows for very compact descriptions of relatively complex
behavior.

Orthogonality relates to the 3rd and final type of control states: and-states.
Just like or-states, and-states must have children and can therefore not occur
as leaf nodes in the control state composition tree. Just like basic states and
or-states, and-states can serve as the source and destination of transitions. An
and-state is characterized such that if the and-state is in the statechart’s set
of current states, all of it’s children are current states as well. Children of an
and-state are also called orthogonal components. Orthogonal components are
typically or-states.

We will denote orthogonal components syntactically as areas separated by
a dashed line. And-states can then be recognized because of the orthogonal
components in them.

Example 2.3. Figure[]] shows a statechart with an and-state as the only child
of the root node. There are 2 orthogonal components (?bit0” and ”bitl”) and
each of them is an or-state with 2 basic states ("bit0 0” and ”bit0 17, ”bitl
0” and ”bitl 1”7 as their children. Fach component represents a 1-bit counter.
Together, they make a 2-bit counter by having the less-significant bit0 generate
carry-out events upon overflow.

After initialization, both orthogonal components enter their default state.
Upon receiving the input event ”"tk0”, bit0 counts to one. There are no tran-
sitions departing from ”bitl 07 with "tk0” as event trigger, so bitl remains in
its default state. When receving "tk0” again, bit0 overflows back to zero and
generates the "tk1” event, which is sensed by bitl, making it count to 1. When
7tk0” is received for the third time, bit0 counts to 1 and bitl stays in 1. Fi-
nally, when "tk0” is received for the fourth time, both bits go back to 0 and bitl
generates the ”"done” event.

We mentioned a few times that events can be used for communication be-
tween different parts of the same statechart. In the previous example, "tk1” is
an event solely used for that purpose.

Transitions in orthogonal components can sometimes be made simultane-
ously, but this still isn’t a good opportunity for parallelism, since components
usually depend on each other. Transitions in one componenent often rely on an
event generated by a transition in another component, or they require another
component to be in a certain state.

Orthogonal components can also be flattened. To do so, we generate product
states for each combination of states, with one state per component in each
combination. Transitions are duplicated between pairs of combination-states.
The precise way in which this happens is left as an exercise for the interested
reader.

2.2.8. Variables

Statecharts can have any finite number of variables, of any type supported by
the target language. Upon compilation, variables in a statechart are translated
into variables in the target language.

We need variables, because otherwise statecharts would not be able to per-
form computation. Although we can represent variable values as states, as in
the past example , let it be clear that this a rather inefficient technique.

Example 2.4. In Figure[J, we have a statechart with 3 orthogonal components.
There are 2 integer variables: ”seconds” and ”"minutes”. The uppermost compo-
nent emits a "tick_s” event every 1 second. One component below, every ”tick_s”
causes a "seconds” counter to increment. Every 60 seconds, the counter is reset

N

t : after(1s)~tick_s

seconds=0;

tick_s[seconds < 60]/seconds++;

tick_s[seconds == 60]"tick_m/seconds=0;

minutes=0;

tick_m[minutes < 60]/minutes++;

tick_m[minutes == 60]"tick_h/minutes=0;

Figure 5: A clock.

and a "tick_m” event is generated, which in turn causes the lowermost compo-
nent to increment its "minutes” counter. Every 60 minutes, a "tick_-h” event
18 generated.

The lower 2 orthogonal components use guard conditions testing the values
of 7seconds” and "minutes” in order to make a selection between 2 possible
transitions on the reception of a ”tick_s” and "tick_m” event, respectively. Both
integer variables are incremented and reset by actions carried out by their re-
spective transitions.

2.2.9. Enter and Exit Actions

Enter and exit actions are a feature found in many statechart-like languages.
They are properties of control states. Enter actions are executed whenever a
control state becomes a current state, exit actions are executed whenever a
control state unbecomes a current state.

Enter and exit actions are not part of the CHTS normal form syntax because
it is possible to transform a system with this feature into a system without it.

