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Abstract. In this paper we present a novel technique and a prototype implemen-
tation for proving properties of model transformations expressed in the DSLTrans
language. The approach is based on symbolic execution and the properties we are
interested in concern relations between the structure of the input and output mod-
els. In particular, the properties are implications of the form ‘if a structural rela-
tion between some elements of the source model holds, then another structural
relation between some elements of the target model must also hold’. Our tech-
nique is transformation dependent but model independent, meaning the proofs
we produce hold for all executions of a given DSLTrans transformation specifi-
cation running on any instance of the transformation’s input metamodel.

Our proof technique is based on (i) building the finite symbolic execution for a
given DSLTrans transformation and (ii) on checking whether the property holds
for all elements of the finite symbolic execution execution set. We explain how
a symbolic execution and a proof is built with our technique by using model
transformations written using our T-Core framework. Furthermore we apply our
tool to the proof of properties of an example transformation and present some
performance results for our approach.

1 INTRODUCTION

In 2003 Sendall and Kozaczynski proposed model transformations as the heart and
soul of model driven software development [1]. Since then many model transforma-
tion languages have emerged and are being used intensively not only in MDD, but also
in other scopes, for example when software development processes benefit from for-
malised translators between languages. Due to their practicality and appropriate level
of abstraction, model transformations are at the moment of the writing of this paper the
stardard means for performing computations on models.

Authors such as Mens, Czarnecki and Van Gorp have called for the development of
verification, validation and testing techniques for model transformations in their well
know paper ‘A Taxonomy of Model Transformations’ [2] from 2006. Despite the many
publications on this topic since then, the field of analysis of model transformations
seems to be still in its (late) infancy, as evidenced by [3].

The research presented in this paper follows from our proposals in [4] and [5].
In [4] we have formally introduced the DSLTrans transformation language. DSLTrans



is Turing Incomplete, as it avoids constructs which imply unbounded recursion or non-
determinism. Despite this expressiveness reduction, we have shown via several exam-
ples [6-8] that DSLTrans is sufficiently expressive to tackle typical translation prob-
lems. Our verification transformation technique is based on the theory introduced in [5],
where we have described how to abstractly build a symbolic execution for DSLTrans
transformations. Additionally, in [5], we have mathematically proved that such a sym-
bolic execution is finite, given an abstraction over the number of times the transforma-
tion’s rules match on concrete elements of input models. This finiteness a necessary
condition for our technique to be applicable.

The properties we aim at proving are model syntax relations [3]. Such properties are
essentially precondition-postcondition axioms involving statements about the input and
output models of a transformation. Several authors have explored this kind of transfor-
mation properties [9-12]. According to the classification presented in [3], our technique
is transformation dependent and input independent, meaning we can prove properties
hold for all executions of a given model transformation.

In this paper we present concrete algorithms for the technique originally presented
in [5]. As for any exhaustive proof technique (making use of an abstraction to render
the search space finite), the main problem to deal with is state space explosion. Ad-
ditionally, graph matching and rewriting is heavily used to build our symbolic states.
Given the subgraph isomorphim problem is NP-Complete, that additional level of al-
gorithmic complexity is added our problem. In order to tackle this issue we have used
model transformations for the construction of the symbolic execution for a given model
transformation as well as for the proof algorithms. Model transformations allow us to
seamlessly and efficiently deal with all the parts of the technique that require graph
manipulation. We will provide performance results obtained from our prototype imple-
mentation and analyse the scalability our approach in order to infer its applicability to
real world problems.

This paper is organised as follows: section 2 briefly introduces the DSLTrans model
transformation language and the running example we will use throughout the paper; in
section 3 we introduce our property language and the algorithms for symbolic execution
construction and property proof; section 4 enumerates all the necessary artifacts such
that the algorithms presented in section 3 can be ran on any DSLTrans transformation;
section 5 introduces the T-Core model transformation framework which allows us to
cope with the necessary graph manipulations; in section 6 we discuss implementation
details and present scalability results; section 7 discusses the results and presents future
work; section 8 presents the related work and finally in section 9 we conclude.

2 The DSLTrans Transformation Language

In what follows we will present the DSLTrans running example we will use throughout
this paper. As we present the running example we will also introduce the DSLTrans
language itself and its constructs.

Figure 1 presents two metamodels of languages for describing views over the or-
ganization of a police station. The metamodel annotated with ’Organization Language’
represents a language for describing the chain of command in a police station, which in-
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Fig. 1: Metamodels for describing police stations’ chains of command (top) and police stations’
gender classification views (bottom)

cludes male (Male class) and female officers (Female class). The metamodel annotated
with *’Gender Language’ represents a language for describing a different view over the
chain of command, where the officers working at the police station are classified by
gender. In figure 2 we present a transformation written in DSLTrans' between models
of both languages. The purpose of this transformation is to flatten a chain of com-
mand given in language ’Organization Language’ into two independent sets of male
and female officers. Within each of those sets the command relations are kept, i.e. a
female officer will be directly related to all her female subordinates and likewise for
male officers. In the text that follows we will call this transformation the Police Station
transformation.

An example of an instance of this transformation can be observed in figure 3, where
the original model is on the left and the transformed one on the right. Notice that the
elements s, my and f; in the figure on the left are instances of the source metamodel
elements Station, Male and Female respectively (in figure 1). The primed elements in
the figure on the right are their instance counterparts in the target metamodel.

A transformation in DSLTrans is formed by a set of input model sources called
file-ports (e.g. ’inputSquad.xmi’ in figure 2) and a list of layers (e.g. "Entities’ and "Re-
lations’ layers in figure 2). Both layers and file-ports are typed according to metamod-
els. DSLTrans executes sequentially the list of layers of a transformation specification.
A layer is a set of transformation rules which executes in a non-deterministic order
but produce a deterministics result. Each transformation rule is a pair (match,apply)

I DSLTrans has been implemented as an Eclipse plug-in [7]. The example shown in figure 2 is
expressed using DSLTrans’ concrete visual syntax in the Eclipse editor.
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Fig. 2: A model transformation expressed in DSLTrans

where match is a pattern holding elements from the source metamodel, and apply is a
pattern holding elements of the target metamodel. For example, in the transformation
rule ’Stations’ in the "Entities’ layer (in figure 2) the match pattern holds one ’Station’
class from the ’Squad Organization Language’ metamodel — the source metamodel;
the apply pattern holds one ’Station’ class from the *Squad Gender Language’ meta-
model — the target metamodel. This means that all elements in the input source which
are of type ’Station’ of the source metamodel will be transformed into elements of type
’Station’ of the target metamodel.

Let us first define the constructs available for building transformation rules’ match
patterns. We will illustrate the constructs by referring to the transformation in figure 2.

