
Formal Test Generation from UML Models?

Didier Buchs, Luis Pedro, Levi Lúcio

Software Modeling and Verification laboratory
University of Geneva, Switzerland,

didier.buchs,luis.pedro,levi.lucio@cui.unige.ch,
WWW home page: http://smv.unige.ch

Abstract. In this paper we will explain our approach for generating
test cases for a UML system model. Despite the fact that UML authors
claim that UML semantics are precise enough to define non-ambiguous
models, we find that the overlap of the different views makes it difficult
to explore and make deduction on the state space of the modeled system
in order to generate test cases. Our approach is thus based on a subset
of UML (inspired from the Fondue approach) for which we have de-
fined clear transformation semantics. We provide these semantics by de-
lineating transformation rules using MDA (Model Driven Architecture)
architecture as foundation. We transform UML models into CO-OPN
(Concurrent Object Oriented Petri Nets) ones, CO-OPN being a formal
specification language defined in our Laboratory.

We have also defined a language for expressing test intentions for CO-
OPN models. This language allows selecting interesting executions (tests
cases) of a model by providing constraints over all possible traces of that
model. By exploring the model’s semantics with the tools we have built
for our CO-OPN language we are able to generate test cases based on
those test intentions. We are also able to partially eliminate redundancy
in the produced test cases by finding equivalence classes in the model
operation’s inputs.

1 Introduction

As the complexity and size of a system increases, modeling techniques that ad-
dress abstraction and decomposition play a very important role. At the same
time different view points of the system are envisaged in order to fully describe
it by means of a model. This raises the problem of relating and keeping consistent
the different models that represent, sometimes orthogonally, several perspectives
over the system. At the same time, the need to isolate errors in the implemen-
tation motivates our work that aims of automatically generating test sets from
a well defined model. Figure 1 shows the general picture of our approach that
will be explained in detail during this article.

? This project was partially funded by the DICS project of the Hasler foundation,
with number 1850.

Our development approach encompasses three steps: Analysis − Prototyp-
ing − Implementation. For the analysis phase we use the UML Fondue[1] de-
velopment method that allows specifying a system using different view points
by means of different diagrams - at the same time Fondue allows producing a
complete description of the system by providing a logical relation between each
individual diagram.

The product of the implementation phase is a system that will be used to
execute the tests produced by the test case generation framework. In our Model-
based testing approach, there is an implementation relation between the model
(developed during the Analysis phase) and the System Under Test (SUT) based
on the idea that the observational behavior of both model and implementation
are compatible.

Taking into account that the objective of our current work is to automatically
generate a set of tests that will afterwards be applied to the SUT, we need to
transform the system specification into the language that we use for the purpose
of test case generation - CO-OPN [2] (Concurrent Object Oriented Petri Nets).

Fig. 1. The process of test generation from UML

In order to produce test sets from the system’s model, we developed a lan-
guage (TestSel) that allows expressing test intentions for the system specifica-
tion. This language provides the syntax and semantics that permits narrowing
the initial (usually infinite) number of tests present in a system specification.

2 From UML to CO-OPN

Our approach aims at easily generating tests from a well known and widely
used modeling language. One of the key points to achieve this is being able to
transform it into a specification language that provides an unambiguous repre-
sentation of the system. In this section we will focus on the activities that allow

achieving point 2 from point 1 in figure 1, i.e. UML models creation and its
transformation into CO-OPN. Before we continue detailing how this process is
accomplished, we will briefly introduce the two specification languages: Fondue
[1] (UML Dialect) - the source language; and CO-OPN [3] the target language.

UML Fondue provides two main artifacts: Concept and Behavior Models. The
first one is represented as UML class diagrams and defines the static structure of
the system. The Behavior Model defines the input and output communication of
the system, and is divided in three models: Environment, Protocol and Operation
- represented respectively by UML collaboration diagrams, UML state charts and
OCL operations.

CO-OPN is a formal specification language built to allow the expression of
models of complex concurrent systems. Its semantics is formally defined in [4],
making it a precise tool not only for modeling, but, thanks to its operational se-
mantics, also for prototyping and test generation. It groups a set of object-based
concepts such as the notion of class (and object), concurrency, sub-typing and
inheritance that we use to define the system specification coherently regarding
notions used by other standard modeling approaches. An additional coordina-
tion layer provides the designer with an abstract way of representing interaction
between modeling entities and an abstract mapping to distributed computations.

The CO-OPN object oriented modeling language is based on Algebraic Data
Types (ADT) and Petri Nets. It provides a syntax and semantics that allow
using heterogeneous Object Oriented (OO) concepts for system specification.
The specifications are collections of ADT s, classes and context - the CO-OPN
modules. Detailed information about COOPN language can be found in [2].

2.1 The Model By Example

This section will explain, by means of an example, how we use UML Fondue
in order to model our system. We start presenting the case study by stating
the problem description and we continue defining the model using the Fondue
methodology. The example is not intended to be a complete and exhaustive one,
but rather an illustration of the full process for our approach.

The proposed system consists of a mobile phone with a SIM card that can
be authenticated with a PIN number. The phone has three different function-
ing states: phoneOff - when the phone is not operating; phoneStandBy - when
the mobile phone is waiting for the user to insert a PIN number; phoneOn -
corresponding to the state where the phone is ready to perform calls.

The behavior of the system is such that the user is asked for a PIN number in
order to be able to turn the phone to the phoneOn state that allows performing
calls. The inserted PIN (stored in the SIM card) is checked and it can only
be wrong a maximum number of three consecutive attempts. If this number is
reached the card’s state changes from unlockedPin to lockedPin.

Environment Model: This model precises the incoming and outgoing mes-
sages of the system. In the figure that shows the Environment Model for this

Fig. 2. Fondue Environment Model for the Mobile Phone System

system (figure 2) it is possible to observe that the possible incoming messages are:
turnOn, turnOff, insertPin and resetCard. The last one is used for demonstration
purposes just in case the SIM card is locked after the maximum number failed
insertPin operations. The system is able to send to the user the following mes-
sages with obvious meanings: phoneReady; phoneOff; cardPinLocked; wrongPin;
and coorectPin

Concept Model: The static structure of the system is accomplished by the
realization of the Concept Model. This structure is defined as an UML class
diagram and it is presented in figure 3 for our example system.

Fig. 3. Fondue Concept Model for the Mobile Phone System

We consider the system composed by two classes related as presented in
the figure. The diagram shows a system in which one user can have one or
more mobile phones (represented by the association User −→ UserPhone). On its
turn, the UserPhone is identified by its IMEI1 and by its state (state attribute
in UserPhone class) and provides an association of cardinality 1..1 with class
Card. The SIM card (class Card in the figure) is identified by phoneNumber,
cardPin, cardState and nPinTries representing respectively: the phone number
associated to the card; its valid Pin; the card’s state; the number of previous Pin
insertions with a wrong value. Both state and cardState attributes are defined
by the CardControler and UserPhoneControler enumerators. These enumerators
provide the allowed states of the two transition systems that will be further
specified by the two Protocol Diagrams.

