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Résumé

Cette these traite de la problématique de la génération de jeux de tests a partir
d’une spécification logicielle. En particulier nous nous intéresserons au langage de
spécification CO-OPN(Concurrent Object-Oriented Petri Nets) [1l 2], basé sur les
reseaux algébriques étendus grace a des méchanismes objets et de distribution.

Pour traiter ce probleme nous avons du revoir le langage CO-OPN. En effet
la sémantique du langage ayant été définie par itérations successives, celle-ci s’est
avérée inadaptée a la génération de jeux de tests. Nous proposons a travers notre
travail une nouvelle version de CO-OPN ou la syntaxe et la sémantique ont été
completement revues et qui integrent les travaux précédents ou des descriptions
précises et formelles ont été employés.

La contribution principale de cette these est le concept d’intention de test, que
nous avons concrétisé dans le langage SATEL (Semi-Automatic Testing Language).
Les intentions de test s'inspirent des travaux de Bernot, Gaudel et Marre [3] (BGM)
ainsi que de ceux de Péraire et Barbey [4, B]. Nous proposons l'utilisation de la
notion de réduction des jeuzr de tests exhaustifs, restreinte a certaines parties du
comportement du systeme a tester. Il s’agit de rendre la théorie BGM utilisable
dans le contexte des systemes logiciels complexes ot une approche exhaustive n’est
adaptée ni a lintervention humaine pour la réduction, ni a ’application de techniques
opérationelles.

La description du langage SATEL, tant sur le plan syntaxique que sémantique,
a été réalisée a 'aide de techniques formelles. Cela pour permettre une intégration
complete avec la description du langage CO-OPN d’une part; et une description
formelle suffisamment détaillée pour permettre une implémentation rapide en pro-
grammation logique de l'autre.

Xlil
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CO-OPN

Au niveau du langage CO-OPN nos efforts se sont concentrés sur la construction
d’une sémantique pour les concepts de context module et de gate, introduits récément
et pour lesquels il n'y a pas de sémantique bien définie. Ces concepts permettent
I’écriture de spécifications hiérarchiques ot la modélisation des sorties d’un systeme
est facilitée, enrichissant les possibilités de 'activité de génération de jeux de tests.

Notre nouvelle sémantique pour le langage CO-OPN est définie de fagon in-
ductive, ce qui reflete la structuration hiérarchique des context modules. Nous pro-
posons également une méthode pour la composition de composants CO-OPN (objets
ou context modules) inspirée des travaux de Huerzeler [6]. Un des résultats de cette
recherche a été une compréhension profonde de la sémantique du langage CO-OPN,
ce qui nous a mené a proposer une nouvelle définition de classe d’équivalence pour
la réduction des jeux de tests exhaustifs produit a partir des intentions de test.

SATEL

SATEL est une solution concrete au concept d’intention de test. Le langage est
adapté au domaine du test et permet d’exprimer des contraintes sur les variables
qui représentent les différentes dimensions dun cas de test, c’est-a-dire : les chemins,
les entrées, les sorties et les parametres de ces entrées et sorties. La construction de
SATEL se base sur un raffinement du langage de contraintes proposé par Péraire et
Buffo. En particulier nous proposons de nouveaux méchanismes permettant la con-
struction modulaire d’intentions de test et leur composition permettant d’envisager
le test unitaire, d’intégration ou systéme en utilisant le méme formalisme.

En ce qui concerne la décomposition en sous-domaines développé par Péraire et
Buffo, nous ’avons révisée et proposons un nouveau critere pour le calcul de classes
d’équivalence qui prend en considération la structure hiérarchique d’une spécification
CO-OPN. Les classes d’équivalence se calculent comme suit : un évenement e d’un
context module est dans la méme classe d’équivalence qu’un événement €’ si et seule-
ment si les axiomes qui définissent le comportement des composants impliqués dans
le tir de e, sont exactement les mémes que ceux impliqués dans le tir de ¢/. En
d’autres mots, un cas de test ¢ incluant e ne trouve pas plus d’erreurs qu’'un cas de
test ¢’ qui differe de t seulement en remplacant e par €.

Grace aux réseaux de Petri et de leur modélisation implicite de la concurrence,
SATEL permet également la génération de jeux de test pour des systemes concur-
rentiels. Nous tirons parti de cet avantage pour permettre au testeur d’exprimer des
entrées simultanées dans les intentions de test et en en calculant les oracles associés.



XV

Nous avons développé un éditeur pour le langage SATEL qui est intégré avec
loutil CoopnBuilder [7]. Cet outil précede nos travaux et permet I’édition, la sim-
ulation et la génération de prototypes pour des spécifications CO-OPN.

Sémantique de SATEL

Notre recherche nous a amené a proposer une sémantique complete pour le langage
d’intentions de test SATEL. En nous inspirant de la sémantique de CO-OPN nous
avons employé une approche algébrique en ce qui concerne les types de données
introduits par SATEL. La décomposition en sous-domaines et la validation des cas
de test extraits d'une intention de test — le calcul des oracles — sont exécutés a
travers l'utilisation de la sémantique de systémes de transitions de CO-OPN. En
particulier notre solution se base sur l'annotation du systéeme de transitions qui
représente la sémantique d’une spécification CO-OPN.
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Chapter 1

Overview

Let us start by defining the computer science domain our work is concerned with. In
recent years we have observed an increasing interest of the computer science commu-
nity in the development of modeling languages and associated methodologies that
enable the efficient and cost-effective development of quality software. This interest
stems from the conjunction of several aspects: on the one hand the electronics engi-
neering has long reached a level of maturity that allows the duplication of computing
power (processing, storage) every 18 months, as predicted by Moore [§] in 1965; on
the other hand programming languages and compilers seem also to have reached
maturity. The later comes somewhat as a disappointment as it has been long be-
lieved that the solution to the software crisis — which has been well described by
Brooks in [9] — relies on a programming language which would encompass a number
of constructs that would implicitly lead to massive productivity increase in software
building. In the paper ”No Silver Bullet” [I0] published in 1987 Brooks claims that
tackling accidental complexity, which comes from technical difficulties induced by
the tools used in software construction, was mainly achieved by the advent of struc-
tured programming instigated by Dijkstra in [I1]. Brooks distinguishes accidental
complexity from essential complexity and claims that the latter is induced by the
real-world domain tackled by the software system being developed — in that sense
improvements in programming language technology cannot on their own massively
improve the productivity in software engineering. This view is disputed by other
authors such as Meyer who have proposed several extensions to the Object-Oriented
paradigm (in particular to Eiffel [12]) in order to address the quality of software in
general.

It is now generally accepted that the Object-Oriented programming paradigm
failed to meet the original ”Silver Bullet” expectations. It has nonetheless sparked
an enthusiasm in the software engineering community in the development of tools
and methodologies to address the modeling — using an Object-Oriented approach
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— of automatable real-world domains. The purpose of this activity is to address
the essential complexity as described by Brooks, rather than the accidental complez-
ity. The Unified Modeling Language (UML) [13] and associated Rational Unified
Process (RUP) [14] methodology seem to have been a clear step in this sense, as
it promoted among practitioners the habitude of seeing the design of software as a
series of refinement steps: In the first step the model is expressed in a semi-formal
language which suitably expresses concepts of the real-world domain; in the last step
the model has been transformed in a computer program. This trend seems to be
currently further refined by the concepts of Model Driven Architecture (MDA) [15]
and Domain Specific Languages (DSL) [16].

Modeling is however not a new discipline in software engineering and the UML
itself is composed of many different modeling languages which have been developed
separately by different researchers. Typically these modeling languages have a for-
mal mathematical basis, allowing the definition of classes of models that share a
common amount of properties. These common properties can be both seen as useful
and constraining. They are useful in the sense that the properties normally imply
that some syntactic or even semantic (based on the structure) checks are decidable
and can thus be implemented in tools. Also, depending on how operational the
semantics of the modeling language is, interpreters or compilers for the produced
models may be automatically (or semi-automatically) generated. The constraining
aspect of using formal modeling languages comes from the fact that the degree of
freedom (or expressivity) for representing real-world domains is necessarily limited
by both the syntax and semantics of the used formal modeling language.

The formal methods community has also proposed several solutions to the
problem of effectively modeling real-world domains. Tools and associated method-
ologies such as the Vienna Development Method (VDM) [17] or the B-Method [I§]
have been successful especially in the areas of critical systems where quality needs
to be guaranteed. Both methods are based on formal languages having formal se-
mantics. The methodology consists of consecutively refining the specifications in
a controlled fashion, i.e. by filling in missing parts while making sure the refined
specification keeps a number of properties defined in the original specification.

