
Technology of Test Case Generation

Levi Lúcio∗ Marko Samer†

April 4, 2004

1 Symbolic Execution

Symbolic execution is a program verification technique born in the 1970s.
One of the first papers in the area by King [5] describes the technique as
being somewhere between the informal and the formal approaches. The
informal approach may be described as follows: the developer creates test
cases which are sets of input values to be provided to the application; these
test cases are ran against the application which will output the results; the
test results are tested for correctness against the expected results. In what
concerns the formal approach, it means describing the application by means
of a specification language and then using a proof procedure to prove that
the program will execute as expected. While the informal approach involves
actual execution of the application, the formal one can be applied even before
a prototype for the system exists.

Symbolic execution was invented to fill the gap between the two above
mentioned techniques. While the informal approach completely disregards
input values that are not taken into consideration in the test cases, the for-
mal one requires an exhaustive mathematical description of the application
which is not easy to produce.

∗The present work is part of the VeDiSS project which is partially funded by HaslerS-
tiftung, DICS initiative.

†This author was supported by the European Community Research Training Network
“Games and Automata for Synthesis and Validation” (GAMES) and by the Austrian
Science Fund Project Z29-N04.

1

The first goal of symbolic execution is to explore the possible execution
paths of an application. The difference between symbolic execution and
informal testing with sample input values is that the inputs in symbolic exe-
cution are symbols representing classes of values. For example, if a numeric
value is expected by the application, a generic x representing the whole set
of numerical values is passed. Obviously, the output of the execution will be
produced as a function of the introduced input symbols.

Given that symbolic execution is done over non-defined values, the control
paths that are covered have to be defined either by heuristics or by humans
at run-time. In particular, the symbolic execution of conditional structures
is of great interest: when a symbolic condition is evaluated, the result may
be true, false or not decidable. In case of true or false, it is clear which
control path should be followed. If the symbolic execution environment is
not able to decide unambiguously which branch of the condition should be
taken, then both control paths can be followed and the symbolic execution
of the program splits. From the above, one can imagine that to each possible
program control path corresponds a conjunction of conditions accumulated
by the decisions taken during the execution. The set of conditions that de-
fines a control path is called its path condition.

It is now possible to talk about test case generation. As for the other two
techniques mentioned in this section (model checking and theorem proving),
test cases can be generated as by-products of symbolic execution. The main
goal of symbolic execution is to analyze the control structure of a program
and possibly discover errors in it. However, by finding a solutions to the
equations that describe control paths it is possible to extract values that can
be used as test cases. These values will clearly force the application to follow
the control path that defines that path condition.

From the above it can be understood that symbolic execution was in-
vented mainly for white-box testing. Despite, nothing prevents from apply-
ing the same techniques starting from an abstract specification such as a
state machine. Symbolically searching a state space helps coping with state
space explosion since it reduces the number of possible paths by associating
classes of inputs. Several authors [9, 6, 7] provide interesting examples of
the usage of symbolic execution for generating test cases from an abstract
model. From here on in this text we will use the term model to mean both
program and abstract specification.

2

In this section we will provide an account of the above described topics. In
particular in Sect. 1.1 we will go through the technique of symbolic execution,
showing both how it works and what problems it raises. In Sect. 1.2 the topic
of test case generation from symbolic execution is discussed. Since in our days
test case generation is mainly done using a conjunction of techniques, we will
discuss several test case generation methods where symbolic execution plays
a significative role.

1.1 The Technique

As already discussed in the introduction, symbolic execution started to be
as a technique to help debugging programs by instantiating input variables
with symbols. Each symbol represents the whole range of values a given
input variable may assume. As an illustration, consider the code in Fig. 1
which is a C translation of an example that can be found in [2]:

 int foo(int a,int b) {

 }

3 a = a − b;

5 a = b − a;

7 a = −a;

1 a++;
2 if (a > b)

4 else

6 if (a <= −1)

8 return a

Figure 1: foo C code

In order to execute this piece of code symbolically, we start by assuming
the instantiation of the input variables a and b of the foo routine by the
symbols α1 and α2.

The instruction labelled 1 is an assignment which increments the value
of α1. In this case it is simple to see that after this statement is executed we
have α1 = α1 + 1.