Protocol Model With Fondue’s Protocol Model it is possible to specify the
dynamic behavior of the system over logical time. This model is expressed by
means of UML state charts which capture the way the system responds to re-
quests depending on its current state.

(a) (b)

Fig. 4. Fondue Protocol Models - (a): UserPhoneControler state machine; (b): CardCon-
troler state machine

As can be seen in figure 4, some of the actions (in the same system state)
can lead to more than one system state - this presents a typical example of un-
wanted non-determinism in the system’s specification. The non-determinism can
be suppressed in the Operation Schemas by means of OCL constraints expressed
using pre and post-conditions.

Operation Schemas: Describe the services offered by the system. For simplic-
ity, in this section we are going to present only one of the Operation Schemas:
the operation insertPin(pin:Pin) that is presented in 5.

1 International Mobile Equipment Identity Number (IMEI) is an unique electronic
serial number of the Global System for Mobile Communication (GSM) mobile phone
handsets

Fig. 5. Fondue Operation Schema for operation insertPin(pin:Pin) for the Mobile Phone
System

This operation describes the behavior that the system should have when the
message insertPin is sent. Albeit the sequence of allowed transitions has already
been defined in the Protocol Model, this definition identifies possible points of
non-determinism in system’s state phoneReady and provides the necessary logic
in order to solve them.

2.2 Transformation Process

In order to perform the transformation from Fondue to CO-OPN we need to
clearly define the methodology both in terms of technology used and in what
concerns the formal definitions: Regarding the former one, our approach pro-
poses that we use technologies that use MDA [5] as base framework. This im-
plies using the metamodel of both languages and defining the transformation
based on them; The metamodel of a language is a description of all the concepts
hat can be used in that language - it is also known as its abstract syntax. A
metamodel is composed of metaclasses and their relationships - in conjunction
they compose the complete metamodel of the language. Thus, every element in
an ordinary language is an instance of the respective metaclass. Metamodels are
models and this implies that we can manipulate them in the same was - they
just reside in another level of abstraction; The second aspect implies a clear and
formal definition of transformation rules and mapping. This definition must be
formally expressed and mapped into a transformation language (see for example
[6] or [7]). The transformation language is the artifact that will allow execut-
ing the transformation and will act as the bridge between the technology used
and the transformation definition. Transformations are composed of a series of

rules which are applied to the source Fondue model. Each rule attempts to find
some pattern in the source model and, if successful, generate some correspond-
ing pattern in an target CO-OPN model. One can see the transformation rule
as consisting of two parts of a graph: a left-hand side (LHS); and a right-hand
side (RHS).

These two aspects together can precisely define and execute a transformation
from a Language A to a Language B - In particular we are interested in the
transformation from UML Fondue to CO-OPN that we are going to detail in
the remaining parts of this section.

The sequence of the transformation is presented in figure 6 using a Petri Net.
The places with a token represent the set of different types of Fondue Diagrams.
When firing transitions T1 to T4 in the figure, the transformation will evolve
transforming, step by step, each one of the Fondue diagrams. Each transition

Fig. 6. UML Fondue to CO-OPN transformation sequence

represents the process of transforming one diagram and the place after it contains
the result of that process together with the result of the previous transformation.
Albeit each transition is meant to represent the transformation of a specific type
of Fondue diagram, with the exception of T1 all the others need information from
other diagram(s) besides the one that the transition concerns. More specifically:

– Transition T2 (transformation of the Concept Model) includes two distinct
tasks: transformation of the Concept Model itself: and a second iteration in
the Environment Model transformation to complement the transformation
of the its input messages with their parameters. The Environment Model
provides the input messages to the system but no information is specified in
what concerns the possible parameters for each message.

– Transition T3 (Protocol Model’s transformation) needs to have available the
Environment Model information so that it can check if the system transi-
tions specified correspond to messages previously defined in the Environ-

ment Model. At the same time, information regarding the Concept Model
is also required to inspect if the names of the Protocol Models have any
class/enumerator with the same name in the Concept Model and if the states
defined in the Protocol Diagram correspond to the ones provided by the Con-
cept Model.

– Transition T4 (Operation Schema transformation process) requires infor-
mation from all the other Fondue models: from the Environment Model in
order to understand if the name of the Operation was already defined; from
the Concept Model to analyze if the invoked methods (and the classes that
correspond to the type of the object) have been defined; from the Protocol
Model to control if the states defined in the pre and post-conditions have
been defined.

2.3 Formalization of the Transformation

The transformation process from Fondue to CO-OPN consists in the composition
of transformation of each one of the Fondue models. A transformation from
Fondue to CO-OPN is a function:

∀F ∈ Fondue,∃C ∈ COOPN : Tr(F) = C (1)

At the same time, the transformation Tr(F) is a composition of the trans-
formation of each one of the Fondue models:

∀F =< e, c, p, o >∈ Fondue, e ∈ E, c ∈ C, p ∈ P, o ∈ O :

Tr(F) = T env
r (e) + T con

r (c) + T prot
r (p) + T op

r (o) (2)

with, E the set of Fondue Environment diagrams, C the set of Fondue Con-
cept diagrams, P the set of Fondue Protocol diagrams and O the set of Fondue
Operation Schemas. The ’+’ operator is the disjoint union.

Defined that we have the generically the transformation from Fondue to CO-
OPN, in the following lines we will particularize how the transformation from
each type of Fondue diagram is defined.

Environment diagram: This transformation constitutes the first iteration in
order to achieve the complete transformation from Fondue to CO-OPN. The
Environment Diagram is composed of one System, messages going to the sys-
tem and messages sent by the system to the outside - as presented in figure 2.
Being S, Mi,Mo the System, the set of input messages and the set output mes-
sages respectively we can formalize the transformation of a Fondue Environment
diagram as:

∀s ∈ S, mi ∈ Mi,mo ∈ Mo :
T env

r (E) = T env
r (s) + T env

r (mi) + T env
r (mo) (3)

Taking into account that one system is transformed in a CO-OPN Context,
the input messages into methods of the Context and the output messages into
gates of the CO-OPN Context, and being Γ the set of CO-OPN Contexts, M
the set of CO-OPN Methods and G the set of CO-OPN gates:

∀s ∈ S, mi ∈ Mi,mo ∈ Mo :
T env

r (E) = Id(co) + Id(m) + Id(g) (4)

where Id : transformationnew.tex, v1.102005/10/0614 : 05 : 12pedroExp is
the isomorphic transformation between Fondue and CO-OPN.

Concept Model: The transformation of the Concept Model is basically the
transformation of a reduced UML class model.