— Match Elements: are variables typed by elements of the source metamodel which
can assume as values elements of that type (or subtype) in the input model. In our
example, a match element is the ’Station” element in the *Stations’ transformation
rule of layer ’Entities’ layer;
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Attribute Conditions: conditions over the attributes of a match element;

Direct Match Links: are variables typed by labelled relations of the source meta-
model. These variables can assume as values relations having the same label in the
input model. A direct match link is always expressed between two match elements;
Indirect Match Links: indirect match links are similar to direct match links, but there
may exist a path of containment associations between the matched instances. In the
implementation the notion of indirect links captures only acyclic EMF containment
associations and as such avoids cycles and infinite amounts of matches over the
transitive closure of associations in the input models. In our example, indirect match
links are represented in all the transformation rules of layer 'Relations’ as dashed
arrows between elements of the match models;

Backward Links: backward links connect elements of the match and the apply mod-
els. They exist in our example in all transformation rules in the *Relations’ layer,
depicted as dashed vertical lines. Backward links are used to refer to elements cre-
ated in a previous layer in order to use them in the current one. An important char-
acteristic of DSLTrans is that throughout all the layers the source model remains
unchanged as a match source. Therefore, the only possibility to reuse elements cre-
ated from a previous layer is to refer to them using backward links;

Negative Conditions: it is possible to express negative conditions over match ele-
ments, backward, direct and indirect match links.

The constructs for building transformation rules’ apply patterns are:

Apply Elements and Apply Links: apply elements, as match elements, are variables
typed by elements of the source metamodel. Apply elements in a given transfor-
mation rule that are not connected to backward links will create elements of the
same type in the transformation output. A similar mechanism is used for apply
links. These output elements and links will be created as many times as the match



model of the transformation rule is instantiated in the input model. In our exam-
ple, the ’Station2Male’ transformation rule of layer 'Relations’ takes instances of
Station and Male (of the *Gender Language’ metamodel) which were created in a
previous layer from instances of Station and Male (of the *Organization Language’
metamodel), and connects them using a *male’ relation;

— Apply Attributes: DSLTrans includes a small language for building the values at-
tributes of apply model elements from references to one or more match model ele-
ment attributes.

Besides the fact that DSLTrans’ transformations are free of contructs that imply
unbounded recursion or non-determinism, DSLTrans’ transformations are strictly out-
place, meaning no changes are allowed to the input model. The output metamodel for
a DSLTrans transformation can however be the same as the input metamodel. Also,
elements cannot be removed from the output metamodel as the result of applying a
DSLTrans rule. This restriction is consistent with the usage of model transformations as
translations, as no deletion of output elements is strictly required. This is however not
the case when transformations are used to encode operational semantics (simulations)
of systems. This illustrates the boundaries of the applicability of DSLTrans and that
expressiveness reduction entails a compromise with the class of problems that can be
tackled.

3 Verifying Properties of DSLTrans Transformations

In figures 4 and 5 we present two properties we wish to prove or disprove regarding all
executions of the transformation presented in figure 2. The property in figure 4 means
that “a model which includes a police station that has both a male and female chief
officers will be transformed into a model where the male chief officer will exist in the
male set and the female chief officer will exist in the female set”. This is something we
expect will always hold in our transformation. The property in figure 5 mans that “any
model which includes female officer will be transformed into a model where that female
officer will always supervise another female officer”, which is something that we expect
will hold for our transformation sometimes, but not always.

As previously mentioned, the properties we are interested in proving are precondition-
postcondition axioms. Those preconditions and postconditions are constraints on the
input and output models of the DSLTrans transformation being analysed. Preconditions
and postcondition constraints are expressed as patterns, primarily as is done respec-
tively in the MatchModel and ApplyModel patterns of DSLTrans transformation rules.
Preconditions use the same pattern language as the MatchModel part of DSLTrans rules,
involving the possibility of expressing several occurrences of the same metamodel el-
ement and indirect links. Indirect links in properties have the same meaning as in the
MatchModel part of DSLTrans rules — they involve patterns over the transitive closure of
containment links in input models. Postconditions also use the same patterns language
as the ApplyModel patterns of DSLTrans transformation rules, with the additional pos-
sibility of also expressing indirect links for patterns involving the transitive closure of
containment links in output models. Backward links can also be used in properties to
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impose traceability relations between precondition and postcondition elements. A for-
mal definition of our property language can be found in [5].

In [10] Narayanan and Karsai describe well the nature of these model syntax relation
properties, which they call called structural correspondence rules in their work. As the
authors claim, “given the correspondence conditions are specified in terms of simple
queries on the model around previously chosen context (metamodel) nodes, we expect
that they will be easier to specify, and thus more reliable than the transformation itself”.

In what follows we will describe the tool we have built the prove or disprove such
properties. Proofs are built relying only the rules of the DSLTrans transformation we
are analysing and as such are valid for all input models. Thus, if our prover replies yes,
then the precondition-postcondition implication expressed in the property will hold for
all executions of the DSLTrans transformation under analysis. On the other hand, if the
prover replies no, then that will mean that there exists at least one exception to the im-
plication in the property. In other words, there exists at least one model in which the
precondition of the property holds, but the postcondition does not. A counterxample can
be provided in this case, consisting of the sequence of rules that were executed leading
to the property being violated.

3.1 Symbolic Execution Construction

In order to explain the concept of symbolic execution of a DSLTrans transformation,
let us make an analogy with program symbolic execution as introduced by King in his
seminal work “Symbolic Execution and Program Testing” [13]. According to King, a
symbolic execution of a program is a set of path conditions on that program’s input vari-
ables. Each path condition describes a traversal of the conditional branching commands
of that program. Path conditions are symbolic in the sense that they represent many
concrete executions corresponding to (a possibly infinite number of) instantiations of
the variables in those conditions.

We can transpose this notion of symbolic execution to DSLTrans model transfor-
mations. The analog of an input variable in the model transformation context are meta-



model classes, relations and attributes. As program statements impose constraints on
input and output variables during symbolic execution, transformation rules impose con-
ditions on metamodel elements. In fact, when a transformation rule is executed we can
assume that the input and output models of the transformation include instances of those
constrained metamodel elements. Sets of transformation rules can then be used as the
analog of path conditions in the context of model transformations. We must not forget
that in a model transformation, rules are implicitly or explicitly scheduled. Such con-
trol and/or data dependencies must also be taken into consideration during symbolic
execution construction for a model transformation. Such dependencies define which
combinations of transformation rules are allowed, similar to what happens with control
and data flow in program symbolic execution.