Enter and exit actions are very useful when a control state has a lot of
incoming/outgoing transitions, and all of them carry out the same (sub)set of
actions. Because of this, we will include enter and exit actions in our formalism.

2.8. Conclusion

We have now seen the basic syntax and semantics of statecharts. Even
though statecharts are very flexible and expressive, we still cannot build an
entire system only as a single statechart. A real-life system typically consists
of dynamic entities, created and destroyed during runtime. There is also no
concept of locality/encapsulation: A statechart can have variables, but these
variables are visible to all transitions of that statechart.

The solution we will present for this problem will use statecharts for describ-
ing the behavior of individual objects. Instances of those objects can then be

created and destroyed during execution, and they can send events to each other,
pretty much like objects invoke each other’s methods in object-oriented systems.
The precise way of how we specify objects and the relationships between them
is explained in Section [4]

In the next section, we focus on the issue of parallelization. It has already
been mentioned at the end of Section that (orthogonal) components of a
single statechart typically do not allow for parallel execution. But if we use
statecharts to express the behavior of individual objects, we can still run those
objects in parallel. The Actor Model, an abstract formalism to achieve paral-
lelism, closely resembles this paradigm.

3. The Actor Model

CPU speeds have not been growing exponentially for a while now, and par-
allelism is expected to be the only way to achieve higher returns on higher
investments, now and in the future. First proposed as a way to create artificial
intelligence in 1973 [4], and later generalized as a multi-purpose programming
paradigm in 1985 [1], the Actor Model is an abstract model of computation (like
the Turing machine), with the goal of making parallelism easier. A system mod-
eled in actor model artifacts can be arbitrarily ran as a single threaded process
on a single machine, as a multithreaded process on a single machine, or as a
distributed system spanning the globe. In fact, the actor model is so generic
that it allows implementations to dynamically scale the number computational
threads of a running system.

Before we go into the details of the actor model, let us first examine the
weaknesses of the way parallelism is usually implemented: raw threads.

8.1. Parallelism Using Raw Threads

Massive parallelism is trivial to implement (and already used today) for
uniform tasks that operate on large amounts of data, such as computer graphics
(transforming lots of vectors by the same matrix), and the mining of large
databases for the same types of patterns.

It is much harder to apply parallelism to more conventional problems. Ex-
isting programming languages offer API’s for working with threads. Threads
have a number of disadvantages:

1. The developer has to choose which parts of the program to run in threads.

2. The number of threads is therefore fixed, and computation throughput
does not scale as more resources are added.

3. Communication between threads usually happens through shared mem-
ory, requiring synchronization, with a performance penalty and deadlock
as common side-effects. Anti-deadlock measures dramatically increase sys-
tem complexity and further negatively impact performance.

3.2. Parallelism in The Actor Model

In the actor model, the basic building blocks are called actors. An actor is a
unit of computation. Actors communicate by sending messages to each other’s
addresses. An actor may have any finite number of addresses.

The actor model does not imply any kind of parallelism, but it does make a
number of basic assumptions to make it trivial to run systems designed in it in
parallel:

1. There is no global state
2. All communication (between actors) is asynchronous.

Actors only "act” when they receive a message. Based on its current state,
and the address on which a message was received, an actor may do any of the
following things:

1. Create new actors
2. Send asynchronous messages to addresses of other actors
3. Decide how to respond to a next messageﬂ (i.e. change its state)

An actor can only process one message at a time. However, the actor model
assumes that on the reception of a message, computation is infinitely fast: All
side-effects are carried out immediately. This is mostly a matter of making the
actor model less complex. Queues are therefore not assumed to be present, but
in reality (where computation does take time) they will typically be used behind
the scenes by implementations. When multiple messages are received at exactly
the same time (or so close to each other that the actor cannot distinguish which
one was there first), the order in which they are responded to is picked randomly.

An actor can only send messages to addresses it somehow knows. Messages
may carry addresses as parameters, and actors may store addresses received this
way for later usage.