The formal methods community has often been criticized by the software engi-
neering community given that the precision of the involved languages and methods
often involve mastering mathematical notations and precise formal logics. Despite
the efforts of certain authors such as Dijkstra (e.g. in [19]) or Harel (e.g. in [20]),
formal methods go on being regarded by practitioners as "too complicated” to per-
form software modeling tasks except for domains such as health, aeronautics and
in general domains for which critical systems are necessary. This criticism is not
completely unfounded as in fact formal methods are often too rigid to be directly
applied to problems of the real world, or require vast experience from the modeler



to be applied in an efficient manner.

In spite of the caveats presented by formal methods, they present sound
methodologies that induce quality software. Moreover, formal models lend them-
selves to formal verification activities, such as automatic proofs of correctness or
Model Checking. Verification can be seen as an orthogonal activity to Modeling
and consists in checking that a model is consistent and/or that the implementation
produced from a given model does in fact implement what the model defines. Dif-
ferences between the model and the implementation may be induced by the model
refinement steps where human intervention is necessary, or by the interfacing of
the implemented software with its environment, e.g. operating systems, external
libraries, networks.

The software engineering community has also proposed approaches to the ver-
ification problem, which is maybe even more important when semi-formal modeling
languages are used. Semi-formal modeling languages are less precise than formal
languages both in syntactic and semantic terms, giving rise to a higher probability
of appearance of discrepancies between the model and the implementation. In the
extreme case no explicit model is produced and the implementation is directly coded
— the model is then a purely intellectual artifact existing in the mind of the engi-
neer charged with the coding of the application. In these cases formal verification
is in general not possible and the standard solution is testing. Testing is by nature
a non-exhaustive activity and the most we can expect is to be able to find errors.
As Myers writes in his seminal work ” The Art of Software Testing” [21]:

"Testing is the process of executing a program with the intent of finding errors.”

With testing we aim at ” providing evidence that the behavior of an implementation
does or does not conform to its intended behavior” [22]. After having tested an
implementation we are probably more confident that it performs as expected, but
never sure that it is error free. Testing thus contrasts with the concept of verification
as in general seen by the formal methods community, where the goal is to prove that
the model or the implementation satisty a given property. With testing we cannot
in the general case prove that the implementation is correct regarding a given model
— we can only increase our confidence in that fact by performing a limited number
of experiments which will most likely find discrepancies between the model and the
implementation: the so-called errors.

The present thesis is thus concerned with the problem of functional testing of
reactive systems in a formal methods context. Let us precise these notions:

e functional testing sees the implementation as a black box, i.e we can only
observe how it reacts to a given stimulus and we do not know what internal
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mechanism produced a particular reaction. Also, only functional aspects of
the implementation are considered and we discard non-functional concerns
(e.g. performance, robustness, security) — unless non-functional concerns are
somehow expressed in the model in a functional fashion;

e reactive systems are state-based systems which operate in an infinite loop,
accepting inputs from an environment and producing responses to that same
environment;

e The usage of formal methods refers to the fact that we use as reference to
generate test cases a model expressed in a formal language. This contrasts
with typical approaches in software engineering where test cases are produced
by an engineer who is versed in the functionality of the implementation —
with or without the help of an explicit model which is typically expressed in
some semi-formal language.

Our scientific domain of interest is thus functional testing using as reference
a formal model — also called model-based testing. In particular we are interested
in understanding how the use of formal methods can help us to: 1) automatically
produce quality test cases; 2) relate the notion of selecting a finite number of test
cases (or, in the previously used vocabulary, ”experiments”) to the notion of proving
the correctness of an implementation regarding a model.

1.1 Motivation and Objectives

As mentioned in the previous section, we are interested both in automatically build-
ing test cases and in investigating the relation between proving and testing. Let us
start by the former.

We will begin by analyzing what can be automated in the production of test
cases given a formal model of the SUT. Firstly it is clear that we have access to the
sz’gnatureE] of the model, i.e. the names of the inputs the model accepts from the
environment and the names of the outputs the model produces to the environment.
The signature can be used as the basic vocabulary for a grammar that can produce
test cases. Unfortunately the test cases produced in this fashion are of little use
if the vocabulary of inputs and outputs is very vast, given that it will be difficult
to find test cases which are meaningful — in particular which represent expected
behaviors. In fact, despite the fact it can easily produce test cases, this technique
does not allow us to automatically decide if, when experimented on the SUT, those

'In this work we assume there is a bijective function mapping specification inputs into SUT
inputs and specification outputs into SUT outputs.
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test cases uncover errors. This corresponds to what is called in the testing literature
the oracle problem [23].

Also, in typical reactive systems the relation between inputs and outputs de-
pends on the current state of the SUT. For all these reasons it becomes necessary
to take into consideration in the model how the internal state of the SUT evolves in
order to generate oracles for the produced test cases.

These issues have been previously investigated in the PhD. theses of Péraire [4]
and Barbey [5]. The work described in both theses (which are complementary), ap-
plies the BGM (Bernot, Gaudel, Marre) [3] testing theory and tools to the context of
the CO-OPN (Concurrent Object-Oriented Petri Nets) [1, 2] formalism. The BGM
theory discusses a model-based framework for producing test cases. The theory can
be seen as an instance of the work of Bernot [24] where the modeling language are
algebraic specifications. Test sets produced using the BGM framework keep two
essential properties: Unbiasedness, meaning a test set does not detect falsely errors
in a correct SUT; Validity, meaning a test set uncovers all errors in an SUT. Test
cases are produced by reducing an initial fictitious exhaustive test set by stating
testing hypothesis about the implementation of the SUT. These testing hypothesis
are generalizations about the correct implementation of certain functional features.
However, the unbiasedness and validity properties are only kept if the SUT satisfies
those testing hypothesis.

Let us precise that in the BGM theory a test case is statically produced with
an implicit oracle — as opposed to dynamic testing where the oracles are calculated
during the application of a test case to the SUT. Given that our work is based on
the BGM theory, from here on in this thesis we will use the term test case to mean
test case and its respective oracle, unless explicitly mentioned otherwise.

The novelty of the work of Péraire and Barbey resides in the fact that, while
the original BGM theory was designed around algebraic specifications [25], CO-
OPN relies on algebraic nets [26] as its base formalism. CO-OPN also includes
Object-Oriented features encompassing dynamic object instantiation. The algebraic
specifications formalism is suited to the description of stateless SUTs where the
outputs are calculated as a deterministic function of the input. CO-OPN, on the
other hand, models the state explicitly through the usage of Petri Nets [27, 28] 29]
— as a way of specifying the behavior of CO-OPN objects — and is better adapted
to the description of reactive systems. This difference implies a different fashion of
producing test cases.

In the context of algebraic specifications, Marre has developed in his PhD.
thesis [30] an operational method for automatically reducing the number of test cases
in the exhaustive test set. The method can be seen as the automatic extraction of
testing hypothesis from the model. It consists of applying an unfolding strategy to the
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axioms that describe the behavior of the operations in the algebraic specification.
This strategy allows to operationally pick a small amount of test cases, notably
by translating the specification axioms into Prolog programs and using controlled
resolution to select interesting values for the variables present in the axioms. In what
concerns CO-OPN specifications, Péraire and Barbey describe how to calculate test
cases reusing Marre’s technique. This is achieved by: considering state evolution by
analyzing the semantic rules that define message passing between CO-OPN objects;
applying an unfolding strategy to the algebraic conditions present in the axioms that
allow transition firing in CO-OPN.

Marre has also proposed in his work on test generation from algebraic specifica-
tions a language to express testing hypotheses. This is achieved by using predicates
to constrain the domains of the variables present in an algebraic specification axiom
— thus implicitly stating that test cases generated for the axiom using values within
the restricted domains are enough to test all the SUT behaviors coded in the axiom.
Also, the previously mentioned unfolding strategy can be seen as a particular kind
of hypothesis, which makes use of the structure of the algebraic specification axioms
to automatically find values for the axiom’s variables. Clearly, the quality of the
produced test cases using this language is dependent on the capability of the test
engineer to connect the constraining of the domains of the axiom variables to the
testing of the real functional features in the SUT. In other words, the quality of
the test cases depends on the capability of test engineer to express true hypothesis
about the SUT using the test language. One of the main advantages of the work of
Marre is that operational strategies for generating test cases using the test language
and the specification can be efficiently implemented, as described in [31].