The symbolic execution of a conditional statement is however more com-
plicated. If we take the statement labelled 2 from the foo routine, there are
two cases to consider:

• α1 > α2: the next instruction is the one labelled 3 ;

3

• α1 ≤ α2: the next instruction is the one labelled 5.

Since both α1 and α2 are symbolic and represent the whole range of nu-
meric values the input variables to the program may assume, it is impossible
to decide whether the program should follow label 3 or label 5. It is thus
necessary to follow both of them and to split the execution in two separate
control paths. Each of these control paths will however have a condition
attached to it: the control path associated to the fact that a > b is true has
the a > b condition attached to it; the control path associated with the fact
that a ≤ b is true has the a ≤ b condition attached to it. These conditions
are called path conditions. If we generalize, a path condition can be seen as
a set of arbitrary contraints on input variables.

In Fig. 2 it is possible to observe the partial symbolic execution of foo by
means of a directed graph. The nodes of the graph correspond to the state
of the input variables and of the path condition while the edges correspond
to the next statement in line for execution.

From foo’s symbolic execution much information can be retrieved:

• At each state of the symbolic execution three data are known: the input
variable’s symbolic value, the path condition’s symbolic value and the
next statement to be executed;

• Each leaf in the symbolic execution tree corresponds to the end of a
control path. The path condition on each leaf is the conjunction of all
the assumption made about the input values as the program executes.
At the tree’s leaves, the path condition fully documents the followed
control path;

• This method enables the detection of control paths that are never ex-
ecuted in a model. For example, in foo the control path (1-3,6-8) is
associated with the path condition (α1− α2 > −1) ∧ (α1− α2 ≤ −2).
There is no solution for these equations so no input values will ever
make the program follow this control path.

The example from Fig. 2 only deals with assignments and conditional
statements, no loop statements are included. We will not go into the details
of how to symbolically execute a loop statement since the algorithm can be
extrapolated from the one for symbolically executing a conditional statement:

• if from the path condition it can be deduced that the loop condition is

4

α1
α2b:

PC: True

a:

α1+1
α2

a:
b:
PC: True

α2
α1+1

α1+1>α2

a:
b:
PC:

α1+1
α2
α1+1<=α2

a:
b:
PC:

α1+1−α2
α2
α1+1>α2

a:

a:
b:
PC:

α1+1−α2
α2
α1−α2>−1
α1−α2<=−2

a:
b:
PC:

α1+1−α2
α2
α1−α2>−1
α1−α2>−2

(1)

(2) (2)

(6)

(3) (5)

...

(8)

...

(6)

b:
PC:

(infeasible control path)

Figure 2: Symbolic execution tree of foo

– true then the control path is directed to the beginning of the loop
statements;

– false then the control path is directed to the first statement after
the loop.

– both true and false, then the control path is split in two as de-
scribed in the first two bullets.

An interesting case is when the condition expression of a conditional state-
ment involves a subroutine or method call. As an example, imagine instruc-
tion 2 of the foo routine has the following condition: f(a) > b, where f is a
function or a method defined elsewhere in the application. In that case two
different strategies may be used: consider the return value of the function
call as one or multiple symbolic expressions (resulting from the symbolic exe-

5

cution of the f subroutine); consider the f(a) expression as another symbolic
variable over the possible return values of f.

1.1.1 Proving program correctness

It is possible to extract relevant information only from symbolically executing
an application model. For example, infeasible control paths may be identified
or errors in the code can be detected by looking at the path conditions for
each control path. However, using symbolic execution it is possible to go
further than that into the domain of proving program correctness.

King [5] discusses the similarities between proving program correctness
and symbolic execution. In order to prove that a program is correct it is
necessary to state a precondition that constraints input variables and a post-
condition that will be required to be true after program execution. It is
possible to perform these proofs with symbolic execution since:

• the precondition can simply be conjunct with the path condition at the
beginning of the execution;

• the postcondition can again be conjunct with the path condition at the
end of the execution of each control path. If there is no solution for the
equations posed by the conjunction of a control path’s path condition
and the postcondition, then that path should not exist.

The proof can also be done in a compositional fashion by making pre and
postconditions cover relevant segments of the program. Proving the program
is correct corresponds in this case to proving all the specified segments. This
technique is used in [5] to show that EFFIGY (one of the first symbolic
executors) could be used to prove program correctness.