Algorithm 1 Symbolic Execution Generation

1: procedure GENSYMBEXEC(transf)
2: symbExec =0

3: for curLayer € transf do
4: if curLayer = firstLayer then
5 symbExec = P(curLayer)
6: else
7: CurLayerSymbExec = P(curLayer)
8: pathCondsToAdd = 0
9: for PC;,| € CurLayerSymbExec do
10: if existBackwardLinks(PCy 1) then
11: for PC; € symbExec do
12: if VbackLink € PC; 1, 3rule € PC;.backLink € traces(rule) then
13: mergedPathCond = PC; ¥ PC1q
14: pathCondsToAdd = pathCondsToAdd UmergedPathCond
15: if noOvelappingMatchesExist(mergedPathCond) then
16: symbExec = symbExec \ {PC;}
17: end if
18: end if
19: end for
20: else
21: pathCondsToAdd = pathCondsToAdd U (PC;UPC, )
22: end if
23: end for
24: end if
25: symbExec = symbExec U pathCondsToAdd
26: end for
27: return symbExec

28: end procedure

The construction of a symbolic execution for a DSLTrans transformation is de-
scribed in algorithm 1. The algorithm starts by processing the transformations’ first
layer. The symbolic execution of a layer is built as the set of all the possible combi-
nations of that layer’s rules (line 5). In mathematical terms it is the powerset of the



considered rules. As previously mentioned, each set of rules in a symbolic execution is
a path condition. It is important to mention at this point that the fact that in DSLTrans
the rules within a layer can be executed in any order with a deterministic result allows
us only consider only a fraction of the path conditions that would be necessary if order
would be relevant.

Having produced the symbolic execution for the first layer, or any generic layer [,
we can now proceed to layer /4 1 (line 7). As before, we calculate the powerset of
the rules in layer / + 1. However, we now need to understand how each one of these
newly built path conditions affects each partial path condition built for layer I. When
we analyse a path condition belonging to the powerset of layer / + 1 (noted in what
follows PCy1 € P(I+ 1)) against a path condition belonging to the symbolic execution
built by the rules of layer / (noted in what follows PC; € (1)), several cases may occur
(lines 9-23):

1. If none of the rules in the PC;,; contains backward links, the union of PC; and
PCj1 can be added to the symbolic execution (line 21). The union is built by
adding the rules in PCyy to the rules in PC;. In terms of symbolic execution this
means that, given there is no dependency between the rules in PCyy and the rules
of PCy, the rules in in PC;1 | may execute or not depending on the input model. Be-
cause symbolic execution is independent of the input model, we need to consider
both possibilities by keeping in the symbolic execution both PC; and PC; U PCy, 1;

2. If the rules in PC; include backward links, then we need to analyse whether those
backward links correspond to traces between match and apply elements generated
by rules in PC; (line 12). If this is not the case then the conditions for at least one
of the rules from PCy | to execute is not satisfied and PC;| cannot be added to the
symbolic execution. Figure 6 illustrates this case, given that the backward link the
Station2Female rule in PCyy| connecting the match element Female to the apply
element Female does not have a corresponding trace® in PCy;

3. If the rules in PC;4; include backward links and all those backward links corre-
spond to traces between match and apply elements generated by rules in PC; then,
as in case 1, we can add to the symbolic execution a new path condition including
PC; and PCyy1. An example of this case can be observed in figure 7. However, in
this case the union of PC; and PCj, is performed differently than in case 1: all rules
from PCj | containing backward links are merged with the rules from PCj; | where
the traces corresponding to the backward links were generated by using operator &
(line 13). Additionally, PC; is removed from the symbolic execution (line 16). This
is because, given all elements necessary for rules of PC;y including backward
links were generated by the rules of PC;, the rules from PCj with backward links
necessarily execute. As such, PC; can no longer exist on its own in the symbolic
execution;

2 Note that in figure 6, in order to make explicit the traces between apply elements generated
from match elements in rule Station2Station, we added to the original rule thick dashed lines
to connect those elements. The same principle applies to figures 7 and 8.
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4. A variation of case 3 is the case when more than one backward link from the same
rule in PCj4 is matched over the same trace of a rule from PC; (line 15). An ex-
ample of this case can be observed in figure 8. In this case, additionally to what
happens in case 3, PC; is kept in the symbolic execution. This is due to our abstrac-
tion over the number of matches: referring to our example in figure 8, because we
are not sure if the Female2Female rule applied more than once, we cannot decide
whether rule Female2Female be executed or not and both cases need to be kept in
the symbolic execution.

3.2 Property Proof

After the symbolic execution construction is finished, property proof can start. For each
built path condition of the completed symbolic execution, property proof is performed
as shown in algorithm 2. The algorithm behaves as follows:
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A path condition is taken from the symbolic execution (line 2). If no more path
conditions exist, the property holds (line 13). A first check is done to decide if the path
condition under consideration has all the metamodel match elements expressed in the
property’s precondition (line 3). Because we do not know whether two match elements
of the same type occurring in two different rules in the same path condition consume the
same or different instances in a concrete input model, we need to consider two cases:

— the case where those two distinct match elements from different rules consume two
different instances of that type in the input model;

— the case where those two match elements consume the same instance in the input
model.

This is achieved by building for a given path condition, all the possibilities of collapsed
elements of the same type belonging to different rules (line 4). We then iterate over the
path conditions resulting from the collapse operation. For each of those path conditions
we check whether the precondition part of the property is a subgraph of the path condi-
tion (line 5), in which case we check if the whole property is a subgraph of the collapsed
path condition (line 6). If this is not the case then the property does not hold and the
path condition itself serves as counterexample for the property (line 7).

We will exemplify the Collapse algorithm in line 4 of algorithm 2 on the path con-
dition in figure 9. The algorithm starts by finding all the pairs of elements of the same
type in the path condition’s rules (line 2). In figure 9 the only available pair of Station
elements is highlighted by dashed ellipses.

The algorithm then goes on to moving all the links pointing to one of the chosen
match elements in the pair to the other element in the pair and deleting the stripped
match element (line 5). Figure 10 shows the result of applying this step to our example.
Note that the choice of which of the pair’s match element will hold all links belonging
to both elements is non deterministic.