As for algebraic specifications, Péraire and Barbey have also introduced a test
language for the specification of testing hypothesis in the context of CO-OPN spec-
ifications. This language was deeply influenced by the work of Marre, although the
state-based property of CO-OPN models implied adopting a different approach. In
particular, the behavior of the objects that form a CO-OPN specification is deter-
mined by axioms which essentially define the pre- and a post-conditions of a public
guarded Petri-Net transition. By public we mean that the transition can only occur
if synchronized with an event produced by the environment, which is a similar notion
to what can be found in OO languages such as C++ or Java. From an observational
point of view a test case for a CO-OPN specification can then be seen as a sequence
of these synchronized transitions, which are called method calls. Method calls can
be parameterized with algebraic values. The testing language in this new context
is also based on constraining variables, but this time the variables represent more
than only algebraic values as in algebraic specifications. They represent algebraic
values which are parameters of method calls, method calls themselves or sequences
of method calls, which allow testing state evolution. Péraire and Barbey defined in
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their work a new set of predicates to constrain these new domains, as well as a set
of operational strategies that allow their implementation.

As a first objective of this thesis we are interested in building a new version
of the test language for CO-OPN specifications. We aim at introducing in the
language additional mechanisms that allow seeing the test production activity not
as a reduction from an initial exhaustive test set, but rather as a construction by
sequentially adding the test of different functionalities while trying to cover all the
specified functionality — much as a test engineer would proceed while testing a
real world SUT. This implies major changes given that the first version of the test
language is deeply influenced by the fictive notion of exhaustive test set, which the
testing hypothesis reduce to a finite and usable test set. We aim nonetheless at
understanding under which conditions the properties of unbiasedness and wvalidity
are kept under such an approach.

As a second objective of this thesis we are interested in improving the unfold-
ing technique applied to CO-OPN specifications. In the previous work no formaliza-
tion of this aspect of the test case generation was produced, although an operational
prototype of the method was implemented as described in [4]. This objective is also
motivated by the fact that the CO-OPN language has evolved in the meantime —
in particular the appearance of a new mechanism for modeling distribution allows
the description of better structured models. We are thus interested in changing the
original informally defined unfolding technique applied to CO-OPN to a formally
defined method, having an emphasis on the state and structural characteristics of
the new version of the CO-OPN language.

1.2 The CO-OPN specification language

CO-OPN (Concurrent Object-Oriented Petri Nets) [1I, 2] is a specification language
based on algebraic nets [26] but extending it Object-Oriented with and distribution
features. Given that CO-OPN is the chosen specification language for our studies
on model-based testing, we will provide in this section a brief introduction to the
language by means of an example. In particular we will present the most recent
version of the language whose semantics have been extensively modified by our
work.

1.2.1 The Drink Vending Machine Example

Let us specify a simple Drink Vending Machine (DVM) controller using the CO-OPN
specification language. The DVM will distribute several kinds of drinks, each one
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Figure 1.1: Drink Vending Machine — graphical syntax

having a certain price. As payment the DVM accepts unitary coins. The operation of
the DVM can be resumed as follows: the user inserts a number of coins and selects
a drink. If the number of inserted coins is enough then the drink is distributed.
Otherwise the DVM issues a message to the user warning that the payment is not
sufficient. It can also happen that there are no more drinks of the selected kind left,
in which case the DVM will also issue an appropriate warning.

The CO-OPN language has both a graphical and textual syntax. Figure [1.1
presents an incomplete version of the DVM specification using the graphical syntax.
The figure depicts the structure of the system, which includes: an object moneyBox
responsible for controlling coin acquisition and checking if the inserted money is
enough for a given drink; two beerShelf and waterShelf objects which are responsible
for holding the number of available beer and water drinks and the unitary price.
More Shelf objects containing other kinds of drinks could be envisaged. In the
figure we purposefully left out the detail of the Petri Nets encapsulated by the
objects.



1.2. THE CO-OPN SPECIFICATION LANGUAGE 9

The outer box is called a context in CO-OPN and is responsible for the coor-
dination of the three objects we mentioned in the above paragraph. Coordination is
achieved by synchronizing ports — the black and white rectangles in the borders of
the boxes, called methods and gates respectively — requiring a service with ports
providing a service. At the level of the CO-OPN objects methods and gates are
implicitly synchronized with Petri Nets transitions. A method call or a gate call is
then a predicate corresponding to the firing of one or several Petri Net transitions.
From a more operational point of view method calls can be seen as inputs and gate
calls as outputs.

Let us illustrate the coordination capabilities of a context by exposing how
the ‘buyDrink  operation is computed in the model. Assume a user has inserted
a sufficient amount of coins to buy a water. The ‘buyDrink water’ method call is
activated on the contert and it synchronizes simultaneously (as specified by the '/ /’
synchronization operator) with the ‘consume water’ and the ‘givedrink water’ (in the
waterShelf object) method calls. The detail of the synchronization can be observed
in figure [1.4] representing the textual syntax of the DVM context. In particular in
line 7 the axiom describes that synchronization where the required and the provided
services are separated by the with keyword. Notice also that: the usage of the d
variable allows parameter passing; the shelf variable allows synchronizing simulta-
neously with all objects which are instances of the DrinkShelf class, without having
to explicitly state additional synchronizations.

Also simultaneously the ‘checkPrice water p’ gate call synchronizes with the
‘checkPrice water p’ (in the waterShelf object) method call — this allows calculating
the price of the water drink which is contained in p and which is known by the
waterShelf object — see also the axiom in line 6 of figure [1.4] Still simultaneously
the number of coins in the moneyBox will be decreased by the price of the water
drink and the number of units of water in the waterShelf object will be decreased.
This is specified in textual syntax respectively by the axioms in lines 4-5 of figure (1.2
and in lines 6-8 of figure [1.3 Briefly, the syntax of a class axiom is separated into
a condition, the event associated to the operation, a pre-condition marking in the
object’s Petri-Net and a post-condition marking.

Finally, simultaneously with all of the previous, a synchronization between the
‘distributeDrink water’ gate call in the waterShelf object and the ‘distributeDrink
water’ gate call in the context is produced— see line 8 of figure [I.4]— thus providing
the order to the physical machine to distribute the real drink.

Notice that we have described all the actions that lead to the distribution of
the water drink as being simultaneous. This is due on the one hand to the fact
that we only use the simultaneity synchronization operator ‘//° — others exist,
notably the sequence and the alternative synchronization operators. On the other
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hand, due to CO-OPN semantics, all enabled transitions in the structured Petri Net
representing the DVM fire simultaneously by default. We can then see the ‘buyDrink
water’ method call as a predicate, which is allowed at the current state of the DVM
(enough tokens were inserted to buy water) and happens with the ‘distribute Drink
water’ gate call.

Place
coinHolder - : natural;
Axioms
(am > = p) = true =>
consume d With checkPrice d p :: coinHolder am —> coinHolder am — p;
‘Where
am : natural;
p : natural;
d : drink;
Figure 1.2: The MoneyBox Class
Places
availableUnits _ : natural;
name _ : drink;
price _ : natural;
Axioms
(units > 0) = true =>
giveDrink d :: availableUnits units, name d —>
availableUnits units — 1, name d;
returnPrice d p :: name d, price p —> name d, price p;
‘Where
units : natural;
p : natural;
d : drink;

Figure 1.3: The DrinkShelf Class

In figures [1.2] [I.3] and [I.4] we have presented incomplete versions of the DVM

specification in CO-OPN'’s textual syntax. The full version can be found in ap-

pendix [A]

1.2.2 Formal aspects of CO-OPN

We will now provide a brief overview of the fashion in which the CO-OPN language
was defined. Given the recent changes in the language (defined by Buffo in [2]) it
became necessary to fully revise its formal definition in order to produce a seman-
tics for our test intention language. Buffo has defined the semantics of the latest
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Objects
beerShelf : drinkshelf;
waterShelf : drinkshelf;
mBox : moneybox;

Axioms
mBox . checkPrice (d, p) With shelf . returnPrice (d, p);
buyDrink d With mBox . consume d // shelf . giveDrink d;
shelf . distributeDrink d With distributeDrink d;

‘Where
shelf : drinkshelf;
d : drink;
p : natural;

Figure 1.4: The DVM Context

version of CO-OPN (CO-OPN/y.) in a transformational manner, by converting a
CO-OPN 5. specification into a CO-OPN; specification — whose semantics was
defined by Biberstein in [I]. We provide with our work a direct semantics, which, in
the course of our research, allowed devising a clear fashion of extracting test cases.
This new method of test case generation is distinct from the one provided by Péraire
and Barbey in [4, 5] and more adapted to CO-OPN 5. specifications. We have thus
introduced with our work the CO-OPN /5., version. The formal definition of CO-
OPN /9.4 follows the typical definition of formal languages — we start by providing
an abstract syntax which we then exploit to build the language’s semantics.