Generically, the transformation of the Concept Model is performed as follows:

– the class name in the Concept Model is transformed as the name of a class
in CO-OPN;

– the attributes are transformed in Places2 in the CO-OPN class;
– the class associations are CO-OPN classes with source and target values;
– get and set methods must be created in order to access and modify each one

of the class attributes;
– both the user defined and primitive data types are transformed in CO-OPN

ADTs.

Taking this into account, for class Card in the Concept Model from figure 3,
the result of the transformation of a CO-OPN class will be as presented in the
figure 7.

Protocol Model: This transformation is similar to transformations from UML
state charts to Petri Nets (like in [8]). Figure 8 present the equivalent Petri Net
in the CO-OPN MobilePhoneController class to the Protocol Model in 4(b).

Operation Schemas: The transformation in what concerns the Operation
Schemas can be defined as:

∀op ∈ Mi,msg ∈ Mo, pre ∈ PRE, post ∈ POST,∃o ∈ O :
Tr(o) =< Tr(op), Tr(msg), Tr(pre)..Tr(post) > (5)

taking into account that: O is the set of Fondue Operation Schemas; PRE set
of pre-conditions; POST the set of post-conditions;

The pre and post-conditions are based on control operators (if...then...else...),
affectation based on OCL expressions.

2 a Place in a CO-OPN class is like a place in a Petri Net with the difference that, in
CO-OPN, a Place is of a certain type provided by the associated ADT

Fig. 7. Class Card transformed from Fondue to CO-OPN

Fig. 8. Protocol Model UserPhoneController transformed from Fondue to CO-OPN

For transformation, all expressions of type

{if lexpr then expr else expr|logicalvar := oclexpr|expr, expr} (6)

will be transformed into only positive conditional axioms:

if cond1 then

if cond2 then do1 else do2

else

do3

Will be transformed into 3 positive conditionaql axioms:

if cond1 and cond2 then do1;

if cond1 and not(cond2) then do2;

if not(cond1) then do3;

or, more specifically in CO-OPN syntax:

(cond1) = true & (cond2) = true => op With do1

(cond1) = true & (cond2) = false => op With do2

(cond1) = false => op With do3

In general, the transformation will produce several components in CO-OPN of
format: TrOCL(lexpr) =< logical expr, synchronisation >

We should note that, for logical expressions that are simple boolean conditions
without access to elements in Class model, we will have synchronization = �. More-
over, the .. operator is used to gather the result of each sub expressions. It means
conjunction of logical expressionss and sequence of synchronizations. The result will
be one CO-OPN axiom for each flatenned axioms.

Taking the following piece of the Operation Schema in figure 5:

elseif c.cardPin <> pin

c.nPinTries = c.nPinTries@pre + 1 and

sender^wrongPin

if c.nPinTries = 3 then

c.CardStatus::lockedPin and

c.nPinTries = 0

end

The CO-OPN resulting axioms for class Card will be of form:

(c.getcardPin p = pin)=false

=>insertPin pin With wrongPin // c.getnPinTries n .. c.setnPinTries n+1

(c.getcardPin p = pin)=false and (c.getnPinTries 3 = true)

=>insertPin pin With c.setcardStatus lockedPin // c.setnPinTries 0

where the operator // represents the execution in parallel of the different expres-
sions.

2.4 Transformation Execution

The transformation execution is the ”map” from the transformation formalization into
one (or several) transformation languages. Since not all of the transformation languages
provide the same functionalities we decided to adopt several of them. Thus, we will
use them in order to ”enrich” each other and to be able to provide an execution to our
transformation. In Fig. 9 it is possible to see the general process of the transformation
execution. The grey parts of the figure represent what was previously mentioned: more
than one approach of transformation can be adopted. In this case we present an archi-
tecture using a transformation language that is based on a transformation model (e.g.
the Model Transformation Language [7] (MTL)) and another based on directly speci-
fying transformation rules (e.g. Mod-Transf - a XML and ruled based transformation
language [9]).

In general, the mechanism of executing the transformation follows the standard
process defined by the Object Management Group ?? (OMG). This means defining
and using the Meta Model of each one of the languages as an instance of Meta Object
Facility[10] (MOF). The transformation rules (or transformation model that is also an

Fig. 9. General transformation execution

instance of MOF) can be written profiting from the fact that source (Fondue in our
approach) and target (CO-OPN) languages abstract syntax are defined using the exact
same methodology. As for the technology used, standards for (meta)model exploration
and creation have been defined meaning that we can use them in order to coherently
execute the transformation.

The basic idea of this particular transformation is to give part of the source lan-
guage semantics using the transformation rules applied to the abstract syntax, being
the other part provide directly and automatically by the fact that the transformation
leads to a CO-OPN model (like described in [11]). This leads to a model in CO-OPN
formal specification language allowing state space exploration and thus automatic test
generation as explained in the next sections.

2.5 Tools

The software utilities we have under development in our laboratory that support the
work described previously include: model transformation tools that handle MOF mod-
els exploration; generic model browsing; Java interfaces generation in order to gener-
ically explore a create a model of a given type; and model transformation features.
The tool is capable to cope with plugins (basically the definition of the transformation
rules and their algorithms) that will use existing generated Java interfaces to achieve
transformation. These interfaces are a direct map for the metamodels of both target
and source languages to be transformed.

3 Introduction to Model Based Testing (using CO-OPN
Specifications)

Our approach to test case generation stems from the pioneer works of Bernot, Gaudel
and Marre [12] on model-based testing using formal specifications. This work has been

extended by Barbey and Péraire in their Phd. Thesis which address the problematic
of testing Object Oriented systems and finding practical tools for doing so.

In a nutshell, the approach can be described as follows: given a non-ambiguous
model of the SUT (System Under Test), the test engineer will provide hypotheses about
the functioning of the SUT. The purpose of these hypotheses is to generalize the SUT’s
behavior so that equivalent behaviors can be mapped into classes of system inputs –
the test cases. By generalizing the behavior of the SUT we reduce the amount of system
inputs necessary to perform exhaustive testing, which is in the general case infinite as
Bernot, Gaudel and Marre describe in [12]. In fact, if we look at an SUT as being a black
box with a number of available operations, the number of test cases necessary to fully
test that system will include all possible sequences of calls to the SUT’s operations.
Moreover, if the operations the SUT makes available include parameters, all the possible
values of those parameters will have to be explored. The generalization hypotheses are
then provided either about sequences of calls to operations of the SUT, or about the
values that are the parameters of those operations. Ideally, our approach will reduce
a test set of infinite size to one of finite size that can be applied the system SUT in
practicable time.

Clearly, the approach is biased by the quality of the hypotheses the test engineer
will provide about the functioning of the SUT: while hypotheses which are too weak
will lead test sets which are too large to be practical, hypotheses which are not correct
generalizations of the SUT’s behavior will lead to test sets which are not representative
of the SUT’s full behavior.