At this point of the algorithm, if the two merged match elements are connected
by backward links and both those backward links connect to apply elements having
the same type (line 6), then those apply elements need to be merged in the same way



Algorithm 2 Prove

1: procedure PROVE(symbExec, property)
2 for PC € symbExec do
3 if checkPreconditionElements(PC, property) then
4: for collapsedPC € Collapse(PC) do
5: if checkPrecondition(PC, property) then
6: if not checkPrePostCondition(PC, property) then
7 return PC
8: end if
9: end if
10: end for
11: end if
12: end for
13: return True
14: end procedure
Algorithm 3 Collapse

1: procedure COLLAPSE(PC)

2 collapsableMatchPairSet = getSameTypeDif f RulesMatchPairs(PC)
3 collapsedPCSet =0

4: for matchPair € collapsablePairSet do

5 PC' = moveAllLinks(matchPair, PC)

6

if matchPair = (m;,my) A 3(a1,a2).backwardLink(my,a;) A
backwardLink(my,ay) A sameType(ay,a;) then
7: PC' = moveAllLinks((ay,a3),PC")
8: end if
9: collapsedPCSet = collapsedPCSet U PC' UCollapse(PC')
10: end for
11: return collapsed PCSet

12: end procedure
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Fig. 9: Collapse algorithm: locating two Match elements of the same type



as the match ones were (line 7). The reason for this is that backward links refer to
transformation steps that were previously executed, and as such if more than one rule
refers to a previous step, then that previous step is necessarily the same. In our example
in figure 10, both backward links connecting Station match and apply elements refer to
rule Station2Station in the first layer of the police station transformation in figure 2. We
have thus highlighted in figure 10 the two apply elements to be merged.
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Fig. 10: Collapse algorithm: merging two Match elements and locating two Apply elements of
the same type

If apply elements exist and they are merged, the collapse step is then complete. For
our example the result of the collapse step is depicted in figure 11. Algorithm 3 will
then proceed by adding to the set of collapsed path conditions to return: (i) the result
of the current collapse step; (ii) the recursive result of collapsing the rules remaining
from the current collapse step (line 9). The algorithm will then loop over the remaining
pairs of match elements having the same type until no more pairs exist and when that
happens return all produced collapsed path conditions (line 11).
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Fig. 11: Collapse algorithm: merging two Apply elements



4 Property Prover Architecture

In the text that follows we introduce the architecture of the tool we are currently de-
veloping to prove properties of DSLTrans transformations. The tool construction and
operation follows MDE principles in the sense that all artifacts are explicitly modelled
by the appropriate metamodels and computations are performed using model transfor-
mations.

In order to build a property prover for a given DSLTrans transformation several
steps are required. In a complete tool all these steps can and should be automated using
Higher Order Transformations (HOT). However, given our first goal was to demonstrate
that the approach scales to prove properties of usable transformations, all the steps that
follow have been manually performed for the police station transformation example.
Figure 12 shows the several higher order transformations needed by our framework,
along with other required artifacts such as metamodels and models. The numbered
higher order transformations in figure 12 are described in the text that follows:

1. Generate the abstract rule metamodel: this HOT takes as input the source and tar-
get metamodels of the Transformation Under Analysis (TUA) and returns a meta-
model in which an abstract form of the transformation rules can be written. Such a
metamodel for the police station transformation can be observed in figure 13. The
purpose of these abstract rules is to be the basic building blocks during symbolic
state space construction;

2. Generate the property metamodel: this HOT builds the metamodel which can be
used to express properties about the TUA. It takes as input the source and target
metamodels for the TUA and returns the language in which properties are written.
For example, the properties in figures 4 and 5 are written using the property meta-
model generated for the Police Station transformation;

3. Generate the symbolic state space construction rules: this HOT builds a set of
models corresponding to the abstract form of the TUA rules to be used during the
symbolic state space construction. As depicted in figure 12, the rules generated by
this HOT are instances of the abstract rule metamodel. As an example, the rules in
the path conditions in figures 6, 7 and 8 are symbolic state space construction rules;

4. Generate the backward link match transformation: builds the query transforma-
tion responsible for checking whether a graph including backward links exists in
an abstract rule. The input metamodel of the backward link match transformation
is the abstract rule metamodel. The rules in this transformation is used to evaluate
the condition in line 12 of algorithm 1 (Symbolic Execution Generation);

5. Generate the collapse transformation: this HOT takes as input the abstract rule
metamodel generated in step 1 and generates the collapse rules for abstract rules
which are instances of the abstract rule metamodel. The collapse transformation
has as both source and target metamodel the abstract rule metamodel. The rules in
the collapse transformation are used in lines 2, 5, 6 and 7 of algorithm 3 (Collapse);
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transformations for each property to be verified:

— afirst query transformation that checks whether the model elements present in

the property are present in a symbolic state;




— asecond query transformations that checks whether the match part of the prop-
erty is a subgraph of the match part of a possibly collapsed symbolic state;

— a third query transformation that checks whether the whole property is a sub-
graph of a possibly collapsed symbolic state.

All query transformations have as source metamodel the abstract rule metamodel.
The rules in a given property verification transformation are used in lines 3, 5 and 6
of algorithm 2 (Prove).

5 Enabling Technology

As introduced in the previous two chapters, a large amount of the work necessary to
prove the properties of DSLTrans transformations we have introduced relies on graph
matching and/or graph rewriting. As described in section 4, in our tool model transfor-
mations are used at two levels. First, during a ‘compilation’ step, all the necessary meta-
models and transformations required to perform analysis on a given DSLTrans transfor-
mation are produced by higher order transformations. The six higher order transforma-
tions defined in section 4 are independent of the TUA and are part of our toolset. Then,
the model transformations generated during the first step are used in the Symbolic Exe-
cution Generation, Prove and Collapse algorithms to build the symbolic state space for
the TUA and prove or disprove properties of interest. These model transformations are
generated for each TUA and additionally for each property to be proved for each TUA.

When deciding on a model transformation framework to build our verification tool
for DSLTrans transformations it became clear that we required very detailed control
over the behavior of those model transformations and the way in which they are sched-
uled such that our the algorithms in section 3 can be built. Moreover, support for higher
order transformations in necessary and as such a transformation language with an ex-
plicit metamodel is required.

In order to build our tool we have chosen the T-Core framework introduced by Syr-
iani and Vangheluwe in [14]. T-Core is a set of primitive model transformation blocks
that can be used to replicate the behavior of existing transformation languages (e.g. in
order to compare their expressiveness and provide a framework for interoperability) or
to build new model transformation languages. The framework includes five main prim-
itive transformation blocks that exchange models and transformation information in
messages called packets. Those blocks are: the Matcher, that finds matches of a given
pre-condition pattern within a model by running an efficient combination of the Ull-
mann’s and VF2’s subgraph isomorphism algorithm and collects those matches in a
packet; the Iterator which allows selecting the next matched submodel from the set of
matches gathered in a packet such that a part of the model to be changed can locked
on; the Rewriter consumes a matched subgraph from a model in a packet and changes
the model according to a given post-condition pattern; the Rollbacker which allows
checkpointing and restoring packets such that backtracking can be achieved; the Re-
solver for solving potential conflicts between matches and rewritings. An additional
construct called the composer is used to encapsulate compositions of the five primitive
transformation blocks described above. The goal of the encapsulation mechanism is



that complex transformation blocks such as for example querying, rewriting one ran-
dom match or rewriting all matches found can be seamlessly created from the simplest
transformation blocks.