The authors of [4] use a similar technique for verifying object oriented
concurrent programs with complex data structures. Their approach consists
of annotating source code with method pre and postconditions and perform-
ing symbolic execution using a model checker. Each time the model checker
fails to verify one of the preconditions the search backtracks (the path is
infeasible) and an alternative execution path is tried out.

6

1.1.2 Issues related to the approach

Several difficulties arise when trying to execute a model symbolically. As
with other verification techniques, the main problem is linked to the fact
that the state space for control path verification is usually infinite, as well as
the range of values of each input. Despite the advantage offered by symbolic
execution of abstracting sets of input values into symbols, solving the path
condition equations is still necessary in order find which input values yield
a given control path. The following bullets discuss these problems and how
some authors approached them.

• Dealing with infinite control paths If we consider models which com-
prise loops - which means all the programming languages and virtually
all state spaces generated by abstract specifications - there is an infinite
number of control paths with infinite states. When a loop depends on
symbolic input values it is a difficult problem to automatically under-
stand when the loop execution should stop. Several solutions may be
envisaged:

– simply prompt the user at each iteration of the loop for directions;

– establish an upper limit on the amount of iterations to be per-
formed on each loop (automatically or by human intervention).
This limit is an heuristic and will have an impact on the quality
of the generated control paths;

– Try to automatically find a fixed point to the loop. This is however
not trivial and may require human assistance.

The usual approach implemented in symbolic executors is to provide
an upper limit on the number of symbolic executions to be performed
(e.g. CASEGEN [10], DISSECT [3]). In DISSECT another approach
to controlling control path length is to provide an upper limit for the
total control path length, as well as for the total amount of generated
paths.

• Solving path condition equations This is crucial both for the symbolic
execution itself and for test case generation. During symbolic execution
it will be necessary to constantly evaluate the path condition equations
of in order to decide whether the control path being explored is feasible

7

or not. If there is no solution to the equations at some moment, the
path is infeasible.

In what concerns test case generation, for each feasible control path
the path condition provides the relation between input variables that
will direct execution through that particular path. If it is possible to
generate values that satisfy that relation, then it is possible to extract
a test case.

• The path condition holds a general system of equalities and/or inequal-
ities, for which any algorithm will not be complete. Clark [2] presents
a linear programming algorithm that can be applied in the case where
the equations are linear constraints. Ramamoorthy et al [10] deal with
non-linear equations using a systematic trial and error procedure. This
procedure assigns random values to input variables until a solution is
found (which is not always possible). Much more recently in [9], ran-
dom trial and error is also used, in conjunction with limit analysis.

In this subsection we have discussed the fundamentals of symbolic execu-
tion. This knowledge provides the basis for understanding the next section -
an overview on test case generation using symbolic execution.

1.2 Test case generation using symbolic execution

While going through the available literature on test case generation using
symbolic execution we found that the models used to specify the applica-
tion vary wildly. We have thus opted by describing in this section three
examples that have their starting point in three different abstract models:
B, AUTOFOCUS and CO-OPN.

More than that, we also found that some interesting techniques that make
use of symbolic execution for test case generation don’t use abstract models
but rather start directly from code. We explore in this section also one of
these techniques coming from white-box testing. We find that the example
described enriches this survey since it can also eventually be used in test case
generation from abstract models.

Another axis where we based this survey on are the synergies between
symbolic execution and other program verification techniques in the context
of test cases generation. As we have shown in Sect. 1.1, symbolic execution

8

started out as a pure white-box testing technique during the 1970s. Later,
it has been recycled to help reducing state-space explosion problems associ-
ated with formal verification techniques such as model checking or theorem
proving.

The examples that follow encompass the application of several techniques
for program verification, including obviously symbolic execution. For each
of the examples the several techniques employed for test case generation are
identified, so that the synergies between them are exposed.

We start with three frameworks for model based test case generation
where symbolic execution is heavily used. We then pass onto one example of
code based test case generation which we find particularly interesting since
it uses model checking to perform symbolic execution.

1.2.1 Abstract Model-based test case generation

The three following examples are relatively similar in the way they approach
the problem of test case generation. They all start from an abstract specifica-
tion and perform searches through the execution state space of the specified
application by using a constraint logic programming language or simply Pro-
log. This search is done in a symbolic fashion in the sense that each state
of the model corresponds not to a single concrete state but rather to a set
of constrained model input variables. The constraints for the model input
variables at a given state are calculated by symbolically executing the path
until that state - the same way we have shown in Sect. 1.1.

