SCCD: A Statecharts and Class
Diagrams multi-target compiler
for a family of Statecharts
languages

Joeri Exelmans

21 November 2019



What is SCCD?

* Modeling language combining
StateCharts and Class Diagrams

* Original version by Glenn De Jonghe (2013)

* Extended with semantic options during my
Research Internship IT (2014-2015)

* Performance improvements by Simon Van Mierlo

(2015 - 2017)
2/20



An SCCD model is:

* A class diagram (set of classes and
associations between them, w/ multiplicities)

* Each class in said diagram has its behavior
defined with a statechart

3/20



The SCCD project consists of

* Compiler: takes a SCCD model (in XML) and produces code in
Python or JavaScript

* Runtime: mostly logic for "stepping” each object,
instantiating new objects & (very simple) conformance
checks. Also implemented in Python and JavaScript.

* A bunch of black-box tests
(given sequence of inputs — expected sequence of outputs?)

4/20



There are many "statechart” variants, and they
all differ slightly when it comes to semantics

* David Harel's original paper (1987)

* Standards
— SCXML, W3 consortium (2015) (already many implementations...)
~- PSSM, part of UML, OMG (May 2019)

* Commercial products:
- Statemate (1986)
~ Rhapsody (1996)
- Stateflow (2004)
- YAKINDU (2008)

5/20



SCCD aims to support...

- As input: a family of statechart languages

- As output: family of
- Multiple target languages, currently: statechart
- Python languages
- JavaScript 7
- Multiple types of platforms:
- Thread (the runtime runs an event loop in its own SCCD compiler
thread of execution) (if supported in target language) and runtime
- Event loop (for integration with an existing event y
loop, e.g. in GUT toolkits or in JavaScript: the runtime is
called from such eventloop, but may also schedule future multiple
events in that eventloop) target languages

- Game loop (the runtime only runs when requested

to "advance logical time by X") 6/20



Semantic variation of Statecharts

Super cool 2010 paper "Deconstructing the semantics of big-step
modelling languages” by Nancy Day & Joanne Atlee

= A study/comparison of many languages that can be mapped onto a
common statechart syntax, such that only the semantics differ on a
limited number (8) of variation points defined in the paper

Languages compared all intend o model reactive & interactive systems,
including:
- Statechart-like (Harel Statecharts, Statemate, Rhapsody, ...)

— Synchronous programming languages (Esterel, Argos, ...)
7/20



BSML Syntax

Events
Section 3.3

—

Event
Triggers
Section 3.3

Generated
Events
Section 3.3

Environmental
Output Events
Section 3.3.1

Generated
Interface Events
Section 3.3.2

Variables

Section 3.4, 3.5

Variable

Assignments
Section 3.5

Control
States
Section 3.2

Environmental Output
— Variables in LHS
Section 3.4.1

ce Variables

Interfa
— in RHS
Section 3.5.1

Environmental Input
— Variables in RHS
Section

Variable
Operators
Section 3.4

Guard
Conditions
Section 3.4

3.4.1

Hierarchical
Section 3.7

Stable
Section 3.1

Combo Stable
Section 3.8

Environmental
Input Events
Section 3.3.1

Input Events
Section 3.7

Interface Events
Section 3.3.2

Negated Interface
Events
Section 3.7

Negated Events
Section 3.7

new
Section 3.4, 3.6

new_small
Section 3.4

cur
Section 3.4

pre
Section 3.4

Interface Variables
in GC
Section 3.4.2

Environmental Input

Variables in GC
Section 3.4.1

And
Section 3.2

Negated Environmental

BSML Semantics

[SOURCE/DESTI.\'ATIOI\' OKTHOGUNALJ

ARENA ORTHOGONAL

Event Options

PRESENT IN WHOLE

Small-Step Consistency

Concurrency and )
Consi Section 3.2.2

PRESENT IN
REMAINDER

PRESENT IN
NEXT COMBO S

PRESENT IN
NEXT SMALL STEP

Section 3.2

NON-PREEMPTIVE

PREEMPTIVE

Preemption
Section 3.2.3

Concurrency
AS ENVIRONMENTAL

HYBRID INPUT
EVENTS

(Internal) Events
ection 3.3

Event Options

PRESENT IN SAME

External Events
Section 3.3.1

External Input
Events

Event Lifeline
Section 3.3

Interface Events
Section 3.3.2

Last COMBO
GENERATED EVEN

P

STRONG SYNCHRONOUS EVENT

WEAK SYNCHRONOUS EVENT
ASYNCHRONOUS EVENT

(Internal) Variables
in GC — Section 3.4

Event Options

GC BIG STEP
GC SMALL STEP

GC CoMBO STEP

HYBRID OUTPUT
Ev

Enabledness Memory
Protocol - Section 3.

GC STRONG SYNCHRONOUS VARIABLE ]

GC WEAK SYNCHRONOUS VARIABLE J

(Internal) Variables
RHS - Section 3.5

GC ASYNCHRONOUS VARIABLE J

RHS BIG STEP
RHS SMALL STEP

RHS ComBO STEP

Assignment Memory
Protocol — Section 3.