The fashion in which the abstract syntax is defined is inspired by the syntax of
algebraic specifications. In these kind of specifications we start by stating a signature,
including a set of sort names and operation names with their respective arities. An
algebraic specification corresponds to a signature, a set of wvariables and a set of
axioms which are equalities between terms of the same sort — formed using the
signature and the variables.

CO-OPN /gc4 includes three kinds of modules — ADT, Class and Context
modules, which have been informally introduced in section (1.2l The definition of
the abstract syntax of all the modules follows the strategy of definition of algebraic
specifications. We start by defining a signature — called interface in the case of class
and context modules — and then proceed to the definition of the modules themselves.
The definitions of ADT signatures and Class interfaces are intimately connected and
we define a global signature including both. The global signature allows building in
the subsequent development a unified semantics for the simultaneous management
of data values and object identifiers.

At the level of the abstract syntar of the modules themselves we introduce
the concept of behavioral formulas for class modules and coordination formulas for
context modules. These formulas correspond to the notion of azioms in algebraic
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specifications but are fundamentally different in what they describe — behavioral
formulas correspond to the conditions under which a given transition in a Petri Net
can fire and coordination formulas correspond to the fashion in which the several
modules that compose a CO-OPN /5., communicate. Finally, the abstract syntazx
of a CO-OPN /g,y specification is defined as a set of ADT, Class and Context
modules which use the same set of signatures and interfaces. A CO-OPN jp.y
specification satisfies two properties of acyclicity in the dependency graphs of the
modules composing the specification. These properties are necessary in order to
allow the existence of a semantics for the specification. A more complex semantics
allowing cyclic dependency graphs in the specification was defined by Buffo in [32].

CO-OPN 5.+ has a Labeled Transition System (LTS) semantics which we
calculate in an inductive fashion, following the dependency graph established by
the context modules in the specification. The inductive base case corresponds to
calculating the semantics of a context module which is either empty or only coor-
dinates objects. The inductive step corresponds to calculating the semantics of a
context module, assuming that the semantics of the context modules it coordinates
is known.

In order to calculate the inductive step a series of operations is necessary.
Firstly we produce the LTS semantics of the set of classes which objects are coor-
dinated by the context module. This is done using a set of inference rules defined
much in the style of the Structural Operational Semantics framework described by
Plotkin in [33]. These inference rules directly take into consideration dynamicity,
i.e. object creation and destruction. We then compose the LTS semantics of classes
with the LTS semantics of the coordinated contexrt modules — which is assumed
known — by a series of LTS composition functions. In particular, the calculation
of the LTS resulting from the coordination of all the components inside a context
module is achieved using a technique introduced by Huerzeler in [6]. The last step
of the inductive step corresponds to filtering the LTS resulting from the previous
steps using the context module’s interface.

1.3 The SATEL Test Intention language

SATEL (Semi-Automatic Testing Language) is a language we have developed in the
context of this thesis in order to express test intentions for CO-OPN /9., speci-
fications. Test intentions correspond roughly to what has been described in the
literature as test purposes [34]. Generally speaking, a test intention allows choosing
a behavior of the SUT and producing for it a ‘reasonable’ or ‘practicable’” amount of
test cases — using the CO-OPN 5,y model as reference. The choice of the particu-
lar part of the SUT the test engineer wishes to test is done by expressing constraints
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Figure 1.5: a) Fictitious SUT (left); b) fictitious SUT covered by test intentions
(right)

about syntactic domains representing several dimensions of the SUT’s behavior —
as inspired by the work of Bernot, Gaudel and Marre [3]. These syntactic dimensions
are extracted from the model’s signature and consist of:

e the shape of the execution paths;
e the kind of input/output pairs inside a path;

e the parameters of the inputs and outputs.

For the purpose of illustration of the concept of test intention, figure )
displays a transition system representing the semantics of a fictitious SUT. The
labels in the arcs of the transition system correspond to events of the SUT, composed
of an input and an output part and split by the with keyword. Inputs having a
shape m(p) represent an operation m having a parameter of type p — as opposed
to inputs having a shape m where no parameters exist.

In figure ) we depict a possible coverage of that transition system by test
intentions expressed in SATEL. The coverage which would be formally defined in
SATEL is informally expressed in the figure by: ellipses representing a covered path;
ellipse annotation representing the number of times that path should by tried in the
produced test cases; ‘v’ or ‘x’ over an LTS transition if the transition is respectively
chosen or not as part of the produced test cases. Test intention I produces a test case
involving two sequential activations of inputs ‘msy’, ‘ms’ and ‘mg’. Test intention 11
is more complex and produces four test cases. Three of those test cases correspond
a to an activation of input ‘m;’, followed by an activation of input ‘mg3(2)’ and by
a number of of activations of input ‘m;” any number of times inferior to three. The
fourth test case consists of the activation of input ‘m;’ followed by the activation of
input ‘mg(4)’.

Note that the test intention Il chooses only one parameter from the set
{1,2,3} for input mgs. Given that transitions ‘ms(1)with gs’, ‘ms(2) with g3’ and
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‘m3(3) with g3’ lead to the same state, a test case involving any of them would en-
sure the behavior for any transition in this group is tested. SATEL allows expressing
these kind of 1-to-n hypotheses about the correctness of the SUT by using either
"manual” constraints on data types — in test intention II we would restrain the
values of the parameter of transition ‘ms’ to set {2,4} — or by using automatic
mechanisms for choosing one parameter per possible behavior of input ‘ms’. These
automatic mechanisms are based on the analysis of the behavioral axioms present
in a CO-OPN model of the SUT and which describe the conditions necessary for
each input to activate.

SATEL is fully integrated with CO-OPN as a language and in a toolkit, allow-
ing the creation of test intentions as part of the modeling effort. This integration
allows us to: access the signatures of inputs, outputs and data types in order to
syntactically construct test cases; access the semantics of the model of the SUT in
order to build oracles for our test cases.

1.3.1 Test Intentions for the Drink Vending Machine

In figure we introduce a very simple test intention named ‘ ThreeEvents’. ‘ Three-
FEvents’ is defined inside the test intention module ‘ TestBanking’ and uses a ‘path’
variable having as domain the ezecution paths of the DVM context module (see
figure . The nbEvents function allows measuring the number of events (in-
put/output pairs) contained in an execution path — thus the ‘nbEvents(path)<=3’
condition reduces the the domain of ‘path’ to execution paths including less than
three events. The idea behind this test intention — admittedly not very sophis-
ticated — is thus to generate tests that cover at most three interactions with the
SUT.

TestIntentionSet TestBanking Focus DVM,;
Interface
Intentions
ThreeEvents;

Body
Axioms

(nbEvents(path) <= 3) =>  path in ThreeEvents;

Variables
path : primitiveHML;

End TestBanking;

Figure 1.6: Very Simple Test Intention

For the purpose of demonstrating our approach, let us assume our DVM CO-
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OPN model was initialized with 5 shelves including the following drinks: water
bottles costing 1CHF each; soda cans costing 1CHF each; beer cans costing 2CHF
each; milk cartons costing 2CHF each; apple juice cartons costing SCHF. We present
in figure possible test cases produced by the ‘threeFEvents’ test intention in fig-
ure [0

HML( {insertCoin with null} {insertCoin with null} {buyDrink(water) with
distributeDrink (water)} T), True

HML( {buyDrink(beer) with distributeDrink (water)} {insertCoin with null} T), False

HML( {buyDrink(beer) with null} T), False

Figure 1.7: Non -exhaustive test set generated by the ‘ ThreeEvents’ test intention

Notice that the last two test cases are annotated with the false logic value. This
is because that particular sequence of operations is an invalid behavior according
to the specification — the domain of variable path includes any path that can be
generated from the signature of the DVM context, independently from the fact that
it corresponds to a walid or invalid behavior of the SUT. The test set presented
in figure is not complete as many other test cases holding three or less events
would be possible. Notice that we use the HML and T keywords both while defining
test intentions and in the syntax of test cases. This is due to the fact that our test
language is the HML (Hennessy-Milner) temporal logic [35]. Also, the ‘null’ keyword
represents the absence of observation in an event.

Summarizing, a test intention is formally written as a set of partially instan-
tiated HML formulas where the variables present in those formula are by default
universally quantified. All the combined instantiations of the variables will produce
a (possibly infinite) number of test cases.

Each test intention may be given by several rules, each rule having the form:
[ condition => ] inclusion

In the condition part of the rule it is possible to define constraints over the variables
present in the HML formulas that make up the test. The inclusion part is comprised
of the HML formulas with variables and a name for the test intention defined by
that rule.