At this point it seems important to also define what a constraint logic pro-
gramming (CLP) language is. CLP languages are declarative logic languages,
such as Prolog, but particularly enabled to deal with arbitrary constraints.
Examples of constraints could be for example X > 0 or Y + Z < 15. Intu-
itively, while Prolog’s inference engine only understands syntactic unification,
a CLP engine includes semantic knowledge about constraints while perform-
ing unification. This makes CLPs more efficient than Prolog for performing
searches through variable constrained state spaces such as the ones we are
considering in this text.

We will start by an example that builds test cases starting from a B

9

specification. This approach called BZ-TT (BZ-Testing-Tools) is described
by Legeard and Peureaux in [6, 7] and consists essentially of three steps:

• translating a B specification into their custom CLPS-B constraint logic
programming language: B is a specification language related to Z that
supports the development of C code from specifications. In B a soft-
ware application can be seen as a state machine in which each state is
defined by a number of state variables and transitions are defined by
the operations the state machine accepts for each state.

The translation step generates CLPS-B prototypes of the operations de-
scribed in B to allow the animation of the specification. With CLPS-B
it is then possible to generate the execution state space for the specified
application and to search it for traces that are interesting to be tested.
The translation from B into CLPS-B can be seen as a first (abstract)
prototyping of the system under test;

• calculate the boundary states for each state variable in the specification
Boundary states consist of states of the specification execution which
are considered to be particular hence should be tested. In order to find
these states the test generation framework relies on symbolic execution.
In what follows, please keep in mind that this approach is limited to
finite enumerated domains.

Boundary states are calculated in the following fashion: each state
variable’s1 value domain is partitioned by symbolic execution of the
B specification (by means of the CLPS-B translation). In fact, in a
B specification properties of state variables are defined both in the
preconditions and the body of operations by structures such as “SE-
LECT...THEN”, “IF...THEN...ELSE” or “ANY...WHERE”. For each
possible execution (each possible trace) of the specification there is a
path condition associated. The difference with normal symbolic exe-
cution is that this time the interest is not on all the conditions posed
on all the state variables, but rather on the conditions posed on one
single state variable. For example, if we consider that a given execution
trace implies the following conditions over state variable x with domain

1State variables are related to what we described in Sect. 1.1 as input variables

10

1,2,...,9,10:

x ∈ {1, 2, 3, 4, 5} ∧ x 6= 3

then x ’s value domain would be partitioned in the following way:

x ∈ {1, 2, 3} ∪ {3} ∪ {3, 4, 5} ∪ {5, ..., 10}

From this union of sets called P-Domain it is possible to calculate
an intermediate product called boundary values. These are the values
belonging to the extremes of each of the subsets in the P-Domain set.
If we take the example above, the boundary values for x ∈ {1, 2, 3} ∪
3 ∪ {3, 4, 5} ∪ {5, ..., 10} would be {1, 3, 5, 10}. It should be said that
we have not taken into consideration state variables over non-numeric
sets, although the computation of boundary values for these sort of
variables is relatively similar to the previous description.

It is now possible to calculate the boundary states. These correspond
to states in the execution space of the specification where at least one
of the state variables assumes a boundary value. Symbolic execution is
again necessary at this stage given that in order to know the ranges of
all the other state variables that define a boundary state it is necessary
to know the path condition for that state.

state 1
Boundary Boundary

state 2

of body 1.1

Final state

identification
Final state of

identification
Final state of

identification
Final state of

Initial State

Final state Final state

of body 1.2

Boundary
state m

of body 1.m
...

...

preamble invocations

body invocations

identification invocations

postamble invocations

Figure 3: Trace construction for boundary testing

11

• generate the test cases (traces through the state space): this activity
may be resumed to the following:

– Calculate the preamble trace to the boundary state: this consists
of calculating the sequence of operations that leads the system to
a boundary state. Given that the path condition for the boundary
state is already known, this can be considered trivial;

– Calculate the “critical invocation” step: the authors of the ap-
proach define critical invocation as the execution of the operations
which are possible from the boundary state. The execution of these
operations in is clearly sensitive since is implies the manipulation
of a boundary value. For that reason the input parameters for the
operations under analysis are decomposed into subdomains as was
done in order to find the boundary values. We can say that the
operations accessible from the boundary state are then symboli-
cally executed over their entry parameters, yielding a subdivision
of the preamble trace (see Fig. 3);

– Calculate the identification traces and the postamble after the “crit-
ical invocation”: The identification trace consists of one or more
operations to be executed in order to observe the behaviour of the
system after the critical step. The postamble trace is a sequence
of operations that resets the state machine to the initial state from
where new test cases can be again searched for.

