

SCCD: A Statecharts and Class
Diagrams multi-target compiler

for a family of Statecharts
languages

Joeri Exelmans

21 November 2019

What is SCCD?
● Modeling language combining
StateCharts and Class Diagrams

● Original version by Glenn De Jonghe (2013)
● Extended with semantic options during my

Research Internship II (2014-2015)
● Performance improvements by Simon Van Mierlo

(2015 – 2017)
2/20

An SCCD model is:
● A class diagram (set of classes and

associations between them, w/ multiplicities)
● Each class in said diagram has its behavior

defined with a statechart

3/20

The SCCD project consists of
● Compiler: takes a SCCD model (in XML) and produces code in

Python or JavaScript
● Runtime: mostly logic for “stepping” each object,

instantiating new objects & (very simple) conformance
checks. Also implemented in Python and JavaScript.

● A bunch of black-box tests
(given sequence of inputs expected sequence of outputs?)→

4/20

There are many “statechart” variants, and they
all differ slightly when it comes to semantics
● David Harel’s original paper (1987)
● Standards

– SCXML, W3 consortium (2015) (already many implementations...)
– PSSM, part of UML, OMG (May 2019)

● Commercial products:
– Statemate (1986)
– Rhapsody (1996)
– Stateflow (2004)
– YAKINDU (2008)

5/20

SCCD aims to support...
family of

statechart
languages

multiple
target languages

SCCD compiler
and runtime

– As input: a family of statechart languages
– As output:

– Multiple target languages, currently:
– Python
– JavaScript

– Multiple types of platforms:
– Thread (the runtime runs an event loop in its own

thread of execution) (if supported in target language)
– Event loop (for integration with an existing event

loop, e.g. in GUI toolkits or in JavaScript: the runtime is
called from such eventloop, but may also schedule future
events in that eventloop)

– Game loop (the runtime only runs when requested
to “advance logical time by X”) 6/20

Semantic variation of Statecharts
Super cool 2010 paper “Deconstructing the semantics of big-step
modelling languages” by Nancy Day & Joanne Atlee

= A study/comparison of many languages that can be mapped onto a
common statechart syntax, such that only the semantics differ on a
limited number (8) of variation points defined in the paper

Languages compared all intend to model reactive & interactive systems,
including:
– Statechart-like (Harel Statecharts, Statemate, Rhapsody, ...)
– Synchronous programming languages (Esterel, Argos, …)

7/20

 8/20

Example BSMLs and their semantic options

Semantic Aspects Semantic Options [21] [42] [30] [19] [6] [33] [22] [3]

Big-Step Maximality SYNTACTIC 4

TAKE ONE 4 4 4 4 4

TAKE MANY 4 4

Concurrency SINGLE 4 4 4 4 4

MANY 4 4 4

Small-Step Consistency SOURCE/DESTINATION ORTHOGONAL

ARENA ORTHOGONAL 4 4 4

Preemption NON-PREEMPTIVE 4 4

PREEMPTIVE

(Internal) Event Lifeline PRESENT IN WHOLE 4 4

PRESENT IN REMAINDER 4 4

PRESENT IN NEXT COMBO STEP 4 4

PRESENT IN NEXT SMALL STEP

PRESENT IN SAME

Environmental Input Events SYNTACTIC INPUT EVENTS 4 4 4

RECEIVED EVENTS AS ENVIRONMENTAL 4 4 4

HYBRID INPUT EVENT

(Interface) Event Lifeline STRONG SYNCHRONOUS EVENT

WEAK SYNCHRONOUS EVENT

ASYNCHRONOUS EVENT 4

(Internal Variables) Enabledness Memory
Protocol

GC/RHS BIG STEP 4 4

GC/RHS COMBO STEP 4

GC/RHS SMALL STEP 4 4 4 4

(Interface Variables) Memory Protocol GC/RHS STRONG SYNCHRONOUS

VARIABLE

4

GC/RHS WEAK SYNCHRONOUS VARIABLE

GC/RHS ASYNCHRONOUS VARIABLE

Combo-Step Maximality COMBO SYNTACTIC

COMBO TAKE ONE 4 4

COMBO TAKE MANY

Order of Small Steps NONE 4 4 4 4 4

EXPLICIT ORDERING

DATAFLOW 4 4 4

Priority HIERARCHICAL 4

EXPLICIT PRIORITY

NEGATION OF TRIGGERS 4 4 4 4 4 4 4

[21]: Harel statecharts, [42]: Pnueli and Shalev statecharts, [30]: RSML, [19]: Statemate, [6]: Esterel, [33]: Argos, [22]: SCR, and [3]: reactive
modules

9/20

Notion of a “Big Step”
● The execution of a model is a sequence of Big Steps
● A Big Step takes input from the environment, and produces output

 → Within a Big Step, there’s no interaction with the envorinment
● Within a Big Step, multiple transitions may occur
● When modeling a reactive system, a Big Step takes 0 logical time

to execute
= “synchrony hypothesis”

10/20

Example of a semantic option:
When does a Big Step end?

a b c
e/^f f

11/20

What about this one?

sd se sf

sa sb sc
e/^f

f/^g g

g

12/20

Another possibility: Stable states

sd se sf

sa sb sc
e e

ee

– Extend the syntax with notation for
“stable state”

– Big Step ends when the entire model
is in a stable configuration

13/20

Examples of more semantic options
● Priority: if multiple transitions can occur, which one to choose?

(deterministically)
● Are internal events treated differently from input events?
● When do we evaluate our guard conditions? (Only at the beginning of a

big step? After each transition?)
● Can multiple transitions in orthogonal components occur concurrently?

(= logical concurrency, meaning: there is no ordering between the
transitions)

14/20

Master thesis
● Improve SCCD: Offer maximal support for the options in

Day & Atlee’s paper
● Research:

– Can we achieve compatibility with new standards (2015: SCXML,
2019: PSSM) as a semantic configuration?

– What are useful combinations of semantic options? Are
certain combinations useless?

15/20

Combinations of semantic options
● Semantic options and additional constraints

from Day & Atlee modeled in Clafer (=
language for variability) yields millions of
combinations

● Can we prune this search space further?

16/20

The “class diagrams” part of SCCD
● Not really the focus of my thesis, but still interesting
● To build large complex (possibly distributed) systems, need

runtime instantiation/destruction of objects (each with a
statechart)

● Use class diagrams to model runtime constraints (multiplicities
etc.)

● Possible source of inspiration: Erlang

17/20

Erlang
“Success story”:
– Developed at Ericsson to solve a real problem: Making reliable

distributed systems in the presence of errors (also the title of Joe
Armstrong’s 2003 thesis)

– 1986 – 1991: Grown from a Prolog dialect to a real language
– 1998: First released product (ATM switch) with 1,7 million lines of

Erlang code was very reliable
– 1998: Open-sourced

18/20

Erlang
● An Erlang system is

– A collection of processes
– Async best-effort communication between processes (→ non-determinism!)
– Processes can start new processes
– Fail-fast error handling: Processes allowed to “just crash”
– Remote error handling: Crash detected by other process(es)
– Hot code (re)loading: Update parts of a running system without stopping it

= Implementation of the actor model (Gul Agha ‘85)
(even though the people behind Erlang had not heard of the actor model)

19/20

Other tasks, “TODO”:
● Add a neutral action language to SCCD

(possibly reuse work that went into HUTN)
● Currently JavaScript runtime is being

neglected bring it up-to-date with Python →
version

20/20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