SATEL allows guiding test generation in a more precise fashion than the ”brute
force” approach in the ‘ ThreeFEvents’ test intention. We define two additional test
intentions in figure [1.8 The ‘RepeatInsertCoin’ test intention produces a set of test
cases that correspond to sequences of any size of ‘insertCoin’ operations. Notice
that in order to state this test intention we use an inductive definition having as
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TestIntentionSet TestBanking Focus DVM;
Interface
Intentions
RepeatInsertCoin ;
SellDrink ;

Body
Axioms
T in RepeatlnsertCoin;

path in RepeatlnsertCoin =>
path . <insertCoin with null> in RepeatlnsertCoin;

subUniformity (drink) | path in RepeatInsertCoin, nbEvents(path) <= 3 =>
path . <buyDrink(drink) with buyOutput> in SellDrink;

Variables:
path : primitiveHML;
buyOutput : observation;
drink : Drink;

End TestBanking;

Figure 1.8: Very Simple Test Intention

base case the empty HML formula (noted "1) and as step the concatenationﬂ of an
“insertCoin’ operation. This test intention cannot be used directly — given that it
produces an infinity of test cases — but is rather used indirectly in the ‘SellDrink’
test intention that builds test cases for testing the ‘buyDrink’ operation of the DVM.
The ‘SellDrink’ test intention is built by starting with a number of ‘insertCoin’
operations inferior to three, followed by a ‘buyDrink’ operation. Notice that the
‘drink’ variable is constrained with the subUniformity predicate, meaning one value
should be chosen for ‘drink’ per behavior of the operation. Also, the ‘buyOutput’
variable allows several instantiations resulting from the several behaviors chosen by
the subUniformity predicate. Possible positive test cases produced by the SellDrink
test intention would include the following:

HML
HML
HML
HML

{buyDrink (water) with notEnoughMoney} T), True

{insertCoin with null} {buyDrink(water) with distributeDrink (water)} T), True
{insertCoin with null} {buyDrink(beer) with notEnoughMoney} T), True
{insertCoin with null} {insertCoin with null} {buyDrink(soda) with
distributeDrink (soda)} T), True

HML({insertCoin with null} {insertCoin with null} {buyDrink(apple_juice) with
notEnoughMoney} T), True

A~ A~

Figure 1.9: Test Cases for the SellDrink test intention

The test case in line 0 corresponds to the concatenation of zero insertCoin
operations — which is the base case of the recursion of the RepeatinsertCoin test

” N

2Concatenation between HML formulas is achieved using the operator.
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intention — with one buyDrink operation. In this case only one positive behavior
can be tested, the one where we try to buy a drink not having inserted sufficient
coins. Test cases in lines 1 and 2 correspond to the insertion of one coin, followed
by either buying a drink we can afford or one we cannot afford. The test cases in
lines 3 and 4 are similar to the ones in lines 1 and 2, but following the insertion of
2 coins. The main point to retain from the test cases in figure is that, for each
number of inserted coins, the test generation mechanism only chooses one drink to
test each possible behavior of the buyDrink operation.

1.3.2 Formal aspects of SATEL

In the context of this thesis we have built the formal syntax and semantics of the
SATEL language. One of our main worries while doing so was to achieve a formal
integration with CO-OPN /5., . This allows us not only a precise logical reasoning
about the properties of SATEL, but also a seamless integration with the existing
implemented CO-OPN tools [36].

At the syntactic level we have built SATEL as a an additional test intention
module in the already existing CO-OPN /5., specifications. The definition of the
abstract syntax of a test intention module follows a slightly different order than the
one we have used for the ADT, Class or Context modules. We start by building
what we call execution patterns which correspond to expressions in a temporal logic
(Hennessy-Milner Logid| [35]) built using the signature of the CO-OPN j,, model
of the SUT. The temporal aspect of the logic allows expressing the evolution of
the state of the SUT. On the other hand the predicates at a given moment of
time correspond to the fact of necessarily providing a given input to the SUT and
observing a given output. Fxecution patterns also include variables over the already
mentioned dimensions of an SUT’s behavior.

We then build the abstract syntax of test intention axioms. A test intention
axiom consists of both an execution pattern and a set of constraints over the variables
present in that execution pattern. In order to introduce the constraint language we
build the syntax of a set of functions and predicates that allow measuring and
constraining the dimensions of an SUT’s behavior.

As for the construction of ADT, Class or Contert modules, we have also fol-
lowed the syntactic style of algebraic specifications — we have defined an interface
holding the basic vocabulary of the module, i.e. the test intention names. Given
that a test intention module is written for a particular context module — called the
focus of the test intention — in the abstract syntax we also include the interface of
that context module. We include equally a number of signatures and interfaces of

3Very simple temporal logic including only the next modal operator.
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ADT, Class, Context and Test Intention modules. These are necessary in order to
access the signatures of the ”imported” modules and that compose a CO-OPN /5. 4
specification. Note that, in particular, the usage of test intention interfaces enables
the composition of test intentions spread over several test intention modules.

Finally, we build a new kind of specification which we call a CO-OPN and
SATEL specification. This object unites the two languages under the same nota-
tion and allows integrating the modeling and the wverification aspects in the same
specification.

In what concerns the semantics of a test intention, we calculate it in a sequence
of steps. Firstly we "expand” the axioms of the chosen test intention which will yield
a set of expanded execution patterns. These expanded execution patterns resolve the
mechanisms of composition and recursion in SATEL. Each ezpanded execution pat-
tern has associated a set of conditions which are the reduction hypothesis present
in the test intention axioms. The exhaustive test set for a test intention is then cal-
culated by instantiating the variables in each expanded execution pattern according
to its conditions and checking the satisfaction of the obtained HML formulas w.r.t.
the specification’s semantics.

We then reduce the ezhaustive test set by finding its equivalence classes and
picking one test case per equivalence class — when this has been specified by the test
engineer in the test intention. The calculation of the equivalence classes is achieved
by collecting all substitutions for the variables in a given expanded execution pattern
and finding which events or sequence of events result from the same structural
conditions in the CO-OPN specification.

In order to form equivalence classes we assume all the transitions in the LTS
semantics of the CO-OPN model are annotated with the conditions of the coordina-
tion or behavioral formulas that allowed the corresponding firing(s) in the model. In
particular this means all transitions departing from the same state and marked with
the same annotation define an equivalence class. We are then able to select values
for variables marked with the subuniformity predicate in the test intention definition
by choosing one value per group of transitions annotated with the same conditions.
Note this kind of subuniformity hypothesis is clearly different from the one proposed
by Marre in [30] and reused by Péraire and Barbey in [4] [5]. While these authors
focus mainly on an unfolding method which is directly connected to the fashion in
which the axioms of algebraic specification are defined, we propose a method which
is based on the structure of the specification. Given that CO-OPN 5., specifica-
tions are hierarchical, the conditions annotating the LTS reflect this structure and
provide a different fashion of defining equivalence classes — which is more adapted
to structurally complex SUTs.
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1.4 Contributions of this thesis

Although the main topic of the present thesis is the extraction of test cases from
CO-OPN specifications, we have contributed at several other levels. Due to the fact
that the CO-OPN language has been developed in several iterations with the goal of
including additional expressiveness, the overall syntax and semantics was dispersed
over several non-uniform pieces of work. We propose an integrated framework where
we have completely rewritten the syntax and semantics of the language from the
formal point of view.

The main contribution of this thesis is the notion of test intention, which we
have concretized in the proposal of the SATEL language. Test Intentions borrow
much from the work of Bernot, Gaudel and Marre, as well as from the work of
Péraire and Buffo. Our proposal aims at using the fictive notion of exhaustive
test set in order to cover only certain behaviors of the SUT, rather than reducing
an initial test set covering the full behavior. In this fashion we adapt the BGM
theory to the testing of SUTs with complex functionality and we aim at providing
an engineer-oriented tool. We were particularly careful in the description of the
SATEL language, adopting a detailed formal style of describing the syntax and
semantics of the language. The purpose of the formal description is dual: on the
one hand we provide a full syntactic and semantic integration of SATEL with the
CO-OPN framework; on the other hand the formal description is sufficiently detailed
to allow the fast implementation of an operational interpreter in logic programming.

1.4.1 CO-OPN

Our main work in the CO-OPN language consisted of providing an integrated se-
mantics for the notions of gate and context. These notions were not present in the
previous work on test case generation from CO-OPN specifications. Given that
context modules induce a hierarchy in CO-OPN specifications, we have built the
semantics in an inductive fashion which reflects the context containment hierarchy.
Also, we propose a method for solving the composition of CO-OPN components
(objects or context modules) which was inspired from the work of Huerzeler. One
of the results of this work was the deep understanding of the semantics of CO-OPN,
which led us to the definition of a new notion of equivalence class for the reduction
of exhaustive test sets.