3.1 The model and the SUT (System Under Test)

Since in model-based testing the idea is to compare the SUT to its model, let us now
discuss the model. Firstly, it is necessary that there exists a one-to-one morphism
between the signatures of the operations of the SUT and the ones of the model –
otherwise is makes no sense to try to compare them. By being non-ambiguous, the
model allows exploring a state space which is in principle more abstract but equivalent
to the one of the SUT. The test cases that are inferred from the hypotheses about the
SUT behavior can be ”ran” through the model in order to provide them with semantics
(i.e., are the test cases valid or invalid behaviors according to the model).

Another purpose of the SUT’s model is to provide a means for automatically deter-
mining classes of input parameters to SUT’s operations that will produce an equivalent
behavior in those operations (see chapter 4 of the well known book [13] from Glenford
J. Meyers for an introduction to the subject). Given that our modeling language CO-
OPN includes syntactic constructs to define the behavior of operations over the SUT,
we perform an analysis of these constructs in order to find those equivalence classes.

3.2 Oracle and Test Driver

Other important issues related to testing are the test driver and the oracle as Péraire,
Barbey and Buchs describe in [14, 15]. The purpose of the test driver is to provide a
means of applying the generated tests to the SUT. The test driver will also be in charge
of recovering the observable results of executing the test cases. These results will be
passed to the oracle which will decide of the success of the test, i.e., of the conformance
of the results observed in the SUT to the ones predicted by the model. We will not
go into these topics in this paper, although some experiments we have realized which
have produced interesting results are reported in [16].

3.3 Formalization of the Approach

We can then summarize the objective of model-based testing as follows: being P a
program belonging to the class of all possibles SUTs, SP a CO-OPN specification,
� a satisfaction relation between SUTs and CO-OPN specifications and �o an oracle
satisfaction relation between SUTs and test sets:

P � SP ⇔ P �o TSP (7)

We would like to find TSP which is a set of tests having the same semantics as SP .
Ideally, comparing the SUT to the model would be equivalent to comparing the SUT
to the test set TSP . The latter comparison is done by the oracle which examines the
result of running the test cases through the test driver. However, our approach includes
hypotheses about the SUT, which means we extend equation 7 to the following (where
TSP,H stands for a test set having the same semantics as SP but reduced by hypotheses
H3 which generalize behaviors of P):

(P satisfies H) ⇒ (P � SP ⇔ P �o TSP,H) (8)

We can only say the equivalence on right hand side of equation 8 holds if SUT P
satisfies hypotheses H. Since it is not trivial to prove that an SUT satisfies hypotheses
about its behavior, the quality of the obtained test set will necessarily depend on the
quality of the hypotheses – which reflect the knowledge the test engineer has about the
functioning of the SUT.

In the following sections of this paper we will focus on how tests are actually
generated from a CO-OPN specification which results from the transformation of the
initial UML model of the SUT. Figure 1 puts in evidence this test generation process,
which consists on enriching the CO-OPN model with test intentions (or hypotheses
about the SUT’s behavior) and deriving the resulting tests using a set of tools we have
developed for that purpose.

4 Testing CO-OPN Specifications: Brief Discussion on
Methodology

As previously described, the CO-OPN specification language is an Object-Oriented
formalism. When designing an approach to test CO-OPN specifications we want to
take into consideration the fact that we want to test specifications as a whole, but
also its parts. A first important remark to be done about our test methodology is that
since it follows the model-based philosophy, we will always perform back-box testing.
However, we can perform black-box testing focusing on a part of the specification. In
figure 10 we exemplify testing at different levels of detail of the same specification.
Three cases can be differentiated:

– Testing a context : A context is a particular feature of the CO-OPN language given
it only acts as a coordinator for the objects it holds. Since a CO-OPN context does
not have its own state, only one instance of context exists in a specification and

3 In fact, since the oracle cannot always decide P satisfies a test case, it may become
necessary to include in H additional hypotheses that extend the oracle’s capability
of observation.

Fig. 10. Testing a CO-OPN specification at different level of detail

there are no variables of type context. Typically contexts are used as the outermost
layer of a specification, defining methods and gates which correspond to inputs and
outputs of the system. In terms of test artifacts, the outermost context corresponds
to the interface of the SUT;

– Testing a class: In figure 10 it is possible to differentiate two scenarios while testing
a class:

• A class in the model corresponds to a class in the SUT : In this case we are in
the scenario of unit testing a class. We can consider the class to be an SUT on
its own and generate tests for it. We can envisage using a commercially well
known unit test driver such as JUnit [17] for Java in order to practically apply
the tests. However, if a class has references to objects (as they usually do),
these references need to be initialized so the class can be tested correctly. If the
references are initialized when the object is built, there is no problem. However,
if the references are passed by reference to the class constructor, it may become
necessary that the test is also able to pre-generate those references;

• A class in the model corresponds to a subsystem in the SUT : It may happen
that there is not a direct mapping between a CO-OPN class and an imple-
mentation class. A CO-OPN class may correspond to a subsystem of several
classes in the implementation. In this case the implementation subsystem has
to be encapsulated by the interface defined in the specification. The test driver
will then have to perform the connections between the calls to the interface
and their mapping on the subsystem.

5 The Test Selection Language TestSel

The test intentions appearing in figure 1 are expressed in our test selection language
TestSel. Barbey, Péraire and Buchs present in [15, 14] specifically devised templates
of hypotheses (can be considered as building bricks for more complex hypotheses) and
a methodology for applying them. They claim in their work the methodology they
present leads to a good quality of hypotheses, thus to test sets that uncover errors in
a wide range of possible SUTs. TestSel extends their work by introducing language
constructs to compose templates of hypotheses. With these constructs we are able to

build refined hypotheses about the SUT’s behavior. In order to present TestSel we will
start by the language we have chosen to represent our test cases which is called HML
(Hennessy-Milner Logic).

5.1 Test Representation Media - The HML Formalism

HML is a simple temporal logic built to express properties of processes. Its capability
to express process properties as graphs of events over time makes it an interesting
language for expressing test cases. In particular, HMLSP stands for the language of
HML formulas over a given CO-OPN specification SP . By this we mean that HMLSP

corresponds to HML formulas over CO-OPN events, where a CO-OPN event corre-
sponds to a pair 〈Input, Output〉, Input and Output being synchronizations over the
CO-OPN specification’s methods and gates respectively. In the following definition of
the abstract syntax of HMLSP , T represents the always true constant (verified by
any process in any state) and EventSP is the set containing all the Input/Output
synchronization pairs over SP .