Note that the transformation primitives described above execute transformations on
models which are metamodel instances. Matching precondition patterns and rewriting
postcondition patterns can only occur if the pre- and post-condition patterns are gener-
ated from the same metamodel the models being treated in order to insure coherence.

6 Implementation and Performance Experiments

As mentioned in section 4, in order to conduct our experiments with the technique pre-
sented in this paper we have implemented manually the higher order transformations in
figure 12 required to build the symbolic state space and do the property verification for
our police station case study transformation. This implied developing all the required
metamodels, models and transformation rules for the police station transformation as
described in figure 12. In order to do so we have used the AToM? metamodelling envi-
ronment [15] in which all these artifacts can be built. In particular we have constructed:

— both the metamodels for the Abstract Rule Metamodel and the property metamodel.
We depict in figure 13 the abstract rule metamodel for the police station transfor-
mation as displayed in the AToM? tool. Note that all constructs in the metamodel
reflect the structure of DSLTrans’ rules, including Match and Apply Models, Match
and Apply Model Elements and the possible links between these entities. However,
the MetaModelElement_S and MetamodelElement_T are superclasses of all pos-
sible types present in the source and target metamodels respectively, in our case
the Station, Male and Female types. Type names are distinguished by a classType
String attribute in the MetaModelElement and relation names are distinguished by
an associationType String attribute in the directLink association classes. Note that,
although the abstract rule metamodel in figure 13 is specific to the police station
transformation, it defines a template for such metamodels that can be built for any
input and output metamodels of a DSLTrans transformation by a HOT;

— the Abstract Transformation Rules which are 7 models, one per transformation rule
in the police station transformation in figure 2;

— the Backward Link Query Transformation which consists of 8 transformation rules,
one per each subgraph connected by backward links in each of the rules in the
second layer of the police station transformation in figure 2;

— the Collapse Transformation, consisting of 16 transformation rules that form the
building blocks of algorithm 3;

— the Property Verification Query Transformation, which consists of 3 transforma-
tion rules per property to be proved for the police station transformation. For our
experimental purposes we expressed the properties to be proved directly as trans-
formation rules and bypassed the property expression as an instance of the property
metamodel.

Our prototype was developed using a mix of Python and T-Core and can be found
in [16]. Given T-Core is built as a Python library, T-Core primitives can be embedded in



[ directLink_S |
[associationType: String |
]

indirectLink_S

* * *

MatchModel matchContains MetaModelElement_S
classType: String
name: String

o
*

Station_S Male_S Female_S

pairedWith

[ directLink_T |
[associationType: String |

backwardLink

1 * *

ApplyModel applyContains MetaModelElement_S

classType: String

name: String
Station_ T Male T Female_T

*

Fig. 13: Abstract Rule Metamodel for the Police Station Transformation

python code such that the required scheduling to build the algorithms described in sec-
tion 3 can be achieved. These primitives are initialized with the pre- and post-condition
patterns (the transformation rules) built by higher order transformations 4, 5 and 6 in
figure 12. The initialized transformation primitives then act on the Abstract Transfor-
mation Rules built by higher order transformation 3 in figure 12 and are scheduled using
Python code according to algorithms 1, 2 and 3.

Given that many similar situations have to be investigated during symbolic exe-
cution construction and property proof, memoisation was used whenever possible to
avoid isomorphic graph matching and rewrite operations. In what concerns algorithm 1,
we have used pointers to rules instead of copies of rules to build each path condition.
Caches were used to accelerate the repetitive backward link match transformations and
the mergeRulesOverBackwardLinks operations between rules of different layers. For
algorithm 3, instead of the recursive strategy explained in section 3 we have imple-
mented a method to build the set of collapsed path conditions for a given path condition
incrementally. The strategy involved starting by collapsing rules in a path condition two
by two, then collapsing again the results with remaining rules, and so on. This solution
works because the collapse operation is associative. In this fashion no repeated col-



lapsed path conditions are built and intermediate results of collapsing several rules can
be cached to be used when collapsing the same rules in different path conditions. It is
however the case that, if no or few collapse operations are required for a path condition,
the algorithm still attempts to collapse rules in this fashion. This may result in overhead
as compared to merging all the rules and running recursive algorithm 3 directly.

For property proof we have also implemented a strategy to avoid checking path
conditions of the symbolic execution where the property is sure to hold. The strategy
is based on the fact that 1) if a path condition PC’ contains the same rules as a path
condition PC where the property has already been checked successfully and 2) no other
elements influencing the property exist in PC’, then the property still holds for PC’.

In order to understand the performance of our approach we have used our tool to
check the properties in figures 4 and 5. Although are many variables that need to be
taken into consideration when performing such a analysis, we have started by the most
basic variable that may intuitively influence the performance of our approach: the num-
ber of rules in the transformation under analysis.

Our experiment is based on the transformation we have presented in figure 2. In or-
der to have more than the 7 rules in the original Police Station transformation we have
replicated those 7 rules four times, in order to reach a maximum of 28 rules distributed
by 5 layers as shown in figure 14. Note that in figure 14 and for clarity reasons we ab-
breviated the match model and apply model elements Station, Male and Female to S, M
and F respectively. Additionally, to distinguish between the replicated versions of each
rule we have added an index to each match and apply element name. In this extended
transformation different indexes correspond to different source and target metamodel
elements. As an example, the S/ match element matches different model elements than
match element S2.

S M1 F1
Layer 1 H : H
S1 M1 F1
S1>M1 S1>Fi M1 > M1 F1>F1 S2 M2 F2
Layer 2 H H H H H H H H H H
S1 > M1 S1>F1 M1 > M1 F1>F1 S2 F2
S2>M2| |S2=>F2 M2 > M2 F2 > F2 F3
Layer 3 : : : : : : : : :
S2>M2| [S2>F2 M2 > M2 F2 > F2 S3 F3
S3>M3| |S3>F3 M3 > M3 F3 > F3 F4
Layer 4 H H H H H H H H H
S3>M3| [S3>F3 M3 > M3 F3 > F3 F4
S4 > M4 S4 > F4 M4 > M4 F4 > F4
Layer 5 H H H H H H H H
S4>M4| |S4>F4 M4 > M4 F4 > F4

Fig. 14: Replicated Police Station Transformation for Performance Tests



# of rules | 3 5 7 10 12 14

# of path conditions 8 14 31 269 337 1051
symbolic execution

construction time (sec)|2.3 x 1072 0.12 0.25 0.27 0.40 0.93
used memory (Kb) 0.07 0.09 0.17 1.08 1.41 4.40
Prop. 1, repl. 1 (sec) - 0.11 0.68 1.80 221 6.97
Prop. 1, repl. 2 (sec) - - - - 1.41 7.06
Prop. 1, repl. 3 (sec) - - - - - -
Prop. 2, repl. 1 (sec) - 1.8x1073[1.8x 1073[1.5x 107 3[1.7 x 107 3[1.6 x 103