We have also devoted some effort to the unification of the abstract syntax
of context modules with the remaining modules of CO-OPN. As a result we have
obtained a methodology which allowed us to include without difficulty test intention
modules in the existing CO-OPN framework.
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1.4.2 SATEL

With SATEL we propose a concrete solution to the concept of test intention. SATEL
is an expressive language for the domain of testing, allowing the constrained instan-
tiation of variables representing the several dimensions of a test case — the covered
paths, the inputs, the outputs and the possible parameters of those inputs/outputs.
We have refined the constraint language previously proposed by Péraire and Buffo
and we have proposed new mechanisms for modular construction of test intentions
— by allowing building test intentions based on other test intentions. This compo-
sitional aspect of test intentions clearly goes in the sense of the engineering notions
of unit, integration or system testing. In terms of sub-domain decomposition we
have proposed in SATEL a criterion for equivalence class calculation which reflects
the hierarchical structure of a CO-OPN specification. In particular, an event e of a
CO-OPN context module will be in the same equivalence class as e’ if the CO-OPN
object or context axioms involved in the firing of e are exactly the same as the ones
involved in the firing of e’. Extrapolating this property, a test case ¢ including an
event e will not find more errors than a test case ¢’ which only differs of ¢ by having
e replaced by e’.

SATEL allows the production of tests for concurrent systems due to the im-
plicitly concurrent nature of CO-OPN specifications. We have exploited this fact
in SATEL by allowing the expression of simultaneous inputs and calculating the
oracles for such tests.

Finally, we have developed an editor for SATEL which we have included in
the CoopnBuilder Tool. The editor is fully integrated with the editor of CO-OPN
specifications, as we have formally defined in this thesis. The results of this imple-
mentation are described in [37] and [3§].

1.4.3 Semantics of SATEL

We propose a complete semantics for our test language SATEL. As for the semantics
of CO-OPN, we have used an algebraic approach for the data types of SATEL. In
order to provide a semantics to the validation (oracle calculation) of the test cases
implied by a test intention, we have made use of the transition system semantics of
CO-OPN. In particular we propose an elegant formal solution to the calculation of
the equivalence classes for SATEL variables. Our solution is based in performing
an annotation of the transition system representing the semantics of the CO-OPN
specification.
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1.5

Document structure

This document is organized as follows:

1.6

Chapter [2 provides a first state of the art on Model-Based Testing. We present
several approaches and extrapolate a framework of concepts in order to pre-
cisely define our approach;

Chapter [3]is an brief and concise description of some basic formal tools we use
throughout the thesis;

In Chapter 4| we describe the history of CO-OPN, provide examples and in-
troduce its abstract syntax;

Chapter || is the complete description of CO-OPN’s semantics;

In Chapter@we provide a description of the BGM (Bernot, Gaudel and Marre)
theory on testing and it’s previous implementation in the context of CO-OPN.
Chapter [0] presents a second, deeper state of the art and motivates the work
we present in the subsequent chapters;

Chapter [7] introduces SATEL, a test intention language for CO-OPN specifi-
cations. We introduce SATEL by means of examples, discuss its features and
introduce an abstract syntax for the language;

In Chapter [8 we describe the complete semantics of SATEL;
Chapter [J] provides a case study based on an industrial collaboration;

Chapter [10| presents our final considerations and directions for future work.

Introduced Notions

Formal Language: a language with precisely defined syntax and semantics.

Semi-Formal Language: a language including constructs whose semantics
and /or syntax is implicitly or ambiguously defined.

Functional Testing: the SUT is seen as a function and its structure is not
taken into consideration while producing test cases;

Model-Based Testing: a model is used as reference in order to produce test
cases and oracles;
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e SUT: System Under Test, also called implementation.

e Model: represents partially or completely (and possibly at a higher level of
abstraction) the structure and the behavior of the software system we aim at
testing. Also called specification.

e Error: a discrepancy between the model and the SUT.

e Test Case: a structure that allows describing an experiment that can be
carried out on an SUT in order to try to find errors. Also called experiment.
In the context of our work we assume the test case implicitly includes its
oracle.

e Oracle: a procedure for deciding whether or not an SUT passes a given test
case. If the SUT does not pass a test case then an error is found.

e Test Set: a set of test cases.

1.7 Summary

We start the chapter by providing an overview of the scientific domain of our work.
In particular we discuss the different proposals by the software engineering and
the formal methods communities in terms of wverification. The software engineer-
ing community usually approaches verification by testing, while the formal methods
community typically uses other kinds of techniques such as automatic theorem prov-
ing or model checking. Our work is concerned with both testing and formal methods
— we wish to produce functional test cases using a model described in a formal
language.

The motivation for our work lies in the desire to adapt the BGM theory of
testing to the CO-OPN language and to a test engineering point of view. Previous
work has been done by Péraire and Barbey on adapting BGM to CO-OPN;, although
the approach was more concerned with the formal correctness of the adaptation
than with how ergonomic or practical the solution is for the test engineer or how it
reflects the testing reality. We have thus decided to introduce a new language for
test selection based on the most recent gate and context features of the CO-OPN
language. We are also interested in improving the state of the art on the automatic
aspect of test set reduction — which was previously done operationally in Prolog,
using the unfolding technique initially developed for algebraic specifications. Finally,
we want to understand in which measure a more test engineer oriented approach
has an impact in the completeness of the BGM theory in the context of CO-OPN.
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We then introduce the most recent version of the CO-OPN language which
we have named CO-OPN 5., . CO-OPN 5.y, has the same syntax as CO-OPN /5,
but its semantics were defined in an entirely different fashion by our work. CO-
OPN /9.44’s concrete syntax is introduced by means of a Drink Vending Machine
(DVM) example, followed by a brief description of its formal syntax and semantics.
CO-OPN 51, ’s formal syntax is composed of the definitions of ADT, Class and
Context modules, written in the syntactic style of algebraic specifications. The
dynamic aspects of the language are defined using algebras — for the semantics of
data types and object identifiers — and transition systems — for the semantics of
state evolution.

SATEL is the test intention language we introduce in this thesis. Test inten-
tions adapt BGM test selection — using CO-OPN models — to the test engineer
and to current practices of testing. The main idea behind the language is to per-
form test set reduction upon parts of the behavior of the SUT, rather than on the
whole system simultaneously. We present SATEL by providing an example of test
intentions on the DVM example and then describing SATEL’s abstract syntax and
semantics. The abstract syntax is similar to that of the other modules in the CO-
OPN language. The semantics of SATEL includes an algebraic component for data
types as well as the calculation of oracles and behavioral equivalence classes using
annotated transition systems denoting the semantics of the considered CO-OPN
model.

Finally we mention the main contributions of this document: a new seman-
tics for CO-OPN specifications; the test intention language SATEL with complete
semantics; a formal study on behavioral class equivalence in terms of CO-OPN
specifications.
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Chapter 2

Model-Based Testing State of the
Art

As we have mentioned in chapter [I} the work we present in this thesis is mainly con-
cerned with the functional testing of reactive systems in a formal methods context.
In particular, we introduce the notion of test intention. Test Intentions allow pick-
ing from the set of all possible behaviors of an SUT a particular subset, as well as
reducing it to practicable size. While writing a state of the art for the present thesis
we are interested in analyzing the most relevant formal approaches to model-based
testing, as well as work which is similar to our proposal of test intentions.

The present chapter is organized as follows: we start by identifying the artifacts
underlying model-based testing and how they translate into the formal world. Our
goal with this analysis is to establish a solid framework of concepts and vocabulary
in which our work can be mapped onto. In a second stage we will use the framework
of concepts we devised in the first step to classify some relevant formal approaches to
model-based testing. Finally we will provide a survey on test purposes — which are
similar to the notion of test intention — and establish their usefulness for automatic
test selection and generation.

2.1 Formal Identification of the Actors in Model-
Based Testing

In [39] Pretschner and Phillips present an account on methodological issues in model-
based testing. An interesting contribution of the paper is that it provides a clear
generalization of all the actors involved in model-based testing and a semi-formal
framework in which, as far as our knowledge goes, all functional approaches to test

25
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Figure 2.1: Actors involved in Model-Based Testing

case generation can be mapped onto.

The actors involved in model-based testing and identified by Pretschner and
Phillips in [39] are depicted in figure[2.1] The figure is a simplified version of a schema
introduced by these authors and introduces the following four artifacts: the SUT
corresponds to the software we wish to test, which exists under a certain environ-
ment including hardware, operating system, communication network and auxiliary
libraries; the Model is an abstraction of the SUT, used as the reference to produce
test cases and their respective oracles; the Test Case Specification corresponds to
some fashion of directing the activity of test generation in order to produce practi-
cable test sets in a reasonable amount of time; Test Cases are the product of the
test case generation activity.

