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1 Introduction

The original semantics of SCCD have been extended with a number of options.
The stepping algorithm of objects also has been rewritten.

We will first explain the original stepping algorithm and semantics in Section
2. We will then explain the new stepping algorithm in Section 3, and the
available semantic options in Section 4.

2 Original SCCD Semantics

In this section, a rough overview will be given of the stepping algorithm in the
original version of the SCCD compiler[5]. Next, a number of drawbacks from
using this algorithm will be given.

2.1 Stepping Algorithm

In original SCCD, the step method of all objects is called in a round-robin
fashion, advancing simulated time. The step method has a parameter delta,
the amount of time to simulate. Each object has an event queue, its entries
being tuples (event, timeout). In a step, the timeouts of all entries are reduced
by delta, and due events (an event whose timeout <= 0) are popped. For each
due event, the transition function of the object’s statechart is called, with the
event as its parameter.

2.1.1 Transition function

The transition function is not part of the runtime; it is produced by the
compiler for each statechart (class) in the diagram. Depending on the current
state of the object, the transition function executes 0 or more transitions,
changing the object’s state. It returns true iff at least 1 transition was executed.

1



t1

t2

t3

t4

S1 S2

S4S3

R

A S4

O1 O2

S1 S2 S3

t3

t2

t4

t1

Figure 1: Left: A statechart with 2 orthogonal components. Right: Composition
tree of the same statechart.

The transition function performs a depth-first search on the object’s (hard-
coded1) tree of current states. At every node, the event triggers and guard
conditions of outgoing transitions are checked. Transitions can only be enabled
if their event trigger is equal to the actual value of the event parameter of the
transition function, or if they have an empty event trigger (called a null tran-
sition in Rhapsody). The first outgoing transition that is found to be enabled,
is executed.

Whenever an outgoing transition of a node in the tree of current states has
been executed, the children of that node are no longer visited in the current
pass. This is because the current node is no longer guaranteed to be in the set
of current states. This means that original SCCD gives priority to transitions
whose source is higher up in the composition tree. As a result, if multiple
transitions execute during a call to the transition function, those transitions
must be orthogonal to each other. Since the transition function is called for
each due event by the stepping method, each event can be sensed by multiple
orthogonal transitions2.

Example: In Figure 1, suppose the set of current states is {R,A,O1, O2, S1, S3},
and transitions t2 and t4 are enabled. A depth-first search on the current states
visits R, A, O1, S1, O2 and finally S3. When S1 is visited, its outgoing tran-
sition t2 is executed. When S3 is visited, t4 is executed.

1For each state S in the composition tree, the compiler produces a function transition S.
This function calls the transition functions of the children of S, and returns true or false,
depending on whether a transition with source S or any (in)direct child of S was made.

22 transitions are orthogonal if their arenas are not ancestors of each other. The arena
of a transition is the lowest common Or-state ancestor of its source and destination. E.g. in
Figure 1, the pairs of orthogonal transitions are (t2, t4) and (t3, t4).
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Figure 2: Left: Statechart. Right: Composition tree of the same statechart.

2.1.2 Priority Semantics

By default, original SCCD gives priority to transitions whose source state is
closer to the root of the composition tree. It is also possible to configure it to give
priority to states lower in the composition tree. To carry out this behavior, when
visiting a node, before checking outgoing transitions of the node, its children
are visited first. Later, the outgoing transitions of the node are only checked if
no transitions were made in the node’s children.

Example: Have a look at Figure 2. Suppose transitions t1 and t2 are both
enabled, and the transition function is called. By default, original SCCD will
execute t2, because when scanning the composition tree in a depth-first manner,
its source state (O) is encountered first. If we configure SCCD to give priority
to inner transitions, the outgoing transitions of the children of O are checked
first, before the outgoing transitions of O itself. This causes t1 to be executed.
Note that after t1 is executed, t2 will still be executed during a next call to the
transition function.

2.1.3 End Condition

We have seen that the step function decreases time by a given delta, pops
due events, and calls the transition function for each due event. When this
is done, the step function keeps calling transition (with no argument) until
it returns false, i.e. transitions keep executing until it is no longer possible to
make a transition.

