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What is SCCD?

* Modeling language combining
StateCharts and Class Diagrams

* Original version by Glenn De Jonghe (2013)

* Extended with semantic options during my
Research Internship IT (2014-2015)

* Performance improvements by Simon Van Mierlo

(2015 - 2017)
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An SCCD model is:

* A class diagram (set of classes and
associations between them, w/ multiplicities)

* Each class in said diagram has its behavior
defined with a statechart
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The SCCD project consists of

* Compiler: takes a SCCD model (in XML) and produces code in
Python or JavaScript

* Runtime: mostly logic for "stepping” each object,
instantiating new objects & (very simple) conformance
checks. Also implemented in Python and JavaScript.

* A bunch of black-box tests
(given sequence of inputs — expected sequence of outputs?)
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There are many "statechart” variants, and they
all differ slightly when it comes to semantics

* David Harel's original paper (1987)

* Standards
— SCXML, W3 consortium (2015) (already many implementations...)
~- PSSM, part of UML, OMG (May 2019)

* Commercial products:
- Statemate (1986)
~ Rhapsody (1996)
- Stateflow (2004)
- YAKINDU (2008)
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SCCD aims to support...

- As input: a family of statechart languages

- As output: family of
- Multiple target languages, currently: statechart
- Python languages
- JavaScript 7
- Multiple types of platforms:
- Thread (the runtime runs an event loop in its own SCCD compiler
thread of execution) (if supported in target language) and runtime
- Event loop (for integration with an existing event y
loop, e.g. in GUT toolkits or in JavaScript: the runtime is
called from such eventloop, but may also schedule future multiple
events in that eventloop) target languages

- Game loop (the runtime only runs when requested

to "advance logical time by X") 6/20



Semantic variation of Statecharts

Super cool 2010 paper "Deconstructing the semantics of big-step
modelling languages” by Nancy Day & Joanne Atlee

= A study/comparison of many languages that can be mapped onto a
common statechart syntax, such that only the semantics differ on a
limited number (8) of variation points defined in the paper

Languages compared all intend o model reactive & interactive systems,
including:
- Statechart-like (Harel Statecharts, Statemate, Rhapsody, ...)

— Synchronous programming languages (Esterel, Argos, ...)
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BSML Syntax
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in RHS - Section 3.5.1
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Order of Small Steps
Section 3.6 X
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q
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TRIGGERS
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Example BSMLs and their semantic options

Sementic Aspects Semantic Options [21] [42] [30] [19] [6] [33] [22] [3]
Big-Step Maximality SYNTACTIC 4
TAKE ONE 4 4 4 4 4
TAKE MANY 4 4
Concurrency SINGLE 4 4 4 4 4
Many 4 4 4
Small-Step Consistency SOURCE/DESTINATION ORTHOGONAL
ARENA ORTHOGONAL 4 4 4
Preemption NoN-PREEMPTIVE 4 4
PREEMPTIVE
(Internal) Event Lifeline PRESENT IN WHOLE 4 4
PRESENT IN REMAINDER 4 4
PResenT IN NexT ComBO STEP 4 4

PRESENT IN NEXT SMALL STEP
PRESENT IN SAME
Environmental Input Events SynTAcTiC INPUT EVENTS 4 4 4
RECEIVED EVENTS AS ENVIRONMENTAL 4 4 4
HvyBrID INPUT EVENT
(Interface) Event Lifeline STRONG SYNCHRONOUS EVENT
WEAK SyNCHRONOUS EVENT

AsyNCHRONOUS EVENT 4
(Intemal Variables) Enabledness Memory GC/RHS Big Step 4 4
Protocol GC/RHS Comeo Step 4
GC/RHS SmaLL Step 4 4 4 4
(Interface Variables) Memory Protocol GC/RHS STRONG SYNCHRONOUS 4
VARIABLE

GC/RHS WEeAKk SyNCHRONOUS VARIABLE
GC/RHS AsyNCHRONOUS V ARIABLE

Combo-Step Maximality CoMBO SYNTACTIC
ComBo TAKE ONE 4 4
ComBo TAKE MANY
Order of Small Steps None 4 4 4 4 4
ExpLiciT ORDERING
DATAFLOW 4 4 4
Priority HIERARCHICAL 4
ExpLicIT PRIORITY
NEGATION OF TRIGGERS 4 4 4 4 4 4 4
[21]: Harel statecharts, [42]: Pnudi and Shalev statecharts, [30]: RSML, [19]: Statemete, [6]: Esterd, [33]: Argos, [22]: SCR, and [3]: reactive 9/ 20
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Notion of a "Big Step”

* The execution of a model is a sequence of Big Steps

* A Big Step takes input from the environment, and produces output

— Within a Big Step, there's no interaction with the envorinment
* Within a Big Step, multiple transitions may occur

* When modeling a reactive system, a Big Step takes O logical time
To execute

= "synchrony hypothesis”
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Example of a semantic option:
When does a Big Step end?

e/ f f
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What abou’r this one?
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Another possibility: Stable states

- Extend the syntax with notation for 5 e e

- Big Step ends when the entire model @ @ @

is in a stable configuration



Examples of more semantic options

* Priority: if multiple transitions can occur, which one to choose?
(deterministically)

* Are internal events treated differently from input events?

* When do we evaluate our guard conditions? (Only at the beginning of a
big step? After each transition?)

* Can multiple transitions in orthogonal components occur concurrently?
(= logical concurrency, meaning: there is no ordering between the
transitions)
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Master thesis

* Improve SCCD: Offer maximal support for the options in
Day & Atlee's paper
* Research:

— Can we achieve compatibility with new standards (2015: SCXML,
2019: PSSM) as a semantic configuration?

-~ What are useful combinations of semantic options? Are
certain combinations useless?
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Combinations of semantic options

* Semantic options and additional constraints
from Day & Atlee modeled in Clafer (=
language for variability) yields millions of
combinations

* Can we prune this search space further?
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The “class diagrams” part of SCCD

* Not really the focus of my thesis, but still interesting

* To build large complex (possibly distributed) systems, need
runtime instantiation/destruction of objects (each with a
statechart)

* Use class diagrams to model runtime constraints (multiplicities
etc.)

* Possible source of inspiration: Erlang
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Erlang

“Success story":

- Developed at Ericsson to solve a real problem: Making reliable
distributed systems in the presence of errors (also the title of Joe
Armstrong's 2003 thesis)

- 1986 - 1991: Grown from a Prolog dialect to a real language

- 1998: First released product (ATM switch) with 1,7 million lines of
Erlang code was very reliable

- 1998: Open-sourced
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Erlang

* An Erlang system is
= A collection of processes
— Async best-effort communication between processes (— non-determinism!)
~ Processes can start new processes
~ Fail-fast error handling: Processes allowed to "just crash”
— Remote error handling: Crash detected by other process(es)

~ Hot code (re)loading: Update parts of a running system without stopping it

= Implementation of the actor model (Gul Agha '85)
(even though the people behind Erlang had not heard of the actor model)
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Other tasks, "TODO":

* Add a neutral action language to SCCD
(possibly reuse work that went into HUTN)

* Currently JavaScript runtime is being
neglected — bring it up-to-date with Python
version
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