3.8. Cases of The Actor Model

The actor model is not only Turing-complete, the Turing machine is a special
case of the actor model. We can thus also view existing programming paradigms
as special cases of the actor model. Synchronous function/method calls can be
expressed using asynchronous messages by letting the caller wait for a return
message. The asynchronous message sent by the caller will then carry one of its
own addresses upon which it will receive the return message.

In the context of functional programming, a function is an actor that never
changes. Because actors cannot natively wait for some value to be evaluated
before returning a result, the actor will create a new actor that waits for the
result of a sub-expression. Let’s look at an example.

2This includes the actor destroying itself (by choosing not to respond to next messages)

10

actor factorial():
when receive message ’compute’ with parameters (return_addr, x)|:

if x <= 1:
send result(1l) to return_addr;
else:

¢ = new actor wait_for_result(return_addr, x);
send compute(c, x-1) to self;

actor wait_for_result(return_addr, x):
when receive message ’result’ with parameters (y):
send result(x*y) to return_addr;

Figure 6: Factorial function in the actor model.

fact(0) ->
1.
fact(N) ->

N * fact(N-1)

Figure 7: Factorial in Erlang, the most widespread actor-based language.

Example 3.1. Suppose we have an actor representing the factorial function.
The actor has a single address upon which it receives a request for calculating
the factorial of x and sending the result to return_addr. If x <=1, 1 is returned
immediately. When x > 1, it requests itself to calculate the factorial of v — 1,
and to send the result to a new actor wait_for_result specifically created. The
wait_for_result actor gets 2 parameters upon creation: the return_addr originally
received by factorial, and the value x with which to multiply the factorial of x—1
when it is recewed. Pseudocode in Figure [0

This example demonstrates a lot of common constructs in the actor model.
factorial receives an address in a message, wait_for_result stores this address
in its local storage. Both factorial and wait_for_result perform computation.
factorial creates a new actor.

Because it takes a lot of work programming actors this way, actor-based
programming languages (e.g. Erlang) often make recursion possible by similar
means as in functional programming languages. See Figure [7] as an example.

In [I], another example is presented that shows how much the actor model
resembles the functional paradigm. In functional languages, data structures
such as linked lists are represented by the recursive operations that construct
the data structure, instead of linked pointers to blocks of memory. What follows
is an example showing a stack structure of linked nodes.

Example 3.2. In Figure [§ we see pseudocode for a stacknode actor. It can

11

actor stack_node(content, previous_node):
when receive message ’push’ with parameters (new_content):
next_node = new actor stack_node(content, link);
become new actor stack_node(new_content, next_node);
when receive message ’pop’ with parameters (return_addr):
if content != NIL:
become previous_node;
send result(content) to return_addr;

Figure 8: A recursive stack data structure.

respond to 2 types of messages: pop and push. FEvery stack_node has a link to
the previous node and content stored in it. push causes the stack node actor
to create a mew stacknode with itself as the previous node. Then something
interesting happens: the current stack.node (who received the push message),
becomes the actor it just created. New messages sent to the same actor address
will thus be received by the newly created actor, which is what we want: Another
push or pop should always be received by the top node. The old actor becomes
reachable only through the new actor, which has the old actor’s address stored
in the previous_node field. When a pop is received, the top node actor returns
his content and becomes the actor pointed to by the previous_node address.

8.4. Deadlock

It is often claimed that deadlock cannot occur in the actor model. This is
not the case: the ”"when receive” statement is blocking in nature. It is possible
to create 2 actors that infinitely wait for each other to receive a message.

Example 3.3. Figure[d shows a deadlock situation in the actor model.

Again, since it is possible to see other paradigms as special cases of the actor
model, it is possible to create an actor that resembles a shared resource, and
other actors that resemble threads, such that the shared resource actor only
allows one of the thread actors to obtain access to it at the same time. Let this
serve as a more realistic example of how the actor model can be perverted with
all the trouble known to arise from the use of raw threads + shared state.

However, the actor model includes the feature of futures, that makes the use
of locks unnecessary in many cases.