Definition 1. Syntax of HMLSP

– T ∈ HMLSP

– f ∈ HMLSP ⇒ (¬f) ∈ HMLSP

– f, g ∈ HMLSP ⇒ (f ∧ g) ∈ HMLSP

– f ∈ HMLSP ⇒ (〈e〉f) ∈ HMLSP where e ∈ EventSP

We express CO-OPN’s semantics using transition systems, so before providing the
semantics of HMLSP let us start by defining the notion of transition system: the tran-
sition system denoted by a CO-OPN specification SP is a quadruple 〈Q, Event(SP),→
, i〉 ∈ Γ (Γ being the class of all transition systems) where Q is the set of all states in
SP , →⊆ Q×EventSP ×Q and i is a non empty initial state. We also define equivalence
in the CO-OPN world as the bisimulation equivalence ⇔ (see Biberstein’s Phd thesis
[4] on CO-OPN’s semantics) between the transition systems denoting the semantics
of CO-OPN models. Taking again equation 7, we can better define the satisfaction
relation � between an SUT P and a CO-OPN specification SP using the bisimulation
relation. Being G(P) and G(SP) transition systems representing the semantics of P
and of SP we can write:

P � SP ⇔ G(P) ⇔ G(SP)4 (9)

The semantics of HMLSP is defined in terms of the satisfaction relation �HMLSP

between the transition system denoted by specification SP and HMLSP formulas.
Formally, given a transition system G = 〈Q, Event(SP),→, i〉 denoting SP and a
state q ∈ Q, the satisfaction relation �HMLSP⊆ Γ ×Q×HMLSP is defined as:

Definition 2. Semantics of HMLSP

– G, q �HMLSP T
(specification SP always satisfies formula T at state q)

4 We will not discuss how to obtain a transition system from a CO-OPN specification
SP, given that the purpose of this paper is not to explain the semantics of a CO-OPN
specification – we rather aim at expressing the relation between the test language
and the specification language.

– G, q �HMLSP (¬f) ⇔ G, q 2HMLSP f
(¬f is satisfied by specification SP at state q if SP in that same state q does not
satisfy f)

– G, q �HMLSP (f ∧ g) ⇔ G, q �HMLSP f and G, q �HMLSP g
(f ∧ g is satisfied by specification SP at state q if f is satisfied by SP at state q
and g is satisfied by SP at state q)

– G, q �HMLSP (e〈f〉) ⇔ ∃e ∈ EventSP such that q
e−→ q′ ∈→ and G, q �HMLSP f

(e〈f〉 is satisfied by SP at state q if there is an event e ∈ EventSP leading from
state q to q′ and f is satisfied by SP at from state q′).

If we consider G to be the transition system representing the semantics of a CO-
OPN specification SP and q ∈ Q the initial state of model SP , the test set obtained
from a set of HMLSP formulas is such that:

Definition 3. Test Set for a given set of formulae F ⊆ HMLSP :

TestSP,G(F) = {〈f, Result〉 ∈ F × {true, false} |
(G, q �HMLSP f and Result = true) or

(G, q 2HMLSP f and Result = false)} (10)

In this way we classify HMLSP formulas as valid or invalid behaviors of the model
of the SUT described by SP .

5.2 Full Agreement between HML and CO-OPN Semantics

We are now in measure to define the satisfaction relation �o used in equation 8 more
precisely. Being G(P) the transition system representing the semantics of SUT P (which
we want to observe through the execution of test cases), G(SP) the transition system
representing the semantics of the CO-OPN specification SP and F ⊆ HMLSP , the �o

relation is given by:

Definition 4. Oracle satisfaction �o

P �o TestSP,G(SP)(F) ⇔ TestSP,G(P)(F) = TestSP,G(SP)(F) (11)

Equation 4 illustrates the fact of applying a test set to an SUT. It states that a
CO-OPN specification SP and an SUT P should satisfy any set of HMLSP formulas
is the same manner. In other words, SP and P should have the same behavior.

We will not go deeply into this subject, but it is possible to use HML as a testing
language because there exists a full agreement between CO-OPN equivalence and HML
equivalence. CO-OPN equivalence is given by the bisimulation relation and Hennessy
has shown in [18] that two transition systems can be distinguished by HML if and only
if they are not bisimulation equivalent.

According to equation 7 we are checking if SUT P has the same semantics as spec-
ification SP . We do this by first calculating a test set TSP with the same semantics
as SP (definition 3) and then checking if P also satisfies TSP through black-box ob-
servation of its behavior when the tests are ran. This said, the full agreement between
CO-OPN equivalence and HML equivalence is fundamental for our approach. It is this
result that allows us to say that comparing an SUT P to a CO-OPN specification SP
through the usage a test set TSP is equivalent to comparing directly the transition
systems denoted by P and SP using bisimulation. In other words, this means that we
don’t lose discriminating power between � and �o.

5.3 Advantages and Disadvantages of HML as a Test Formalism

Another interesting aspect of using HML as a test representation media is the fact
that we can make use of not (¬) and and (∧) operators. The not operator allows
us to state that an SUT does not produce a given behavior, while the and operator
allows us to discriminate branching non-determinism. While the semantics of these
operators is straightforward as previously explained in this paper, it may be not trivial
to apply them in practice while testing a real SUT. Let us exemplify by imagining the
application of a negative HML formula (a negative test case) to an SUT. In this case,
the oracle would have to decide about the satisfaction of the negative formula which is
not a trivial task. In fact if the SUT blocks during the execution of a negative test case,
the oracle may not always be able to distinguish between the blockage required by the
specification and a blockage provoked by a fault present in the SUT. By a blockage in
a CO-OPN specification we understand the fact that an operation is not available from
a given state. In that sense the we need the oracle to able to distinguish between that
kind of blockages and the blockages that are due to errors in the code of the SUT.

On the other hand, if we would like to apply to an SUT a test case represented by
a conjunctive HML formula (including and operators) other problems would arise: the
semantics of the and operator are so that for a transition system to verify a formula
(f ∧ g) both f and g have to be satisfied starting from the same state. Practically,
to apply a formula (f ∧ g) to an SUT a test driver would have to be able to either
first test f and then g, or the reverse. In order to be able to do this, a ”backtracking”
capability of the SUT would be necessary in order to go back to the state where the
formula splits. Although we do not provide solutions for an oracle and a test driver
capable of testing negative or conjunctive formulas, we point these two problems as
issues to take into consideration while using HML as a test case formalism.

5.4 Example – A Set of Selection Hypotheses for the Mobile Phone
Example

Before presenting formally the structure of TestSel we will provide an example of a
set of test selection hypotheses for the mobile phone example provided in section 2.1.
The example in figure 11 is given in the concrete syntax of TestSel that we have
implemented in our IDE for the CO-OPN language. This IDE is called CoopnBuilder
and includes editors for context, class and ADT modules of CO-OPN specifications.
TestSel is implemented as an extra module for CO-OPN specifications. Instances of
these types of modules are called constraint modules – is the sense that they constrain
the whole set of possible executions of the SUT.