Prop. 2, repl. 2 (sec) - - - 0.04 0.04 0.04
Prop. 2, repl. 3 (sec) - - - - - -

Prop. 1, repl. 1 A
Prop. 1, repl. 3 (sec) - - - - - _
Prop. 2, repl. 1 A
Prop. 2, repl. 3 (sec) - - - - - _

# of rules ‘ 17 19 21 24 26 28

# of path conditions 9122 11428 35641 309341 387541 | 1208641
symbolic execution

construction time (sec)| 4.56 9.88 53.27 1222.11 | 3144.98 | 30513.64
used memory (Kb) 38.01 48.16 139.35 1307.66 | 1655.05 | 4777.00

Prop. 1, repl. 1 (sec) 66.42 88.57 320.00 - - -
Prop. 1, repl. 2 (sec) 66.87 89.87 347.01 - - -

Prop. 1, repl. 3 (sec) - 78.92 323.50 - - -
Prop. 2, repl. 1 (sec  |1.5x 1073[1.6 x 10 3[1.6 x 10> - - -
Prop. 2, repl. 2 (sec) 0.04 0.04 0.04 - - -
Prop. 2, repl. 3 (sec) - 441 4.39 - - -
Prop. 1, repl. 1 A

Prop. 1, repl. 3 (sec) - 109.41 649.01 - - -
Prop. 2, repl. 1 A

Prop. 2, repl. 3 (sec) - 5.22 5.03 - - -

Table 1: Performance Results for the Proof of Properties of the Police Station Transformation

In table 1 we present some performance results for the Police Station transforma-
tion. The results presented in table 1 were obtained using a 2.2 GHz Intel Core i7
machine with 8GB of DDR3 memory running Ubuntu 11.10 and Python 2.7. For each
measurement involving time we repeated the given experiment three times and calcu-
lated the final result as the average of the three experiment results. The code we used in
our experiments can be found under [16].

The first line of the table 1 shows the number of rules for each part of the experiment.
The rules that are involved in each transformation in the experiment can be deduced
from this number by counting the rules horizontally starting from the top left corner of
figure 14. For example 5 rules corresponds to the three first rules of layer 1 plus the two



first rules of layer 2; 7 rules correspond to the first three rules of layer 1 plus the four
first rules of layer 2; and so on.

Lines 2 and 3 in table 1 present respectively the number of path conditions and the
computation time for the symbolic execution construction for the given amount of rules.
Both the number of path conditions and the time for building the symbolic executions
raise steeply with the number of rules, but for our example it is reasonable to build
symbolic executions and prove properties for up to 21 rules. In order to test the limits
of our approach we have tried building symbolic executions up until 28 rules. In this
case the number of built path conditions is over 1 million and the time to do so over
8 hours. We have not attempted to prove properties of transformations with more than
21 rules due to the long running times required. From Line 4 in table 1 we can see that
memory consumption is very modest, even when the symbolic execution is composed
of more than one million path conditions. This is due to the fact that the actual number
of DSLTrans rules used for path condition construction is very low and we only use
pointers to the actual rules in memory.

Lines 5 through 7 of table 1 present the times to prove property 1 of the Police
Station transformation (see figure 4). Note that the property holds for any amount of
rules. We have replicated property 4 three times, one time per each of the replicated
set of rules for the Police Station transformation. It is clear from table 1 that the time
to prove any of the replicas of the properties increases with the number of rules. This
is due to the fact that property 4 holds, and as such the whole set of path conditions
for the symbolic execution needs to be checked. For that reason proof time naturally
increases with the size of the symbolic execution. However, proof time does not change
significantly for the several replicas of the property. This is due to the fact that, given
rules are replicated, the proof computations for each property replica are similar. From
this fact we can deduce that the position of the rules in the transformation affected by
the property under proof does not affect proof time.

Lines 8 through 10 of table 1 present the times to disprove property 2 of the Police
Station transformation (see figure 5). The property does not hold for any amount of
rules. For all the replicas of property 5 the proof times were constant. This is due to
the fact that, given the property does not hold, the proof algorithm can stop as soon as
a counterexample is found. The proof times increase for each replica of the property
given that replicas further down the table refer to rules that appear in later layers of the
Police Station transformation. As such the proof algorithm reaches the path conditions
involving those rules later and requires more time.

Line 11 of table 1 presents the time to prove a property which is a conjunction of
replicas 1 and 3 of the property in figure 4. The conjunction is achieved by merging the
two replicas is the same graph. The property holds and the proof time is higher than for
the individual smaller properties on lines 4 and 6. This is due to the fact that, because
the property involves more match and apply elements, the subgraph isomorphim checks
for property proof require more time than either of the two replicas that compose it.
Exactly the same principle applies to the property in line 12, which is the conjunction
of replicas 1 and 3 of the property in figure 5. Due to the size of the property, the proof
time is higher than the proof time for the individual replicas. As expected for properties
that do not hold, proof time across line 11 is constant as the number of rules increases.



Finally, one last observation on the values in table 1 is the fact that when rules
without backward links are added to the transformation (the jumps from 7 to 10, 14
to 17 and 21 to 24 rules) both the number of produced path conditions and the used
memory increases around tenfold. Comparatively, when rules with backward links are
added to the transformation (the jumps from 3 to 7, 10 to 14 and 17 to 21 rules) both
the number of path conditions and the used memory only increases around five times.
This is despite the fact that we increase rules with backward links by sets of 4 rules,
whereas we increase rules without backward links by sets of 3 rules. The reason for this
difference is the fact that: during symbolic execution construction a rule with backward
links may simply not be executable for a given path condition or can be merged with a
previous path conditions — in both these cases no new path conditions are added to the
symbolic execution; however a rule without backward links necessarily generates twice
the path conditions already generated by the symbolic execution algorithm as it may
always be executed.