Note that the arrow labeled Validation between the Model and the Test Cases
indicates that the Model serves as a reference to generate oracles for test cases
indicated by the Test Case Specification. The arrow is bidirectional given the fact
that extracting test cases can help in validating the Model itself. The bidirectional
arrow labeled Verification has a similar meaning: test cases allow verifying the SUT,
but the verification activity is extended to the test cases themselves in the sense that
a found error may incur from a badly produced test case.

Let us now identify from a formal point of view all the actors explicitly or
implicitly stated in [39]. We do not provide their formal definition, but rather the
fundamental characteristics their formalization should include and how they relate
to each other.

e Specification: called Model in figure 2.1] Is formalized in a language allow-
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ing the expression of functional properties of the implementation. The formal
language to express specifications may implicitly include mechanisms that di-

rectly yield information loss as a means of promoting abstraction from the
SUT;

e SUT: is formalized in a language allowing the expression of functional prop-
erties of the implementation in an observational fashion. Note that while
building a formal framework for model-based testing we differentiate an SUT
from an implementation. While the implementation corresponds to the real
software, the SUT is a formal object representing the observation of the func-
tional behavior of the implementation;

e Implementation Relation: relation between a model given in the formal
specification language and a model given in the formal SUT language. Note
that due to the fact that the formal specification language can be the same,
similar or very different from the formal SUT language, the implementation
relation can range from very simple to very complex. Clearly, a complex
implementation relation will impose more complexity on the test generation
activity;

e Test case: formalized in a language sufficiently expressive to build tests sets
that verify the property:

SUT satisfies Test Set = SUT implements Model

Notice we wish to prove that the implementation relation holds between the
model and the SUT. This is done indirectly by checking if the satisfies relation
holds between test set derived from the model and the SUT. In practice the
satisfies relation holds when the SUT passes all test cases in the considered
test set;

e Test derivation function: takes as inputs the specification, the implemen-
tation relation and (possibly) a test case specification — also named in the
literature test purposes. The test derivation function outputs a test set in the
test case formalism;

e Oracle: decision procedure for the satisfies relation. Often in the testing
literature the term oracle is overloaded given that it encompasses both of the
following: the information contained in test cases allowing deciding of a pass
or fail verdict — normally this information amounts to the output expected
for each input; the decision procedure implementing the satisfaction relation.
In this thesis we will consider both semantics for the oracle concept;
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e Test purposes: criteria for selecting test sets from the generally infinite set of
test cases produced using the derivation function. The notion of test intention
we propose in this thesis is a particular language implementing the concept of
test purpose.

In figure we present the connection between the formal actors we have
described in the above item list and the real world — by real world we mean the
software world where the implementation exists. The fact that we include the SUT
object inside the Formal World may seem confusing, as the SUT formal object
represents the result of performing a number of experiments by applying test cases
to the implementation. In practice the SUT is obtained on-the-fly by the test driver
which has the task of concretizing the formal test set into the language of the
implementation and abstracting the outputs of the implementation into the SUT
formalism — as Pretschner and Phillips explain in [39]. In real software testing
environments the cycle input concretization — test case execution — output abstraction
— oracle satisfaction is performed by the test driver for each test case.

Note that in order to connect the formal and the real worlds depicted in fig-
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ure there need to be some minimal hypothesis about the way in which the
implementation is observed. In particular, the formalism used to represent SUTSs
must be rich enough to capture the functional aspects we wish to observe in the
implementation in order establish a significative implementation relation.

2.2 Classification of formal Model-Based Testing
Theories

Let us use the framework of concepts we have devised in section [2.1]to classify several
different formal frameworks for model-based testing. Note that our classification is
different from the one presented by Utting, Pretschner and Legeard in [40] in the
sense that these authors are concerned with building a taxonomy for model-based
testing tools. Our taxonomy regards formal model-based testing frameworks —
or theories — which explicitly or implicitly underlie academic or commercial test
generation tools.

One of the main characteristics of a model-based testing theory is the fact
that an implementation relation between specifications and SUTSs is clearly defined
and thus algorithms for exhaustive test set construction exist. KEstablishing the
implementation relation between a specification and an SUT by means of a test set
amounts then to proving the correctness of the SUT — regarding, of course, that
particular implementation relation. Given we are interested in black-box testing,
the implementation relation disregards state and is only concerned with provided
inputs and observed outputs of a specification and of an SUT.

When the implementation relation is not trivial, theories on model-based test-
ing include the algorithm implementing the test derivation function. In this case it is
essential to prove the ezhaustive test set obtained by that algorithm has the proper-
ties of soundness and completenesd] regarding the chosen implementation relation.
Soundness refers to the fact the exhaustive test set does not falsely detect errors
in correct SUTs; Completeness corresponds to the fact that if the SUT contains an
error, the exhaustive test set will find it.

Unfortunately, in the general case, the ezhaustive test set is infinite. This is due
to the possibility of specifying infinite behaviors — e.g. a system which indefinitely
processes inputs from the environment — or of having unbounded data types —
e.g. recursively defined types in algebraic specifications. Given that testing is by
definition a pragmatic activity, infinite exhaustive test sets cannot be produced. In
order to avoid this problem and reach a practicable test set both in terms of size and

L Also called in the literature unbiasedness and validity.
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cost, model-based testing theories usually formalize ways of reducing the exhaustive
test set. The reduction — which in practice corresponds to selecting — can be
performed by either using criteria extracted from the structure of the specification
language or ‘reasonable’ assumptions about the implementation of the SUT in order
to find equivalence classes among test cases — i.e. test cases in the same equivalence
class have the same error uncovering power.

Although some model-based testing theories are concerned with the conditions
under which both soundness and completeness can be kept while reducing the ex-
haustive test set, from a practical point of view soundness seems more relevant is the
sense that a test set finding errors in correct SUTSs is not interesting and potentially
harmful. On the other hand, completeness seems to be less important given that a
test set not finding all the errors in an SUT may still discover some errors, which is
the main purpose of the testing activity.

In the following sections we will analyze some model-based testing theories
and classify them according to our taxonomy. We will start by the BGM (Bernot,
Gaudel, Marre) testing theory which was initially devised for models written as
algebraic specifications. We then move on to a theory designed around the ioco (in-
put/output conformance) relation where the models and SUTs are specialized La-
beled Transition Systems. These two theories are particularly interesting given that
they use specifications written in formalisms which are at two opposite extremes:
the BGM theory uses a data type based specification — algebraic specifications; 7oco
conformance testing uses L'T'S as specification language, which is a behavior centered
formalism.

Subsequently we introduce an extension of the BGM theory to processes where
the considered models are specialized LTSs where the edges are labeled by either an
inputs or an output. Finally we will describe a model-based testing theory having as
models CO-OPN specifications — which is the base for the work developed in the
present thesis.

2.2.1 BGM

The BGM model-based testing theory was mainly introduced in the paper ‘ Testing
can be Formal Too’ [41] by Gaudel. According to our taxonomy we can classify the
approach in the following fashion:

e Specifications: Algebraic Specifications;
e SUTs: Pairs of equalities/inequalities between observable implemented sorts;

e Implementation Relation: Notion of Y-Algebra;
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e Test Derivation Function: Generate any pair of terms resulting from in-
stantiating the variables of the axioms in the specification;

Test cases: Pairs of terms;

Oracle Satisfaction: Each test case corresponds to an equality in the SUT;

Test Purposes: Uniformity /Regularity hypothesis on the axioms variables;

Minimal Hypothestis: Implementation is a finitely generated Y-Algebra.

One of the main characteristics of the BGM approach is the fact that alge-
braic specifications model stateless SUTs. The implementation relation corresponds
to the fact that the implemented software behaves as a model for the algebraic
specification — which is a YX-Algebra. A Y-Algebra is a family of sets and their
associated functions (see definition denoting the expected semantics of the
implementation.

The exhaustive test set should verify the correct implementation of the func-
tions described by the axioms in the algebraic specification. Given the implemen-
tations are stateless and deterministic, test cases can be built as equalities between
the terms resulting from instantiating the left and the right side of the equations.
A test experiment would then correspond to the evaluation of both terms of a test
case by the implementation and their comparison using an equality predicate also
present in the implementation. An error is found if the comparison fails.

Test purposes in the BGM theory are employed to reduce the ezhaustive test
set. The reduction consists of narrowing the domain of the variables present in the
axioms of the algebraic specification. This narrowing can be performed by either
uniformity hypothesis — all values in the domain induce the same behavior — or
reqularity hypothesis — all values in the domain induce the same behavior as a
certain subset.