3.5. Futures

A future is a special kind of actor that resembles the outcome/result of an
asynchronous call known to evaluate to some result at a later point in time.
Futures can be passed around just like regular values. Operations can be per-
formed on a future, by pushing them into the future pipeline. A future keeps a

12

actor plusl(plus2):
when receive message ’hello’ with parameters (x):
send hello(x+1l, this) to plus2;
become NIL;

actor plus2Q):
when receive message ’hello’ with parameters (x, from):
send hello(x+2) to from;
become NIL;

actor system():
init:
new actor plusl(new actor plus2());

Figure 9: 2 actors waiting infinitely for each other to say ”hello”.

pipeline of operations to be performed whenever the last operation has evalu-
ated to some result. This way, an actor (thread) will never have to block until
the result of some call is evaluated.

8.6. Our Approach

Because an actor is any kind of unit that responds to messages received from
the outside, we can use statecharts to express the behavior of actors. To make
our statecharts actor-compatible, when responding to a received message/event
by making a transition, a statechart will be able to do any of the following:

1. Create new statechart instances (or: objects whose behavior is modeled
by statecharts)

2. Generate events and send them to specific statecharts (actors/objects)
asynchronously

3. Change its state (trivial)

For the first point, we will have to come up with a way for statecharts to
create new statecharts as the side-effect of making a transition. From the state-
charts point-of-view, this can only be done by generating some request event for
the environment to create a new statechart instance, and letting the environ-
ment return an event parameterized with the ”address” of the new statechart.
As will be discussed in Section {4} the part of the environment that handles the
creation (and deletion) of statechart instances will be referred to as the object
manager. From the actor model point-of-view, the creation of new actors is
native and thus the object manager is implicit from this perspective.

Second point: Once a statechart can create an instance, it will probably want
to communicate with it. Typically, in OO systems, there is some specification
with regard to the relationships between objects. For instance, in Java and

13

Document

-title: string
-author: string
-body: string

+print(): void

Figure 10: A class called Document with 3 private member fields of type string, and 1 public
method print() of type void.

C++, a class definition contains a declaration list with references/pointers to
other classes/objects. The relationships between objects are therefore known in
advance, and often bounded. This is a useful property: the more we know about
the topology of a system, the easier it is to debug, and compilers can use this
information to make optimizationﬂ (e.g. using static allocation if possible)
We will use Class Diagrams to specify the relationships between statechart
instances. Even though the actor model assumes the topology of a system is
completely dynamic, our approach is a special case of this, so it can still be
regarded as a proper case of the actor model.

3.7. Conclusion

We had a quick look at the actor model, an abstract model for parallel com-
putation. In the next section, we introduce Class Diagrams, and we explain how
they can be used to model both the structure of objects and the relationships
between them.

4. Class Diagrams

Class Diagrams model the structure of classes/objects and the relationship-
ships between them. We assume the reader is somewhat familiar with them, so
won’t go into detail very much. While explaining the class diagrams syntax &
semantics, we show how we can use class diagrams to define the structure of a
system of objects, whose behavior in turn is specified by statecharts.

4.1. Syntax

The basic entity of a class diagram is a class. A class is represented syntac-
tically by a rectangle with the name of the class in it. Beneith the name, we
encounter a list of (usually private) variables, followed by another list of (usually
public) methods. Figure [10|shows an example.

4.1.1. Variables

Assume we now have an object whose behavior is specified by a statechart.
In Section 2:2.8] we explained how statecharts can use variables to perform
computation. The class (diagram) associated with a statechart will list the

3Most likely only in composition-type relations.

14

Clock D
- seconds S /*
- minutes e
i t : after(1s)~tick_s

seconds=0;

tick_s[seconds < 60]/seconds++;

tick_s[seconds == 60]"tick_m/seconds=0;

minutes=0;

tick_m[minutes < 60]/minutes++;

tick_m[minutes == 60]"~tick_h/minutes=0;

Figure 11: A class with a statechart attached to it.

statechart’s variables as private attributes. This way, the class diagram specifies
the structure of the object, while the statechart specifies its behavior. Figure
shows the statechart from Example 2.4] with a class diagram.