2.2 Drawbacks

We have just seen that in original SCCD, transitions are executed during the
search for enabled transitions. There are a number of drawbacks that originate
from this approach:

• In some cases, it is possible for conflicting transitions (i.e. transitions
between whom there exists a disables-relationship, meaning one transition
makes it no longer possible for the other transition to execute) to be
executed in an illegal order. This is because if a transition affects the set
of current states in such a way that the parent of the current node is no
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longer in the set of current states, other children of the current node’s
parent will still be checked as if they reside in the set of current states.

Example: In Figure 1, if O2 was visited before O1, t2 or t3 could still
be executed after t1 was executed, possibly bringing the model in an in-
valid state. There is no elegant way to implement this behavior correctly,
and thus we cannot allow transitions of the type of t1. In Section 3, we
will show that this problem simply does not arise with the new stepping
algorithm, so there will be no need to deal with it as a special case.

• It is harder/impossible to implement concurrency semantics. With con-
currency, transitions that are orthogonal to each other are executed con-
currently, meaning the transitions cannot see each other’s side effects.
The main advantage is that otherwise, orthogonal transitions are able to
execute in any order, nondeterministically, but if we execute them concur-
rently, there no longer is an order. Of course, we have to check whether
either transition can have an effect on the other transition through its
actions/guard conditions (this is very complex), and even then there are
additional semantic options for defining behavior. More on this in Section
3.

• The old stepping algorithm has no notion of the concepts (or equivalent
concepts) big step / combo step / small step from Day & Atlee’s 2010
paper [2]. More on this in Section 3.2.

• The main goal of configurable semantics was to embody the semantics
of both Statemate[4] and Rhapsody[3]. Both have a stepping algorithm
that first generates a list of candidate transitions before executing any
transitions. The new stepping algorithm of SCCD is similar.

We have also seen that in original SCCD, the step function keeps executing
transitions until no more transitions can be made. There are drawbacks from
this as well:

• If a loop of transitions is always enabled for some reason, a step will never
end.

• The statechart only returns to a stable state (by keeping executing tran-
sitions) after all due events have been processed. For the same series of
tuples (event, timeout) of input, known from the beginning, different out-
comes are possible depending on the values for the delta argument with
whom step invocations subsequently happened. It would make more sense
for the statechart to return to a stable state after every event queue entry.

• It is not possible for multiple events to be present at the same time, and
therefore transitions cannot have an event combination trigger. To support
this, the form of event queue entries must be (event list, timeout).

Finally, a drawback from the way internal events are handled in original
SCCD:
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• There is no differentiation between internally raised events and input
events. This way, internally raised events do not become present until
other (possibly external) timed out events have been processed. This
makes it harder for the modeler to make assumptions on when the state-
chart will respond to an internal event.

We will now look at the new stepping algorithm in SCCD in Section 3. Later,
in Section 4, the available semantic options will be discussed.

3 New Stepping Algorithm

3.1 Goal

The new stepping algorithm has been designed to be flexible enough to support
multiple configurations of semantics, with the requirement of being able to ex-
press Rhapsody and Statemate semantics as a configuration. An additional goal
was to be able to express the original SCCD semantics as a configuration, for
compatibility reasons. This configuration will then serve as the default, i.e. if no
options are specified by the modeler. Existing models are then guaranteed3 to
work, causing minimal frustration among developers working on existing models
in original SCCD.

3.2 Big Step, Combo Step, Small Step

For the new stepping algorithm, inspiration came from Big Step Modeling Lan-
guages (BSML), as described in [2]. BSMLs serve as a greatest common denom-
inator among statechart-like languages.

The execution of a BSML model is a sequence of big steps. A big step is a
unit of interaction between a model and its environment. A big step takes input
from the environment (at the beginning of the big step), and produces output
to the environment (after the big step has taken place). Input cannot change
during the big step.

A big step consists of 0 or more small steps. A small step is a set (unordered!)
of 1 or more transitions, but in this paper, a small step will always be equal to
1 executed transition4.