Figure 11 depicts a single constraint module called NatelCons. CoopnBuilder allows
multiple constraints modules per CO-OPN specification. Informally, the structure of a
constraint module includes the following sections:

– Interface: defines the name of the constraints that are defined by a module. Each
constraint name corresponds to a set of HML formulas and the union of all these
sets is the final test set defined by the module. In the future we would like to
compose constraints coming from several modules;

– Body : declares the properties necessary to the construction of the constraints de-
clared in the interface. It includes five sections:

Fig. 11. Test selection hypotheses for the Natel example

• Contraints: declares the constraints defined locally to help in the construction
of the exported constraints. They are not exported from the module;

• Use: declares specification modules (namely class and ADT modules) that are
used to build the constraints;

• Axioms: declares axioms and rules that establish elementary behaviors of the
SUT. The conjunction of these behaviors in the constraint module corresponds
to the reduction hypotheses as it was stated in section 3;

• Variables: establishes the type of the variables used in the definitions of the
Axioms section;

• External: declares functions used in HML formulas (test cases) during testing
time (as opposed to test generation time). The purpose of these functions is
to calculate values over non-deterministic outputs of the SUT. For further
explanations on this subject we direct the interested reader to [19].

The Axioms section is clearly the most relevant one. In this paper we will not
provide a textual description of the semantics of the language of constraint module’s
axioms since it can be found in [19]. However, some comments about the axioms that
can be found in figure 11 follow. Please keep in mind that an axiom is of the form
condition => assignment where the assignement (of a set of HML formulas to the
set represented by the constraint name) only happens if the condition holds.

– axiom 1

subUniformity(p) => HML(<turnOn with null>,<insertPin(p) with g> T) in pinTest;

This axiom generates test cases that start by turning on the phone and then insert
a pin value. The subuniformity operator selects for variable p values according
to the behavior of the operation insertPin, which either validates or invalidates
the introduced pin number. This axioms will then produce two tests: turn on the
phone and insert a correct pin; turn on the phone and insert an incorrect pin.
The language makes available two more operators exhaust and uniformity that are
similar to subuniformity but that select all values or only one value in the domain
from the variable in parameter, respectively.

– axioms 2 and 3

[] in nWrongPins;
f in nWrongPins => f . HML(<insertPin(newPin(1 1 1 1)) with g> T) in nWrongPins;

This couple of axioms is used to produce the same set of tests. Axiom 3 is recursive
since it builds an HML formula that inserts a wrong pin and then concatenates
it (”.” is the concatenation symbol for HML formulas) with formulas of the same
type. Axiom 2 represents the base HML formula T, which is the stop condition
for the recursion in axiom 3 (given that axiom 3 is defined in terms of itself). The
tests produced by these axioms are sequences of any size of wrong pins insertions
(assuming (newPin 1 2 3 4) is the correct pin).

– axiom 4

f in nWrongPins & nbEvents(f) < 4 => HML(<turnOn with null>) . f .
HML(<insertPin(newPin(1 2 3 4)) with g> T) in insertPins;

This axiom uses a nbEvents operator that limits the number of events in HML
formula f. In this case the idea is to use the previously defined constraint name
nWrongPins to build sequences of at most four wrong pins. These sequences are
then concatenated at the beginning with an operation to turn on the phone and at
the end with a correct pin insertion (notice however that the output of the event is
variable). The idea in this case is to test if the system only blocks at the introduc-
tion of more than three wrong pins and behaves correctly in the remaining cases.
Examples of other operators over HML formulas are: depth – number of events
of the deepest branch of an HML formula; nbOccurences – number of occurrences
of a method name in an HML formula; positive – HML formulas without not (¬)
operators; sequence – HML formulas without and (∧) operators.

5.5 The Structure of TestSel

As its name indicates, TestSel is a test selection language rather than a test reduction
language. Despite the fact that we have defined in 3 the process of finding tests as the
progressive reduction of exhaustive test set, this process cannot be reproduced in the
real world for a simple reason: it is not possible to generate the exhaustive (infinite)
test set in finite time and then reduce it. In order to overcome this operational diffi-
culty while still employing the presented theoretical framework, we have thus decided
to implement practically the test finding process as one of selection – using logic pro-
gramming principles. The basic approach is explained by Barbey in [15], where he starts
by defining the language HMLSP,X – our HMLSP language extended with variables.
The test selection is then practically achieved by instantiation of the variables present
in HMLSP,X formulas. Given a CO-OPN specification SP , the set XHML of variables
over HML formulas and the set XEvent of variables over SP ’s events, the syntax of
HMLSP,X is defined as follows:

Definition 5. Syntax of HMLSP,X

– T ∈ HMLSP

– x ∈ XHML ⇒ x ∈ HMLSP,X

– f ∈ HMLSP,X ⇒ (¬f) ∈ HMLSP,X

– f, g ∈ HMLSP,X ⇒ (f ∧ g) ∈ HMLSP,X

– f ∈ HMLSP ⇒ (〈e〉f) ∈ HMLSP where e ∈ EventSP,X)

The set EventSP,X) includes CO-OPN pairs 〈Input, Output〉, Input and Output being
synchronizations including variables. Two CO-OPN events can be synchronized simul-
taneously, in sequence or in parallel. A CO-OPN event is a method or a gate name,
followed by a set of parameters. EventSP,X includes variables on methods or gates
names of the specifications (which we will call XMG) as well as variables over event
parameters – these can be sets of values described in ADT modules (which we will call
XS) of the specification or references to objects of classes defined in the specification
(which we will call XC).

We can then consider the exhaustive test set to be represented by 〈f, r〉 where
f ∈ HMLSP,X . In fact, given that f has free variables it cannot be applied directly
to the SUT. Hypotheses about the behavior of the SUT will serve the purpose of
instantiating those free variables – leading to ground HML formulas that can be used
as a test cases for an SUT. The process of test selection can then be seen as the process
of transforming an HMLSP,X formula into an HMLSP one, by means of hypotheses
about SUT that can be translated in constraints on the formula’s variables.

The Abstract Syntax of TestSel Before providing an example of using TestSel
we will present its abstract syntax. The purpose of this section is to layout the basis
for being able to precisely define the semantics of TestSel. While reading this section,
please keep in mind section 5.4 of this paper where the syntax and the semantics of
TestSel was informally introduced. TestSel has three syntactic layers, namely:

– CO-OPN event : includes the possible Input/Output synchronizations pairs of a
CO-OPN specification. The set of these pairs for a specification SP is given in
definition 5 by the set Event(SP, XS);

– HML: set of HMLSP,X formulas over a CO-OPN specification SP ;
– Constraints: constraints over variables of HMLSP,X formulas. Our language allows

constraints over variables that represent: execution paths – sequences of events with
HML operators ∧ and ¬); values that are parameters of operations – CO-OPN class
instances or CO-OPN sorts (sets of values) defined in ADT modules.