Interface Variables
in RHS - Section 3.5.1

RHS STRONG SYNCHRONOUS VARIABLE]
EXPLICIT ORDERING

Order of Small Steps
Section 3.6 X

RHS WEAK SYNCHRONOUS VARIABLE]
DATAFLOW

RHS ASYNCHRONOUS VARIABLE J

HIERARCHICAL

EXPLICIT PRIORITY

q

Priority
Section 3.7

—({Combo-step Maximality — Section 3.8

NEGATION OF
TRIGGERS

8/20



Example BSMLs and their semantic options

Sementic Aspects Semantic Options [21] [42] [30] [19] [6] [33] [22] [3]
Big-Step Maximality SYNTACTIC 4
TAKE ONE 4 4 4 4 4
TAKE MANY 4 4
Concurrency SINGLE 4 4 4 4 4
Many 4 4 4
Small-Step Consistency SOURCE/DESTINATION ORTHOGONAL
ARENA ORTHOGONAL 4 4 4
Preemption NoN-PREEMPTIVE 4 4
PREEMPTIVE
(Internal) Event Lifeline PRESENT IN WHOLE 4 4
PRESENT IN REMAINDER 4 4
PResenT IN NexT ComBO STEP 4 4

PRESENT IN NEXT SMALL STEP
PRESENT IN SAME
Environmental Input Events SynTAcTiC INPUT EVENTS 4 4 4
RECEIVED EVENTS AS ENVIRONMENTAL 4 4 4
HvyBrID INPUT EVENT
(Interface) Event Lifeline STRONG SYNCHRONOUS EVENT
WEAK SyNCHRONOUS EVENT

AsyNCHRONOUS EVENT 4
(Intemal Variables) Enabledness Memory GC/RHS Big Step 4 4
Protocol GC/RHS Comeo Step 4
GC/RHS SmaLL Step 4 4 4 4
(Interface Variables) Memory Protocol GC/RHS STRONG SYNCHRONOUS 4
VARIABLE

GC/RHS WEeAKk SyNCHRONOUS VARIABLE
GC/RHS AsyNCHRONOUS V ARIABLE

Combo-Step Maximality CoMBO SYNTACTIC
ComBo TAKE ONE 4 4
ComBo TAKE MANY
Order of Small Steps None 4 4 4 4 4
ExpLiciT ORDERING
DATAFLOW 4 4 4
Priority HIERARCHICAL 4
ExpLicIT PRIORITY
NEGATION OF TRIGGERS 4 4 4 4 4 4 4
[21]: Harel statecharts, [42]: Pnudi and Shalev statecharts, [30]: RSML, [19]: Statemete, [6]: Esterd, [33]: Argos, [22]: SCR, and [3]: reactive 9/ 20

modules



Notion of a "Big Step”

* The execution of a model is a sequence of Big Steps

* A Big Step takes input from the environment, and produces output

— Within a Big Step, there's no interaction with the envorinment
* Within a Big Step, multiple transitions may occur

* When modeling a reactive system, a Big Step takes O logical time
To execute

= "synchrony hypothesis”

10/20



Example of a semantic option:
When does a Big Step end?

e/ f f

11/20



What abou’r this one?

12/20



Another possibility: Stable states

- Extend the syntax with notation for 5 e e

- Big Step ends when the entire model @ @ @

is in a stable configuration



Examples of more semantic options

* Priority: if multiple transitions can occur, which one to choose?
(deterministically)

* Are internal events treated differently from input events?

* When do we evaluate our guard conditions? (Only at the beginning of a
big step? After each transition?)

* Can multiple transitions in orthogonal components occur concurrently?
(= logical concurrency, meaning: there is no ordering between the
transitions)

14/20



Master thesis

* Improve SCCD: Offer maximal support for the options in
Day & Atlee's paper
* Research:

— Can we achieve compatibility with new standards (2015: SCXML,
2019: PSSM) as a semantic configuration?

-~ What are useful combinations of semantic options? Are
certain combinations useless?

15/20



Combinations of semantic options

* Semantic options and additional constraints
from Day & Atlee modeled in Clafer (=
language for variability) yields millions of
combinations

* Can we prune this search space further?

16/20



The “class diagrams” part of SCCD

* Not really the focus of my thesis, but still interesting

* To build large complex (possibly distributed) systems, need
runtime instantiation/destruction of objects (each with a
statechart)

* Use class diagrams to model runtime constraints (multiplicities
etc.)

* Possible source of inspiration: Erlang

17/20



Erlang

“Success story":

- Developed at Ericsson to solve a real problem: Making reliable
distributed systems in the presence of errors (also the title of Joe
Armstrong's 2003 thesis)

- 1986 - 1991: Grown from a Prolog dialect to a real language

- 1998: First released product (ATM switch) with 1,7 million lines of
Erlang code was very reliable

- 1998: Open-sourced

18/20



Erlang

* An Erlang system is
= A collection of processes
— Async best-effort communication between processes (— non-determinism!)
~ Processes can start new processes
~ Fail-fast error handling: Processes allowed to "just crash”
— Remote error handling: Crash detected by other process(es)

~ Hot code (re)loading: Update parts of a running system without stopping it

= Implementation of the actor model (Gul Agha '85)
(even though the people behind Erlang had not heard of the actor model)

19/20



Other tasks, "TODO":

* Add a neutral action language to SCCD
(possibly reuse work that went into HUTN)

* Currently JavaScript runtime is being
neglected — bring it up-to-date with Python
version

20/20



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