Small steps are grouped in so-called combo steps. A combo step is a maximal
sequence of small steps, such that it only contains transitions that are orthogonal
to each other5.

3Well, almost...
4When using Concurrency semantics, a small step is a set (undordered!) of 1 or more

transitions. At this point, Concurrency is not supported in SCCD, but it is possible that it
will be, in the future. Section 4 provides a quick overview of Concurrency.

5Although we use combo steps, the semantic aspect Combo Step Maximality from [2] is
fixed at “Combo Take One”, because this is the only sane option.
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3.3 Implementation

3.3.1 Event Queue Entries

In original SCCD, event queue entries where tuples (event, timeout). Because
we also want to support multiple input events per big step, as well as to have a
clear scope for big steps, event queue entries now are tuples (event list, timeout).
A big step is then executed for each such entry.

3.3.2 Big Step Implementation

The new step function still takes a parameter delta, advances time by de-
creasing timeouts, and pops due event queue entries. For each due entry
(event list, timeout), the new function bigStep is called with event_list as
argument.

The bigStep method executes a single big step. It calls the comboStep

method 1 or more times (depending on semantics, see Section 4). comboStep

calls smallStep until it is no longer possible to include a small step in the
current combo step.

The smallStep method calls generateCandidates to generate a list candi-
date transitions (in document order). Next, 1 or more candidates are selected
and executed as a small step. If there are no candidates, smallStep returns
false, indicating that no small step could be executed. This will cause the
ending of the current combo step, and possibly the ending of the current big
step as well.

Figure 3 shows the call stack associated with a step.

3.3.3 generateCandidates Function

The generateCandidates function is similar to the transition function in
original SCCD. It is not part of the runtime; it is produced by the compiler. It
produces a list containing a subset of all enabled transitions. Initially, this list
is empty. It then performs a depth-first search on the object’s tree of current
states, checking the triggers and conditions of outgoing transitions. Transitions
that are found to be enabled are not executed; they are added to the list of can-
didates. After the tree of current states has been scanned, the list of candidates
is returned.

Just like with the transition function in original SCCD, by default, if at
the current node an outgoing transition was added to the list of candidates, the
children of that node are no longer checked. Again, it is possible to configure
the semantics to do the opposite.

3.3.4 Transition Functions, Some Confusion

A transition candidate is implemented as a pair (callback, parameters), where
callback is a member function that, when called with parameters as argu-
ment, executes the transition: Source state is exited, exit actions are executed,
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Figure 3: Call stack for the stepping of a single object.

transition actions are carried out, events are raised, enter actions are executed,
destination state is entered. The callback member functions are produced by
the compiler, and they are named transition_<source state>_<index>.

This may be confusing because in original SCCD, similarly named functions
carried out the depth-first scan of current states. This is no longer the case. A
member function with the above naming pattern now solely executes a single
transition, without checking its enabledness.

4 Semantic Options

We will now discuss the new semantic options included in the new stepping
algorithm of SCCD.

In the examples, a big step will be indicated as a sequence [combo step, combo step, ...].
A combo step will be indicated as a sequence [small step, small step, ...]. A
small step will be indicated as a set {transition, transition, ...}.

4.1 Big Step Maximality

Big Step Maximality specifies when a big step ends. Currently, there are 2
options:

Take One A big step consists of at most 1 combo step.

Take Many A big step consists of as many combo steps as possible.
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a b c
Figure 4: Statechart for demonstrating big step maximality semantics. All
transitions have no trigger and no condition.

Example: In Figure 4, state a is entered during initialization of the state-
chart. In the next big step, the transition from a to b is enabled, and executes.
That transition makes up the first small step, and that small step is part of the
first combo step of the big step. The transition from b to c is not orthogonal
with respect to the transition from a to b, so it cannot be part of the same
combo step. If we use Take Many, a new combo step is executed, consisting of
a single small step with the transition from b to c. It is then not possible to
execute another small step, so the current combo step ends. Because at least 1
transition was executed in the last combo step, the big step attempts to execute
another combo step, but due to the lack of enabled enabled transitions, that
attempt fails and the big step ends. So the big step is [[{a to b}], [{b to c}]]. If
we use Take One, the big step ends after the first combo step. The transition
from b to c can still be executed in the next big step. The sequence of big steps
then is [[{a to b}]], [[{b to c}]].