The abstract syntax of the first two layers in the above list has already been pro-
vided in definition 5. In what concerns the third layer we will provide the abstract
syntax of a constraint module over a specification SP . The language will be defined in
a top-down fashion:

Definition 6. Constraint module
A constraint module over a CO-OPN specification SP is a quintuplet

〈SP, K, ax, X, FSP 〉 ∈ ΨSP , where:

– SP is a CO-OPN specification;
– K is the set of constraint names defined by the constraints module;

– X is a set of typed variables XHML ∪XMG ∪XC ∪XS;
– FSP is a set of function signatures defined in ADT modules of specification SP ;
– ax ⊆ AXK,X,SP is a set of axioms defined over HMLSP,X formulas, predefined

operators, constraint names in K and variables in X;

Intuitively speaking, a constraint module for a specification SP will define a set of
constraint names – each name representing a different generalization of a behavior of
the SUT. The constraints are defined by axioms that belong to the AXK,X,SP language.
Still, before proceeding with the definition of this language we will present the syntax
of terms over HMLSP,X formulas as this will be necessary for subsequent definitions:

Definition 7. The terms THMLSP,X over HMLSP,X

– t ∈ HMLSP,X ⇒ t ∈ THMLSP,X

– t1, t2 ∈ HMLSP,X ⇒ t1 . t2 ∈ THMLSP,X

the intuition behind this definition is to 7 provide us with the necessary syntax for
the concatenation of HMLSP,X formulas. We thus define the language of constraint
axioms over a CO-OPN specification SP as follows:

Definition 8. Given K, X and SP as defined previously, a constraint axiom is a
triplet belonging to the relation AXK,X,SP such that:

AXK,X,SP = CondK,X,SP × THMLSP,X ×K

where:

– CondK,X,SP is a conjunction of atomic conditions;
– THMLSP,X is term built from HMLSP,X formulas;
– K is a constraint name.

This syntax for constraint axioms allows us to see constraints as sets of HML
formulas – an instantiated HMLSP,X formula Formula is produced by a constraint
ConsName only if we can find a substitution to the variables of formula that satisfies
the condition Condition. We are now missing the definition of CondK,X,SP :

Definition 9. Conditions CondK,X,SP of a behavioral axiom
Given K, X and SP as defined previously, the set CondK,X,SP is a conjunction of

atomic conditions such that:

∀n ∈ N, aci ∈ ACK,X,SP , i ∈ {0..n}, ac1 ∧ ac2 ∧ . . . acn ∈ CondK,X,SP

Finally we will define the set ACK,X,SP of atomic conditions. An atomic condition
is a constraint over variables of X.

Definition 10. Atomic conditions ACK,X,SP

∀k ∈ K, t ∈ THMLSP,X , tn, tn′ ∈ TNAT , tb, tb′ ∈ TBOOL, x ∈ XS,

t in k, uniform(x), exhaust(x), tn cmpOpN tn′, tb cmpOpB tb′ ∈ ACK,X,SP

where cmpOpN ∈ {=, <>, <, >, <=, >=} and cmpOpB ∈ {=, <>}.

TNAT represents the set of terms over arithmetic expressions. Given t ∈ THMLSP,X ,
TNAT is defined as:

n, depth(t), nbEvents(t), nbOccurrences(m, t), tn opN tn′ ∈ TNAT

where n ∈ N, m is a method name defined in SP , tn, tn′ ∈ TNAT and opN ∈ {+,−, ∗, /}.

TBOOL represents the set of terms over boolean expressions. Given t ∈ THMLSP,X ,
TBOOL is defined as:

{true, false}, onlyConstructor(t), onlyMutator(t), onlyObserver(t), sequence(t),
positive(t), trace(t) ∈ TBOOL

Semantics of TestSel After having described the abstract syntax of TestSel, we
are now in measure of providing its semantics:

Definition 11. Semantics of TestSel

Given a CO-OPN specification SP , the semantics of a constraint module
CONS = 〈SP, K, ax, X, FSP 〉 ∈ ΨSP is the set of all HMLSPCONS formulas such that:

HMLCONS
SP =

[
axiom∈ax

{f ∈ HMLSP | f ` axiom}

The informal meaning of definition 11 is the following: for each axiom of the con-
straints module all the HMLSP formulas (without variables) that satisfy it are col-
lected in a set. The set of test cases produced by a constraint module is the union of all
sets of test cases produced by each individual axiom. We will not further develop the `
relation in this paper. In order to verify if f ` axiom we have to find a substitution of
the variables of axiom so that we can find f . In particular, the substitution of variables
that are quantified with the subuniformity operator is complex given that it becomes
necessary to analyze the behavior of the operations in the CO-OPN specification.

In order to finish this section of the paper we will state the validity of the test sets
obtained by the constraint modules of our TestSel language:

Theorem 1. Given a CO-OPN specification SP and a constraint module CONS, the
test set TestSP,G(SP)(HMLCONS

SP) obtained from CONS is a valid test set, meaning
it does not reject correct programs:

Proof.

TestSP,G(SP)(HMLCONS
SP) ⊆ TestSP,G(SP)(HMLSP)

is trivial by construction. ut

In theorem 1 we show that test sets that are selected by TestSel for a CO-OPN
specification SP are part of the exhaustive test set. Thus the selection process does not
introduce invalid test cases in the final test set. Validity of the tests is necessary but not
sufficient for measuring the quality of a test set. In fact, we would have to prove that the
union of all the behaviors described by all the constraint modules about a specification
corresponds to a correct generalization of the behavior of the specification. This can
be reduced to the problem of measuring the coverage of the obtained test set.

5.6 Tools for Test Production

As we have already mentioned in this paper, an IDE for the CO-OPN language called
CoopnBuilder already exists. We have used this infrastructure in order to implement
our language TestSel, as can be seen from the example in 5.4. From this front end
we are able to produce Prolog code that generates the test sets. The reason why we
have used Prolog for this task has to do with the fact that the resolution mechanism
of this language allows relatively straightforward mapping between its semantics and
the semantics of TestSel. In fact, Prolog is a theorem prover that tries to verify if
a logical clause can be induced from the available rules. If the logical clause to be
proved includes variables, Prolog will find all the substitutions for those variables that
make the clause true. This is similar to the semantics of TestSel – we want to find
substitutions for the axioms of a constraint module that make the constraints over the
variables of those axioms true. In this process we find fully instantiated HML formulas
which are sequences of inputs for the SUT.

On the other hand, only (syntactically) finding is sequences of inputs is not enough.
We also need to provide them with semantics in order to turn them into test cases,
as shown in definition 3. To do that we have two options at our disposal: a prototyp-
ing tool that turns CO-OPN specifications into Java programs [20]; a translator that
converts CO-OPN specifications into Prolog programs [21]. Both options are currently
implemented and allow verifying if an HML formula is a valid behavior of a CO-OPN
specification. We are inclined to pursue the latter option given that the integration
with the Prolog code produced from the constraint modules becomes more natural.
Other reasons for this choice have to do with the fact that Prolog is a language where
the concepts of code and data are mixed. This allows a natural reflection which is
extremely useful for analyzing and decomposing the behavior of the operations defined
in the specification.