7 Discussion of the Results and Contributions

The contributions of the work presented in this paper are the following:

— The algorithms to build the symbolic execution for a given DSLTrans’ model trans-
formation and prove structural properties of that transformation based on the con-
structed symbolic execution. This work materialises our proposal originally pre-
sented in [5];

— A prototype implementation of those algorithms based on the T-Core model trans-
formation framework [14] is described. Based on our running example we have
performed a detailed performance study and have shown that our technique can eas-
ily scale up to a transformations including around 21 transformation rules which,
given our experience with DSLTrans, are transformations of a useful size to specify
real world transformations. We have performed experiments with up to 28 rules,
at which point the time taken by the required computations became unreasonably
high;

— The architecture of tool to allow for performing the analysis of any DSLTrans trans-
formation is provided. We have produced by hand the artifacts necessary for build-
ing the symbolic execution for our running example and proving its structural prop-
erties. Higher order transformations can be used to automate the production of such
artifacts for an arbitrary DSLTrans transformation;

— We demonstrate a symbolic execution can be practically built and exploited for a
model transformation specification. To the best of our knowledge of the literature
of the domain, this hasn’t been attempted yet for a model transformation language.
In order to build such a symbolic execution we base our proposal on the fact that
DSLTrans is a language that guarantees by construction both termination and con-
fluence of all specifiable model transformations. An interesting corollary of our
experiments is that model transformations are themselves a useful tool in the con-
struction of proofs of properties of model transformations.



The performance results we have presented in this paper are promising, but further
experiments with other transformations need to be done in order to assess the real per-
formance of our approach. In fact, depending on the size of the rules in the considered
model transformation, on rule distribution among layers, if those rules involve many
backward links or not and whether many elements of the same type exist scattered by
different rules or not (implying many collapse operation), we expect that the number of
rules that can be tackled by our approach may vary substantially. Also it became clear
from section 6 that proof time is high as compared to symbolic execution construction.
Our results show that, when the property holds, the proof time is several times larger
than the time it takes to build the symbolic execution. We believe the proof time may
be considerably reduced by concentrating only on the symbolic execution states that
contain rules that are affected by the property to prove rather than checking the final
symbolic execution states one by one as we do now.

Another point that needs to be further developed in our approach is the property
language. In this paper we have concentrated on building the algorithms that allow sym-
bolic execution construction and property proof, but have left the property language in
arelatively basic state, being that for the time being it allows essentially to express what
is expressible in transformation rules (including statements about multiples of instances
of elements of the same type) and transitive containment connections at the Postcondi-
tion part of the property. We believe that the current property language can already be
very useful to prove many relevant properties of practical transformations, but have not
studied its full range yet. Regarding the possible extensions of the property language,
inspiration can be drawn from several proposals in the literature [10, 11, 17, 12], further
explained in section 8. One of the natural extensions of our property language would be
the possibility to express conditions over the attributes of the elements in the properties,
which for the time being we do not address. During the symbolic execution construc-
tion such conditions will have to be addressed symbolically, which adds an additional
challenge to DSLTrans’ symbolic execution construction. Negative links (associations,
indirect links and backward links) are also part of our future tasks, both at the level of
the symbolic execution construction and of the property language.

8 Related Work

In order to analyse the work in the literature that is close to our proposal, we will make
use of the study on the formal verification of model transformations proposed in [3].
The study uses three dimensions to classify the analysis of model transformations. The
dimensions are: 1) the kind of transformations considered; 2) the properties of transfor-
mations that can be checked; and 3) the verification technique used.

In what concerns the kind of transformations considered, DSLTrans is a graph
based transformation language and as such shares its principles with languages such
as AGG [18], AToM? [19], VIATRA2 [20], ATL [21] or VTMS [22]. As mentioned
previously, DSLTrans’ transformation are terminating and confluent by construction.
This is achieved by expressiveness reduction which means that constructs which imply
unbounded recursion or non-determinism are avoided. DSLTrans is, to the best of our



knowledge, the only graph based transformation language where these properties are
enforced by construction.

It is recognized in the literature that termination and confluence are important prop-
erties of model transformations. This is so because transformations that have such prop-
erties are easier to understand and analyse. However, given that termination is undecid-
able for graph based transformation languages [23], termination criteria and techniques
for analysing such criteria on transformations written in graph based transformation
languages [24-28] have been proposed to alleviate this problem. Confluence is also un-
decidable for graph based transformation languages [29]. As for termination, several
confluence criteria and corresponding analysis techniques have been proposed in the
literature [30, 28, 31, 32].

Regarding the properties of transformations that can be checked, according to the
classification in [3] the technique presented in this paper deals with properties that can
be regarded as model syntax relations. Such properties of a model transformation have
to do with the fact that certain elements, or structures, of the input model are necessarily
transformed into other elements, or structures, of the output model.

As early as 2002 Akehurst and Kent have introduced a set of structural relations
between the metamodels of the abstract syntax, concrete syntax and semantics domain
of a fragment of the UML [9]. Although they do not use such relations as properties of
model transformations, their text introduces the notion of structural relations between a
source and a target metamodel for a transformation. Later, in 2007, Narayanan and Kar-
sai propose verifying model transformations by structural correspondence [10]. In their
approach structural correspondences are defined as precondition-postcondition axioms.
Such that the axioms provide an additional level of specification of the transformation,
they are written independently from the transformation rules and are predicate logic
formulas relying solely on a pair of the transformation’s input and output model ob-
jects and attributes. The verification of whether such predicates hold is achieved by
relying on so-called cross links (also named traceability links in [3]) that are built be-
tween the elements of the input and output transformation model during the transfor-
mation’s execution. Although our proposal follows the same basic idea as the work of
Narayanan and Karsai, there is one essential difference. Narayanan and Karsai’s tech-
nique is focused on showing that precondition-postcondition axioms hold for one execu-
tion of a model transformation, involving one input and its corresponding output model.
Thus, according to [3] the technique is transformation dependent and input dependent.
With our proposal we aim at proving structural correspondences for all executions of a
model transformation, while basing the construction of the properties (or precondition-
postcondition axioms, using the vocabulary in [10]) on the source and target metamodel
structures. Our approach is thus transformation dependent but input independent and
aims at achieving the proof of the same kind of properties as Narayanan and Karsai
propose, but one meta-level above.

In 2009 [11] Cariou et al. study the use of OCL contracts in the verification of model
transformations. The approach is also transformation dependent and input dependent in
the sense that it requires and input and an output model of the transformation. However,



the authors provide a good account how to build OCL contracts for model transforma-
tions and show how to verify those contracts for endogenous transformations.

Aztalos, Lengyel and Levendovszky have published in 2010 their approach to the
verification of model transformations [17]. They propose an assertion language that al-
lows making structural statements about models at a given point of the execution of
the transformation and also statements about the transformation steps themselves. The
authors’ technique applies to transformations written in the VITMS transformation lan-
guage [22]. The technique consists of transforming VTMS transformation rules and ver-
ification assertions into Prolog predicates such that deduction rules encoding VIMS’s
and the assertion language’s semantics can be used on automated Prolog proofs to check
whether those assertions hold or not. The approach resembles ours in the sense that the
technique is also transformation dependent but input independent (the authors call their
technique offfine). The artifacts used in the proofs are also generated from the transfor-
mation and the properties to be proved. While it is foreseeable that our model syntax
relations properties might be expressed by the assertion language proposed by Aztalos
et al., the authors provide no account of the scalability of their approach. They mention
mention however that the fact that their approach is based on the generic SWI-Prolog
inference engine can be a performance bottleneck or induce non-terminating compu-
tations. They foresee that a specialised reasoning system might be necessary for their
approach to scale.