It is then possible to concatenate the preamble trace with the critical
invocation traces with the identification traces. The remaining symbolic
parts of the traces are finally fully instantiated in order to generate real
test case scripts that can be applied to a concrete implementation of
the application.

While trying to discriminate the verification techniques used in this frame-
work we can identify clearly the usage of symbolic execution, but also of the-
orem proving since a logic programming language (i.e. a theorem prover) is
used to calculate the boundary states.

12

The second example on model-based test case generation we will discuss
is presented by Pretschner et al in [9]. This approach also relies on a CLP
tool to symbolically execute the abstract specification of the system. The
application’s state space is then searched for symbolic traces that can be
instantiated to form interesting test cases.

The specification model used in this case in the one used by the AUTO-
FOCUS CASE tool - inspired from UML-RT (UML for Real-Time systems),
especially directed towards the development of embedded systems. In this
paradigm the system’s structure is defined as a network of components. Each
of the bottom level component’s behaviour is described by a state machine.
Composition of the bottom level state machines generates higher level state
machines and so on until the full system’s state machine is reached. As in
the previous example, states are defined by state variables and the transi-
tions are possible via commands (or operations) that are issued to the system.

Before describing how the test cases are generated, it is useful to mention
that the authors of the approach consider different kinds of coverage of the
execution state space. In [9] they describe three different coverage classes:

• Functional coverage: this sort of coverage implies generating test cases
that exercise precise execution scenarios given in the specification. Both
positive as well as negative test cases are interesting to validate the
system;

• Structural coverage: structural criteria implies for example issuing se-
quences of commands that selectively test critical components of the
system. Another example is the coverage of states that may be consid-
ered dangerous or unsafe;

• Stochastic coverage: using this approach random traces are generated
through the execution state space of the application. Despite the search
not being directed, this sort of coverage may still produce relevant test
cases.

The generation of test cases is done by translating the AUTOFOCUS
model into a CLP language so that it can be symbolically executed by a con-
straint logic engine. The idea is that a bottom level transition of a component
K is modelled into a formula of the following type:

stepK(−→σ src,−→ι ,−→o ,−→σ dst) ⇐ guard(−→ι ,−→σ src) ∧ assgmt(−→o ,−→σ dst)

13

This means that upon reception of input −→ι , component K can evolve
from control and data state −→σ src to −→σ dst while outputting −→o . In order
for this to happen however the transition’s guard has to hold. Also, the
data state of the component after transition is determined by the assignment
function assgmt. If we consider a component K that is not a bottom level
one, then a transition of component K shall be composed of a set of lower-
level transitions of K’s subcomponents.

The CLP program representing the application’s specification is then exe-
cuted to calculate interesting traces through the execution’s state space. We
can say symbolic execution is used here since the traces are built not with
actual input values for each transition - rather with constraints over variables
representing input values. One of the interesting feature of this particular
framework is the possibility of annotating the abstract AUTOFOCUS spec-
ification with coverage criteria. These annotations are also translated into
the CLP model of the application in order to allow heuristics for trace con-
struction.

Clearly, at the end of the search the symbolic traces need to be instan-
tiated in order to build real test cases that can be used to verify a concrete
implementation of the system. This instantiation is done either at random
or by limit analysis.

As in the previous example, we can clearly identify in this approach the
presence of the symbolic execution and the theorem proving verification tech-
niques.

The final example on test case generation from an abstract model we
describe in this text is presented by Peraire, Barbey and Buchs in [1]. The
starting point for the framework is a formal specification language called
CO-OPN (Concurrent Object Oriented Petri Nets), also developed by the
same group. CO-OPN uses algebraic structures to define data types and
the Petri Net formalism to handle concurrency. From a specification in this
language an axiomatization in Prolog is produced automatically. The role of
this axiomatization is dual:

• it allows the generation of test cases by composition of operations of
the SUT’s interface. Since there is an infinite random amount of these
compositions, the test engineer can apply hypotheses on the behaviour

14

of the system in order to reduce the initial number of tests. This is
done using a special purpose language;

• on the other hand the axiomatization of the specification in Prolog
also makes it executable (at a level which is necessarily more abstract
than the SUT). This high level prototype makes it possible to validate
the generated tests, i.e. checking whether the transitions between the
operations in the test sequence are possible. If they are not, then that
sequence of operations should not be applicable to the implementation -
this type of tests are negative but also relevant to verify the correctness
of the SUT.