4.1.2. Methods

In typical OO design, the methods of an object are its public interface to-
wards other objects. Objects communicate by invoking each other’s methods.

Since we will already use statecharts to specify the behavior of objects, and
statecharts solely use events for communication, in our approach, objects will
not exhibit a list of public methods to be invoked by other objects. The actor
model also demands communication between objects/actors to be inherently
asynchronous. Event-based communication resembles this paradigm closer.

Even though methods will not be used to carry out communication, we will
still use methods to group recurring operations/expressions on local data. The
only 2 ways a method can be called are

1. As a side-effect of the statechart making a transition
2. The method was called by another method (of the same object).

In OO terms: methods are private.

Methods can be used to name operations/expressions that take a number
of steps. This way, more complex behavior can be accessed from an object’s
statechart, without the need to state that behavior explicitly in the list of condi-
tions/actions of a transition. We also save space if certain behavior is recurring
among multiple transitions. Remember the syntax of a transition label

trigger|[condition]” generated_events/actions

15

Course “I'student

Figure 12: A bidirectional association relationshipship between two classes, with multiplicities
on both ends.

Methods can be called from the list of actions, and because a method call is
synchronous in nature, we can use its return value to evaluate the condition of
a transition.

Methods are not allowed to generate events: No transitions can be triggered
directly as the result of a method being executed.

4.1.3. Relationships

Up until now, we have seen how we can use class diagrams to specify the
structure of individual objects. As mentioned a couple of times, we will also use
class diagrams to describe the structure of a system of objects, i.e. to describe
the possible communications between objects. In class diagrams, this is done
with the use of certain types of relationships. Relationships are displayed as
lines/arrows between classes/objects.

Association We will mostly be concerned with the association type of rela-
tionship. An association from one class to another means the former can
send communications to the latter. An association is syntactically repre-
sented by an arrow from one class to another. Sometimes, associations
exist in 2 directions: both classes can communicate with each other. In
that case, the association is syntactically shown as a line between both
classes.

Associations can have multiplicities. Multiplicities are numerical values
(or ranges of values) indicating the number of associated instances there
can be from one class to another. If no multiplicities are specified, the
default value is 1. In bidirecional associations, multiplicities can be set on
both ends.

Figure shows an association between 2 classes, Course and Student.
The multiplicity at the side of Course is 1, which means that every student
has 1 Course instance it can refer to. The multiplicity on the side of
Student is * (asterisk), which means that a course can have any number
of students, including 0.

Aggregation A special case of the association relationship, aggregation, is used
for "has a” types of relationships. Aggregation is typically used when one
class is a container of other classes, but there is no life cycle dependency
between one another: When the aggregate class is destroyed, its ”parts”
are not. Aggregation is denoted with a hollow diamond on the side of the
aggregate class. Aggregation relationships are unidirectional, but multi-
plicities can be set on both ends. If a multiplicity is set on the opposite
end of the aggregation, it means there is a normal association in that

16

_—-

 ——

Figure 13: 5 types of relationships. From top to bottom: bidirectional association, unidirec-
tional association, aggregation, composition, inheritance.

direction. We will not be concerned with aggregation very much: be-
cause of the absense of life-cycle dependency, aggregation does not make
a significant semantical difference over association.

Composition Composition, in its turn, can be seen as a special case of aggre-
gation: It represents a ”part of” type of relationship. There is a life-cycle
dependency: When the composite class is destroyed, so are its parts. Com-
position relationships are always unidirectional: Two instances can never
be part of each other. Composition is denoted with a solid diamond on
the side of the composite class. Composition makes a significant seman-
tical difference over aggregation: We can use the life-cycle dependency
information to optimize the allocation of objects.