Let us now look at an more complex example, involving orthogonal compo-
nents.

Example: In Figure 5, states sa and sd are entered during initialization.
In the first big step a combo step is executed, which executes a small step.
The small step generates a list of candidate transitions, in document order.
The candidates are sa to sb and sd to se. Supposing we don’t use concurrency
semantics, the first of these candidates is selected, so sa to sb makes up the first
small step of the first combo step. The current combo step executes another
small step. This time, the only candidate is sd to se, because the transition
sb to sc is not orthogonal to sa to sb, which is already part of the current combo
step. So sd to se is executed. It is not possible to include another small step in
the current combo step, so the combo step ends. If we use Take One, the current
big step also ends. The big step is then [[{sa to sb}, {sd to se}]], followed by
[[{sb to sc}, {se to sf}]]. If we use Take Many, another combo step begins,
consisting of small steps {sb to sc} and {se to sf}, in document order. The big
step is then [[{sa to sb}, {sd to se}], [{sb to sc}, {se to sf}]].

The major advantage of Take One is that a big step is guaranteed to end: The
model will always be able to sense input again. Take Many has the potential risk
of never-ending big steps. Take Many allows for sequences of non-orthogonal
transitions to be taken in a single big step. There may be circumstances where
this is useful.
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Figure 5: Statechart for demonstrating big step maximality semantics. All
transitions have no trigger and no condition.

4.2 Internal Event Lifeline

Internal Event Lifeline specifies when an internally raised event becomes present.
There are 3 options:

Next Small Step The event becomes present in the next small step.

Next Combo Step The event is present throughout the next combo step.
This option only makes sense in combination with Take Many.

Queue Internally raised events are treated like external input events, and added
to the object’s event queue. It is possible that other external events are
responded to before the raised event becomes present.

Example: Have a look at Figure 6. Suppose we use Take Many for big step
maximality. The model enters a during initialization, and suppose event e is
popped from the event queue. If we use Next Small Step, a to b makes up the
first small step and first combo step. Event f is internally raised and present
in the next small step. The next small step is part of the next combo step.
The big step is [[{a to b}], [{b to c}]]. If we use Next Combo Step, behavior is
exactly the same as with Next Small Step, because in this model, each combo
step consists of only one small step. If we use Queue, again, a to b makes up
the first small step and first combo step, but this time, event f is added to the
event queue. As a result, f doesn’t become present until some next big step.
So the current big step [[{a to b}]] ends and [[{b to c}]] may happen later on.

Example: Have a look at Figure 7. We use Take Many, and event e is
an input event. The model enters sa and sc during initialization. At first,
only sc to sd can be executed, so that transition makes up the first small step.
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Figure 6: Statechart for demonstrating internal event lifeline semantics.

If we use Next Small Step, event f becomes present and causes the transi-
tion sa to sb to make up the next small step. This small step is still part of
the same combo step, because it is orthogonal to the first transition. Event g
is raised and becomes present in the next small step. Because it is not pos-
sible to include another transition in the current combo step, a new combo
step begins. The candidates of the first small step of the new combo step are
sb to sa and sd to se, in document order. The first is executed. It is not pos-
sible to execute another small step, because event g is no longer present. So
sd to se never executes. We could say that event g “went lost”. The big step
is [[{sc to sd}, {sa to sb}], [{sb to sa}]]. If we use Next Combo Step, sc to sd
makes up the first combo step. In the 2nd combo step consists of sa to sb.
Throughout the 3rd combo step, event g is present. This allows both sb to sa
and sd to se to be executed (in document order), because they are orthogonal
to each other. If we use Queue, a series of big steps happens: [[{sc to sd}]],
[[{sa to sb}], [{sb to sa}]] and finally [[{sd to se}]].