The next step in the approach is to define a set of hypotheses that will
direct the symbolic execution of the axiomatized prototype. Unlike other
frameworks described in this section, this one relies on human intuition dur-
ing test case selection. Despite the fact that some of the possible automation
during this step is lost, the high-level language used to describe hypothe-
ses about interesting test cases provides a basis to generate tests which are
semantically meaningful.

The test engineer can express two types of hypotheses concerning the
tests that will be generated:

• Regularity hypotheses : this type of hypotheses stipulates that if a test
containing a variable v if valid for a subset of v satisfying an arbitrary
complexity criteria, then it is valid for all of v ’s domain of greater com-
plexity. The notion of variable in a test is very generic, including not
only input variables but also constraints on the shape of the sequence
of operations that form the test. This is however a complex topic and
the reader is referred to [8] for details;

• Uniformity hypotheses : the uniformity hypotheses state that if a test
containing a variable v is valid for one value of v, then it is valid for all
of v ’s domain.

After introduction in the system of hypotheses by the test engineer, the
prolog adapted engine (the resolution is not pure SLD2) symbolically executes
the uninstatiated tests against the axiomatic definition of the application.

2SLD is the standard mechanism used in logic programming languages in order to
compute goal solutions

15

The idea behind the approach is to extract from path condition of a given
test the constraints on the variables corresponding to the input values of the
operations present in that test. Given this knowledge it becomes possible to
calculate the subdomains of the uninstatiated input variables and apply uni-
formity hypotheses in a way that the operation behaviours described in the
specification are taken into consideration. This activity is somehow equiva-
lent to what is performed by Legeard and Peureaux in [6] (see Sect. 1.2.2)
while calculating the P-Domains.

Again, as with the previously described approaches, both theorem prov-
ing and symbolic execution techniques are used in this test generation frame-
work.

1.2.2 Code-based test case generation

In the last example of this section we will be describing a framework by
Khurshid et al [4] that generates test cases not from an abstract model as
the ones described in 1.2.2, but from Java code directly. We chose to take
this detour from the main topic of this section in order to discuss a technique
that:

• generates test cases from “real code” in a modern programming lan-
guage;

• takes advantage of a model checker (Java PathFinder) to overcome
some of the difficulties of symbolic execution;

• takes advantage of symbolic execution to overcome some of the diffi-
culties of model checking.

Java PathFinder is a model checker built specifically for Java. As all
model checkers, it allows verifying that a model of an application (or, in
this case the application itself) satisfies a set of logic formulas specifying
given properties of the application. An interesting property to be verified
with Java PathFinder is for example that no exception is left unhandled in
a given method. As a result of the model checking we can obtain either
execution trace witnesses of the validity of the formulas or execution trace

16

counter-examples if the formulas do not hold. Clearly, witnesses are positive
test cases and counter examples are negative ones.

There is a fundamental difference between this approach and the ones
described before. In fact, all the previous frameworks were based on the fact
that a model of the application, assumed correct, existed. The implementa-
tion could then be verified against that model. In the present case, the model
does not exist explicitly: it is provided implicitly with the temporal logic for-
mulas. The expected correct and incorrect behaviours of the implementation
are described by the test engineer using temporal logic. The simple fact that
the witnesses or counterexamples to these formulas exist already provides
information about the correctness of the implementation.

One of the main issues around model checking software applications is the
state space explosion problem. In order to be model checked efficiently, an
application needs to be bounded on its input variables. Symbolic execution
may help in this point, by replacing explicitly valued states by symbolic
states representing large domains.

On the other hand, model checking provides a number of built-in facilities
that allows exploring a state space efficiently. In particular, goodies like the
handling of loops, recursion or method invocation can be hidden from the
symbolic execution part. The handling of infinite execution trees is handled
by the model checker by exploring the state space using either iterative deep-
ening depth first or breadth first techniques. Heuristic based search is also
supported.