An overview of the types of relationships and their syntax can be seen in
Figure [T3]

Now that we know how to describe the possible communications between
classes, let us see how the statecharts of those classes can use this information
to send events to each other.

4.2. Class Diagram from the Statechart Point-of-View

All information contained in the class diagram the statechart is attached to,
is visible to the statechart. The statechart can see its class’ variables, methods
and outgoing relationships. Variables can be used in guard condition expressions
and actions. Methods can be called from the list of actions and their return value
can be used in the evalation of a guard condition.

Relationships are used to create/delete instances and to send events to spe-
cific destinations. This is not very trivial: Recall from Section that in the
actor model, the creation of new actors is carried out by actors themselves.
Statecharts, however, cannot natively create new instances, so the creation of
new instances has to be dealt with by some external entity. The object manager
will take care of this.

4.8. Object Manager

The object manager is an entity providing a statechart-like interface to all
statecharts. Its main task is handling the creation and deletion of statechart
instances at runtime.

17

Class Diagram

N - CEN

myB

Statechart of A

instance_created(assoc_name)
~create_instance("myB") [assoc_name == "myB"]

T

Figure 14: The class diagram at the top shows an association from class A to B, called myB.
When an instance of A is created, the statechart of A requests the creation of an instance of
B and waits (in state waiting) for the response event instance_created.

4.83.1. Creation And Deletion of Instances

The procedure of creating/deleting instances is as follows: Whenever a stat-
echart wishes a new instance to be created (or deleted), it sends a request to
the object manager. Since statecharts’ only manner of communication with
the outside world is through asynchronous events, this request will also happen
through an event. After making such a request, a response (also in the form of
an event) will be sent back to the statechart, denoting the status as succes or
failure.

Figure shows a statechart A that, when created, immediately creates
another statechart B.

The object manager will have to be completely aware of the topology con-
tained in all classes: When a statechart requests the creation of a new instance,
the object manager has to check if a relation between the creator statechart and
created statechart exists, and whether the relation is still available (not occu-
pied by some other instance). Also, when some instance gets deleted, the object
manager has to check whether the instance is no longer part of any mandatory
relation with another object. If not, the deletion cannot take place. We will go
into further detail on this in Section ?7.

18

. TODO

e Actor Model originates from A.I. research — this can serve as an additional
motivation of why we use it (Glenn’s work is on A.IL. as well)

e Give examples of how the object manager will check relationships upon
creation/deletion.

e Explain how relationships are visible to the statechart, i.e. how the state-
chart can use relationships from the class diagram to send events to other
statecharts

e BSMLs: 8 aspects (this can mostly be copied from old report, but with
additional examples)

e Formal Specification: Read Glenn’s paper and build on top of that?

19

References

1]

2]

Gul Abdulnabi Agha. Actors: a model of concurrent computation in dis-
tributed systems. 1985.

Shahram Esmaeilsabzali, Nancy A Day, Joanne M Atlee, and Jianwei Niu.
Deconstructing the semantics of big-step modelling languages. Requirements
Engineering, 15(2):235-265, 2010.

David Harel. Statecharts: A visual formalism for complex systems. Science
of computer programming, 8(3):231-274, 1987.

Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, IJCAT’73, pages 235-245, San
Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

Jianwei Niu, Joanne M Atlee, and Nancy A Day. Template semantics
for model-based notations. Software Engineering, IEEE Transactions on,
29(10):866-882, 2003.

20

	Introduction
	Statecharts
	State Machines
	Syntax and Semantics
	Events
	Control States
	Transitions
	A word on the environment...
	Hierarchy
	Transitions, revisited
	Orthogonality
	Variables
	Enter and Exit Actions

	Conclusion

	The Actor Model
	Parallelism Using Raw Threads
	Parallelism in The Actor Model
	Cases of The Actor Model
	Deadlock
	Futures
	Our Approach
	Conclusion

	Class Diagrams
	Syntax
	Variables
	Methods
	Relationships

	Class Diagram from the Statechart Point-of-View
	Object Manager
	Creation And Deletion of Instances

	TODO