Although Next Small Step may seem intuitive if we imagine an internally
raised event to cause a transition in the next small step, sometimes a transition
from another orthogonal component makes up the next small step, and the event
“goes lost”. It is also not possible for a raised event to be sensed in multiple
orthogonal components. Queue semantics ensures that a big step is executed for
every internally raised event. But this has the disadvantage that the modeler
has no control over when a raised event will be responded to. It is possible for
other external input events to be processed first. Next Combo Step allows for
internally raised events to be responded to in the same big step, and allows for
events to be present throughout a whole combo step, allowing every orthogonal
component to sense every internal event. But this option can only be used in
combination with Take Many for big step maximality.

Because in some cases, we want to allow the environment to “interrupt”
the execution of a statechart, Queue can be useful. But if we don’t want every
internal event to be treated like an external event, it is possible to use Next Small
Step or Next Combo Step for those events, and narrow cast “interruptable”
events to the object itself.

4.3 Input Event Lifeline

Input Event Lifeline specifies when an input event (popped from the object’s
event queue) is present during a big step. There are 3 options:
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Figure 7: Statechart for demonstrating internal event lifeline semantics.

First Small Step The event is present during the first small step.

First Combo Step The event is present during the first combo step.

Whole The event is present entirely throughout the big step.

4.4 Priority

Priority specifies what kinds of transitions have priority to be added to the list
of transition candidates during the depth-first search. This option used to be
called “conflict” in original SCCD. There are 2 options:

Source-Parent Transitions whose source is an ancestor of the source of another
transition have priority over that transition. This option used to be called
“outer” in original SCCD.

Source-Child Transitions whose source is a (possibly indirect) child of the
source of another transition have priority over that transition. This option
used to be called “inner” in original SCCD.

Example: In Figure 2, if we use Source-Parent, the outer transition t2 will
execute as the only transition in the big step. If we use Source-Child, t1 and t2
will each make up one combo step.

4.5 Concurrency

Concurrency specifies whether multiple transitions can be included in a small
step. This option specifies the selection of transition(s) among a list of candi-
dates. Currently there is only 1 option, but this may change in the future.

11



Single Each small step consists of 1 executed transition.

If we use Single, orthonogal transitions are executed in document order and
they make up the same combo step.

5 Conclusion

We have explained some shortcomings of the stepping algorithm in original
SCCD, explained the concepts big step, combo step and small step, explained
the implementation of the new stepping algorithm, and the semantic options
currently supported by SCCD.

In the future, more options will be added. For instance, SCION[1] uses an
event queue for internal events, such that one small step is executed for every
raised event. It is currently not possible to achieve similar behavior with the
available options.

6 Practical

Latest version can be found in the “semantics” branch of the SCCD project on
SVN. Note that the Javascript runtime still has to be updated, so only Python
will work for now.
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A Overview of some differences between origi-
nal SCCD and new SCCD

Original SCCD New SCCD
Compiled code
Depth-first search performed by transition function generateCandidates function
Transitions executed by - transition_<state>_<index> callbacks
Runtime code
Event Queue Entries (event, timeout) (event list, timeout)
Semantic options
Priority Semantics “conflict” (outer/inner) “priority” (source parent/source child)

B Rhapsody, Statemate and Original SCCD Con-
figurations for Semantic Options

Option Rhapsody Statemate Original SCCD
Big Step Maximality Take Many Take Many Take Many
Internal Event Lifeline Queue Next Combo Step Queue
Input Event Lifeline First Combo Step First Combo Step First Combo Step
Priority Source-Child Source-Parent Source-Parent
Order of Small Steps ? ? Document Order
Concurrency Single Single Single

Options in last column (Original SCCD) are also the default options for the
compiler.

C Pseudocode for Big Step, Combo Step and
Small Step Algorithms

bigStep function:

stepped = False

reset small step and combo step state (clearing internal events)

while comboStep():

stepped = True

if semantics.big_step_maximality == TakeOne:

break

return stepped

comboStep function:

stepped = False

while smallStep():

stepped = True

return stepped
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smallStep function:

c = generateCandidates()

if c:

transition, parameters = c[0]

transition(parameters)

return True

return False

generateCandidates will only return candidates that can be executed with
respect to the current combo step and priority semantics.
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