Fig. 12. Tests generated for the Natel example

In figure 12 we present some of the tests which are (semi) automatically generated
by our tool. In fact, the four lines in the figure represent four solutions to the constraint
name insertPins declared in the constraint module of figure 11 for the Natel example.
Our tool is not yet able to verify if the tests generated are valid or invalid behaviors of
the specification, so we have chosen them by hand. In fact, given that in the axiom for
the insertPins constraint (and previously, in the axiom for the nWrongPins constraint)
the variable g is a gate that remains to be instantiated, many other solutions are
possible. However, they will all represent invalid behaviors of the specification.

6 Related Work

A large number of papers on model-based test case generation exists in the literature.
However, not many deal with models expressed in semi-formal languages such as UML.

At the university of Franche-Comté an approach to test case generation similar
to ours is being developed. Legeard and Peureux explain in [22] their method which
consists in: translating a UML specification into a program in an adapted logic pro-
gramming language similar to Prolog; explore symbolically the state space of the model
searching for values for parameters of operations that are interesting to test.

Pretschner et al explain in [23] their approach which starts from a model described
in AUTOFOCUSTM , a tool based on UML-RT (for Real-Time systems). The frame-
work also makes use of a logic programming language to explore symbolically the state
space.

7 Conclusion

In this paper we have presented our work on automatic test case generation for UML
(Fondue) models. We have decided to tackle the problem in two phases, the first one
being the translation of UML into a the formal specification language CO-OPN. CO-
OPN has clearly defined semantics which allow us to explore the model soundly in
order to produce test cases. The translation process that we formally define is based
on the decomposition of the Fondue sub-models (environment, concept, protocol and
operations) and their individual mapping into CO-OPN modules (ADT, classes and
contexts). We also take into consideration the fact that the Fondue modules overlap
or complement each other at certain points and include these implicit semantics in the
translation. The process is introduced also by means of an example of a specification
of a mobile phone.

The second phase of the problem concerns the automatics test generation. Here
also we present a formal process, insisting on the definition of a language that will
enable this process. We define the language at several layers of complexity, which allow
to take our theory of testing into consideration while adapting it to the test selection
needs of an engineer. We also provide a semi formal semantics for this language and
illustrate it generating a test set for the mobile phone specification.

Tools are currently being implemented for the processed we describe. We are already
able to partially automate the processes we describe.

References

1. Alfred Strohmeier. Fondue: An Object-Oriented Development Method based on
the UML Notation. In X Jornada Técnica de Ada-Spain, Documentación, ETSI de

Telecommunicación, Universidad Politécnica de Madrid, Madrid, Spain, November
2001.

2. Didier Buchs and Nicolas Guelfi. A formal specification framework for object-
oriented distributed systems. IEEE Transactions on Software Engineering,
26(7):635–652, july 2000.

3. Olivier Biberstein, Didier Buchs, and Nicolas Guelfi. CO-OPN/2: A concurrent
object-oriented formalism. In Proc. Second IFIP Conf. on Formal Methods for
Open Object-Based Distributed Systems (FMOODS), Canterbury, UK, July 21-23
1997, pages 57–72. Chapman and Hall, Lo, 1997.

4. Olivier Biberstein. CO-OPN/2: An Object-Oriented Formalism for the Specifica-
tion of Concurrent Systems. PhD thesis, University of Geneva, 1997.

5. Object Management Group. Mda guide version 1.0.1. Technical report, OMG,
2003.

6. Octavian Patrascoiu. YATL:Yet Another Transformation Language. In Proceed-
ings of the 1st European MDA Workshop, MDA-IA, pages 83–90. University of
Twente, the Nederlands, January 2004.

7. Triskell team. MTL Documentation. URL:
http://modelware.inria.fr/rubrique4.html.

8. Zhaoxia Hu and Sol M. Shatz. Mapping uml diagrams to a petri net notation
for system simulation. In Frank Maurer and Günther Ruhe, editors, SEKE, pages
213–219, 2004.

9. Triskell team. Mod-Transf - xml and ruled based transformation language. URL:
http://modelware.inria.fr/rubrique15.html.

10. Object Management Group. Meta-Object Facility. URL:
http://www.omg.org/technology/documents/formal/mof.htm.

11. Luis Pedro, Levi Lucio, and Didier Buchs. Prototyping Domain Specific Languages
with COOPN. In Rapid Integration of Software Engineering techniques, 2005.

12. M.-C. Gaudel G. Bernot and B. Marre. Software testing based on formal specifi-
cations: a theory and a tool. IEEE Software Engineering Journal, 6(6):387–405,
1991.

13. Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., New
York, NY, USA, 1979.

14. Cécile Péraire, Stéphane Barbey, and Didier Buchs. Test selection for object-
oriented software based on formal specifications. In PROCOMET ’98: Proceedings
of the IFIP TC2/WG2.2,2.3 International Conference on Programming Concepts
and Methods, pages 385–403, London, UK, UK, 1998. Chapman & Hall, Ltd.

15. Stéphane Barbey, Didier Buchs, and Cécile Péraire. A theory of specification-based
testing for object-oriented software. In EDCC, pages 303–320, 1996.

16. Levi Lucio, Luis Pedro, and Didier Buchs. A Methodology and a Framework for
Model-Based Testing. In N. Guelfi, editor, Rapid Integration of Software Engineer-
ing techniques, volume LNCS 3475, page 5770. LNCS, 2005.

17. Erich Gamma and Kent Beck. Junit.org. URL: http://www.junit.org/.
18. Matthew Hennessy and Colin Stirling. The power of the future perfect in program

logics. Inf. Control, 67(1-3):23–52, 1986.
19. Levi Lucio, Luis Pedro, and Didier Buchs. 16th ieee international workshop on

rapid system prototyping (rsp 2005), 8-10 june 2005, montreal, canada. In IEEE
International Workshop on Rapid System Prototyping, pages 195–201, 2005.

20. Ali Al-Shabibi, Didier Buchs, Mathieu Buffo, Stanislav Chachkov, Ang Chen, and
David Hurzeler. Prototyping object oriented specifications. In Proceedings of the
24th International Conference on Applications and Theory of Petri Nets (ICATPN

2003), Eindhoven, The Netherlands — Lecture Notes in Computer Science / Wil
M. P. van der Aalst and Eike Best (Eds.), volume 2679, pages 473–482. Springer-
Verlag, June 2003.

21. M. Buffo and D. Buchs. Symbolic simulation of coordinated algebraic petri nets
using logic programming. University of Geneva – Internal Note.

22. Bruno Legeard and Fabien Peureux. Generation of functional test sequences from
b formal specifications-presentation and industrial case study. In ASE, pages 377–
381, 2001.

23. Jan Philipps, Alexander Pretschner, Oscar Slotosch, Ernst Aiglstorfer, Stefan
Kriebel, and Kai Scholl. Model-based test case generation for smart cards. Electr.
Notes Theor. Comput. Sci., 80, 2003.