More recently in 2012 Guerra et al. have proposed a technique for the automated
verification of model transformations based on visual contracts [12]. The paper de-
scribes a rich and well studied language for describing syntactic relations between input
and output models. Contrary to our approach, Guerra et al. follow a testing approach
in the implementation of their: they use the visual contracts as a means to specify an
oracle that can decide whether the result of executing a model transformation is correct
or not. A transformation can thus be tested by a batch of existing input models. The
approach is transformation dependent and input independent and is independent of the
transformation language used, which is a feature that we have not found elsewhere in
the literature. On the other hand the verification technique used by Guerra et al. differs
fundamentally from ours since, within our abstraction over the number of elements of
the same type present in the model, our approach is exhaustive and can provide correct-
ness proofs, where the author’s approach is aimed at increasing the level of confidence
without providing a definitive proof.

Also in 2012 Biittner at al. have published their work on the verification of ATL
transformations [33, 34]. In [33] the authors translate ATL transformations and their
semantics into transformation models in Alloy. They then use Alloy’s model finder
to search for the negation of a given property, expressed as an OCL constraint, that
should hold. As the authors mention, Alloy performs bounded verification and as such
it does not guarantee that a counterexample is found if it exists. In [34] Biittner ar al.
aim at proving model syntax relation properties of ATL transformations expressed as
precondition-postcondition OCL constraints. In order to do so the authors provide and
use an axiomatisation of ATL’s semantics in first order logic. Verification of a given
model transformation is achieved by using a HOT to transform the TUA into addi-
tional first order logic axioms. Off-the-shelf SMT solvers such as Z3 and Yices are then



used to check whether the precondition-postcondition OCL constraints hold. The ap-
proach in [34] comes very close to ours as the authors aim at proving the same type of
properties in a model independent fashion and can do so exhaustively by using math-
ematical proofs at an appropriate level of abstraction, which can be seen as symbolic.
The are several differences with our approach: the authors’ proofs may require human
assistance, depending on the used SAT solver; despite the fact that Biittner at al. do
treat constraints on object attributes, which we do not do, their scalability results are
presented for a small (6 rule) transformation; contrarily to DSLTrans, ATL does not
have explicit formal semantics and because of that Biittner ar al.’s axiomatisation of
ATL’s semantics is tentative. More generally, while the authors’ approach requires an
intermediate logic representation of the transformation under analysis, our symbolic ap-
proach deals directly with transformation rules. This feature can ease the interpretation
of analysis results such as counterexamples and be in general less error prone due to
the absence of an indirection layer mapping transformation concepts to concepts in the
chosen logic. It is interesting to notice that, as us, Biittner ar al. have chosen expressive-
ness reduction as a means to work with subset of ATL that is verifiable.

From the point of view of the underlying verification technique a different possi-
bility would have been the GROOVE tool [35]. GROOVE allows specifying, playing
and analysing graph transformations. In particular GROOVE assumes that the states of
the systems to be analysed are expressed as graphs and that the system’s behavior is
simulated by graph transformation rules that manipulate those graphs. In [36] Rensink,
Schmidt and Varr6 test whether safety and reachability properties that are expressed
as constraints over graphs can be efficiently checked by building the state space for a
transformation. The answer is positive, but the authors found similar state space explo-
sion problems as we did. In order to tackle those issues the tool relies on exploiting the
symmetric nature of a problem by investigating isomorphic situations only once. This
is very similar to what we do in our tool by maintaining caches throughout symbolic
execution construction and property proof. Those caches allow us to avoid rerunning
the expensive subgraph isomorphism algorithm as much as possible. It is foreseeable
that our approach makes use of the advanced state space construction and recent CTL
property checking capabilities of GROOVE. This could be achieved by using GROOVE
as the transformation framework for our approach, instead of T-CORE. However, at the
time of the construction of our tool, fine grained control of GROOVE transformations
via an API as we do with T-CORE did not exist. It was thus unfeasible to implement
our algorithms 1, 2 and 3 by relying solely on GROOVE’s graphical interface.

Also from the verification technique viewpoint, Becker et al. propose a technique
for checking a dynamic system which state is encoded as a graph [37]. They also use
model transformations to simulate the system’s progression and aim at verifying that no
unsafe states are reached as part of the system’s behavior. In this sense Becker et al.’s
approach is transformation dependent and input independent, as an infinite amount of
initial graphs needs to be considered. However, instead of generating the exhaustive
state space as is done with GROOVE, the authors follow a different strategy by check-
ing that no unsafe states of the system can be reached. They do so by searching for
unsafe states as counterexamples of invariants encoded in the transformation rules. The



analysis is performed symbolically on the application transformation rules and as such
resembles our symbolic execution technique. However, rather than being generically
applicable to model transformations, possibly exogenous, the approach is geared to-
wards the mechatronic domain and graph transformations are used as a means to en-
code the dynamic structural adaptation of such systems. It is thus difficult to establish
a direct parallel with our work in terms of the applicability or efficiency of Becker
et al.’s technique when applied to the verification of model syntax relations in model
transformations.

9 Conclusion

In this paper we have proposed the analysis of syntactic model relation properties of
model transformation via symbolic execution. We implemented our approach using
model transformations written in T-Core. We have also presented early performance
results. Several contributions can be identified in our work: (i) we have provided the
algorithms for our original proposal of symbolic execution of model transformations
in [5]. To the best of our knowledge our work provides the first attempt at explicitly
building symbolic executions for a model transformation language; (ii) we show that
our symbolic execution technique scales well in our experimental setting and has the
potential to scale for real world problems; (iii) we demonstrate that expressiveness re-
duction of a model transformation language can be very beneficial to the design and
construction of a model transformation verification tool; and (iv) we demonstrate that
model transformations are themselves a useful tool for the proof of properties of model
transformations. More generally, we provide tangible evidence that MDD principles
and tools can be employed throughout the construction of MDD tools not only as mere
data translators, but also at the algorithmic core of those tools.

For the future, besides exploring performance issues, we will enhance the expres-
siveness of our property language. Constraints on object attributes will be incorporated
in the language, as will negative associations, indirect links and backward links. We
are now working on applying our proof technique to model transformation properties
relevant to our industrial partners, in the context of the NECSIS (Network on Engi-
neering Complex Software Intensive Systems for Automotive Systems) project. In a
different vein, it would be interesting to understand under which conditions our sym-
bolic execution construction and proof techniques can be applied to other graph based
transformation languages.
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