In what concerns the technique itself, it requires that the Java code passes
through a first instrumentation phase. Since Java PathFinder takes in pure
Java code, the model checking is done over all possible values of input vari-
ables of the system. In order for the model checker to be able to manipulate
symbols rather than real values the code needs to be instrumented. This is
done at three levels:

• Basic typed variables (e.g. integers) are replaced by objects of an Ex-
pression type that will be able to keep track of symbolic values. Ob-
jects that are static or dynamic can be seen as compositions of the basic
types and can thus be represented symbolically by replacing the basic
typed fields with Expression objects;

• Code instrumentation is also necessary in order to build the path con-
dition for each of the traces the model checker explores. To do this a

17

PathCondition class is provided that allows modifying the conditional
statements of the code so that the path condition may be built as the
application is executed;

• Finally, code instrumentation is used to add method pre and postcondi-
tions. Method preconditions are used to constrain the method’s input
values. This is relevant in order to constrain the search space and avoid
execution traces that will never exist.

For each of the types of instrumentation described above, the framework
provides the necessary Java libraries.

The most interesting aspect of this approach is the symbolic execution
algorithm that allows dealing with methods that take as inputs complex
unbounded data structures. This algorithm uses what the authors of [4] call
lazy initialization since it initializes data structures as the they are accessed.
In Fig. 4 the algorithm for lazy initialization is described.

if (f is uninitialized) {
 if (f is a reference field of type T) {
 nondeterministically initialize f to
 1. null

 if (method precondition is violated)
 backtrack();
 }
}

 3. an object created during a prior initialization of a field of type T
 2. a new object of class T (with uninitialized field values)

Figure 4: Lazy initialization algorithm

The algorithm allows the construction of path conditions that take into
consideration not only conditions over basic types, but also over complex
data structures involving a dynamic number of objects. Figure 4 only shows
how the algorithm deals with initializing references to objects, being that
primitives types are given symbolic values. The backtrack() instruction in
the algorithm points out the fact that since the initialization of a reference
is non-deterministic, the algorithm backtracks when the selected initializa-
tion is not allowed by the precondition of the method. It can then continue
searching for other solutions at the last decision point.

18

Finally, the test cases are obtained by running the Java PathFinder model
checker over the instrumented code. For each of the criteria specified in logic
formulas, witnesses or counter-examples traces are generated. As in the
previous approaches, the path conditions for these traces may then be used
the build the actual input values to test the concrete system.

References

[1] S. Barbey C. Peraire and D. Buchs. Test selection for object-oriented
software based on formal specifications. In Programming Concepts and
Methods - Proceedings of PROCOMET 98, pages 385–403. Chapman
and Hall, 1998.

[2] L. Clarke. A system to generate test data and symbolically execute pro-
grams. IEEE Trans. on Software Engineering, SE-2(3):215–222, Septem-
ber 1976.

[3] W. Howden. Symbolic testing and the dissect symbolic evaluation sys-
tem. IEEE Trans. on Software Engineering, SE-3(4):266–278, July 1977.

[4] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized
symbolic execution for model checking and testing. In Proceedings of
the 9th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, 2003.

[5] James C. King. Symbolic execution and program testing. Communica-
tions of the ACM, 19(7):385–394, July 1976.

[6] B. Legeard and F. Peureux. Generation de sequences de tests a partir
d’une specification b en plc ensembliste. In Proc. Approches Formelles
dans l’Assistance au developpement de Logiciels, pages 113–130, June
2001.

[7] B. Legeard, F. Peureux, and M. Utting. Automated Boundary Test-
ing from Z and B. In Proceedings of the International Conference on
Formal Methods Europe (FME’02), volume 2391 of LNCS, pages 21–40,
Copenhagen, Denmark, July 2002. Springer-Verlag.

[8] Cecile Peraire. Formal testing of object-oriented software: from the
method to the tool. PhD thesis, EPFL - Switzerland, 1998.

19

[9] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, and
K. Scholl. Model-based test case generation for smart cards. In In
Proceedings of the 8th International Workshop on Formal Methods for
Industrial Critical Systems (FMICS 03), 2003. to appear.

[10] C. V. Ramamoorthy, S. F. Ho, and W. T. Chen. On the automated gen-
eration of program test data. In Proceedings: 2nd International Confer-
ence on Software Engineering, page 636. IEEE Computer Society Press,
1976.

20