Reduction can be automatically performed using as criteria the structure of the
specification. This is achieved using the unfolding technique [42] which corresponds
to replacing an operation by its definition. Given an operation is usually defined
by more than one axiom, performing uniformity hypothesis on the unfolded results
produces an interesting coverage of the operation. Unfolding can be done more than
once, in principle achieving further refined coverage.

Note that in our classification the SUT corresponds to pairs of equalities or
inequalities between observable implemented sorts. This is in fact the formal object
that results from performing a number of test experiments corresponding to the test
cases produced from the specification.
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The BGM model-based testing theory is introduced in further depth in chap-
ter [0

2.2.2 1oco Conformance Testing

Conformance testing has been studied for some time now, especially in the field of
testing of communication protocols. In [43] Tretmans introduces a model-based test-
ing theory using the ioco implementation relation. We classify Tretmans’ approach
as follows:

e Specifications: LTS (Labeled Transition Systems);

e SUTs: I0TS (Input Output Transition Systems);

e Implementation Relation: ioco (input/output conformance);

e Test Derivation Function: ioco test derivation algorithm;

e Test cases: LTS with leaves including the test verdict {pass,fail};

e Oracle Satisfaction: Synchronous execution of a test case with the SUT
only reaches pass leaves;

o Test Purposes: Incomplete LTS;

e Minimal Hypothesis: Implementation can be modeled by an IOTS.

The formalism used to express specifications are Labeled Transition Systems
(LTS). LTS is a generic formalism that represents the semantics of many languages
for describing communicating processes. In particular, the labels of the edges of the
LTS used as specifications for conformance testing are built using a vocabulary which
is divided into input and output actions. The vocabulary of outputs is extended by a
special action called quiescence (noted ‘6’) which is reflexive and denotes the absence
of outputs from a given state.

The SUTSs are a particular kind of LTS, called IOTS (input/output transition
systems), where all inputs are always enabled — which in practice means the im-
plementation always accepts all inputs, even if most of them do not lead to a state
change. The quiescence action is also present in the label vocabulary of the SUT
and is typically observed in the implementation by timeouts.

The implementation relation in this particular model-based testing theory is
ioco (input/output conformance). The relation is established by observing if the
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outputs of the SUT after a trace of the specification are always contained in the
outputs of the specification after the same trace. An algorithm for test generation
in presented in [43] and a proof of its soundness is given (i.e., a test case will not
detect an error in a conformant SUT). The author is not worried about completeness,
which reflects empiric testing in the sense that the goal is to discover errors, but
not necessarily all of them. Finally, test purposes are given as incomplete LTS with
mandatory actions.

2.2.3 ioco Conformance Testing extended to data types

Gaudel and Lestiennes have introduced in [44] a model-based testing theory which
builds on both the BGM (see section and the ioco conformance (see sec-
tion model-based testing theories. The approach is aimed at testing commu-
nicating processes which manipulate and exchange typed data. According to our
taxonomy the approach is classified in the following fashion:

e Specifications: LTS (Labeled Transition Systems) extended with edges la-
beled by typed values;

e SUTs: I0TS (Input Output Transition Systems) extended with edges labeled
by typed values;

e Implementation Relation: ioco (input/output conformance);
e Test Derivation Function: optimized toco test derivation algorithm;
e Test cases: LTS with leaves including the test verdict {pass,fail};

e Oracle Satisfaction: Synchronous execution of a test case with the SUT
only reaches pass leaves;

e Test Purposes: Uniformity/Regularity hypothesis on the variables of pred-
icates representing paths of the specification;

e Minimal Hypothesis: Implementation can be modeled by an IOTS.

In terms of specification formalism, SUT formalism and implementation rela-
tion there are no fundamental differences regarding the original ioco Conformance
Testing — except that the input and output action vocabulary includes typed val-
ues. Although the formal framework remains unchanged, from a practical point a
view this results in general in much larger LTS specifications and SUTs.
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The test case representation format is the same as the one in the original ioco
conformance testing. The test derivation function has been optimized in the sense
that test cases always leading to a success verdict are not included in the ezhaustive
test set. Gaudel and Lestiennes prove that their optimized ioco test derivation
algorithm produces an ezhaustive test set which is both unbiased (sound) and valid
(complete).

Finally, test purposes are expressed as uniformity and regularity hypothesis on
the variables of predicates representing paths of the specification. As in the original
BGM approach, unfolding using the axiomatic definition of the operations of data
types can be used to automatically refine uniformity hypothesis.

2.2.4 Object Oriented Testing from CO-OPN Specifications

In [45] a model-based testing theory for object oriented testing is presented, having
as specification formalism the CO-OPN ), language. According to our taxonomy, we
classify it as follows:

e Specifications: CO-OPN j;
e SUTs: LTS;

o Implementation Relation: Bisimulation relation between transition sys-
tems;

e Test Derivation Function: Generate all HML formula x {true, false}
pairs using the specification’s signature and semantics;

o Test cases: HML formula x {true, false} pairs;

e Oracle Satisfaction: true HML formulas are satisfied by the SUT; false
HML formulas are not satisfied by the SUT,;

e Test Purposes: Uniformity/Regularity hypothesis on the variables of HML
formulas representing execution paths, events or event parameters of the spec-
ification;

e Minimal Hypothestis: Implementation can be modeled by a LTS.

The approach is similar to ioco conformance testing extended to data types
(see section , in the sense that CO-OPN ), specifications model communicating
objects as synchronized Petri Nets. CO-OPN , specifications have LTS semantics
and the implementation relation corresponds to the bisimulation relation between
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the LTS denoting the semantics of the specification and the LTS resulting from the
observation of the implementation.

The test case representation formalism is the HML temporal logic and the ap-
proach distinguishes between positive and negative test cases as true and false logic
formulas. In fact, there is a full agreement between the bisimulation equivalence and
HML equivalence which allows using HML formulas as test cases. The ezhaustive
test set is the set of all possible HM L formula x {true, false} pairs where HML
formulas are built using the specification’s events and the truth value reflects the
semantics of those formulas having the specification as model. The oracle satisfac-
tion then corresponds to each HML formula having the same semantics when the
SUT is the considered model.

Finally, test purposes are written as uniformity or reqularity hypothesis over
HML formulas with variables. The hypothesis are written using a constraint lan-
guage which limits the values the variables inside the HML formula can be instanti-
ated to. Unfolding can be used in conjunction with the CO-OPN s, specification to
automatically find interesting uniformity hypothesis. In this case the unfolding is
more complex than the one in the approach described in section [2.2.3] An operation
in CO-OPN/, can only occur if the conditions defined by the user, the conditions
enabling the specified synchronizations and all the Petri Net transition firing condi-
tions are satisfied. The unfolding must then be performed taking into consideration
the definitions of all involved predicates.

Further explanations on object oriented testing from CO-OPN specifications
are given in chapter [6]

2.3 The Unifying Role of Test Purposes

In figure the test purposes are placed outside the formal world. Although this
is not strictly true as test purposes are expressed in a formalism (possibly close to
the modeling formalism), we have opted for this representation due to the fact that
test purposes are a means of adapting the test derivation function to the real world.
Test purposes can be seen as heuristics allowing the direction of the test derivation
function (or algorithm) in order to produce a finite practicable test set.

The concept of Test Purposes is introduced in the literature by Ledru et al.
in [34]. The authors provide an theoretical overview of the subject and establish in
a semi-formal fashion the relations between test purposes, test cases and specifica-
tions. Subsequently the authors present in [46] the TOBIAS test selection framework
where they implement test purposes as bounded regular expressions involving the
operations of a VDM specification [17].
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Mostly every model-based testing theory and tool has an explicit or implicit
notion of test purpose, as the possible test set for even simple SUTSs is infinite. In
section [2.2| we have presented several notions of test purposes associated to model-
based testing theories. At the tool level we can cite the example of the work of
Legeard and Peureux described in [47]. For Legeard and Peureux the notion of test
purpose is associated with generating traces (test cases) that reach certain boundary
states of a state machine — reflecting the testing of corner values for the conditions
stated in a B specification. Campbell, Grieskamp et al. introduce the Spec Ezxplorer
tool which is a test generator based on the Abstract State Machine formalism (ASM)
developed by Gurevich et al. [48]. Here too the notion of test purpose is present in
several forms, including state grouping (of the ASM), parameter selection, method
restriction among others.

It is interesting to note that the notion of test purpose as defined by Ledru et
al. in [34] is vast enough to encompass the following semantics:

e Test Purposes may be seen as hypothesis in the BGM sense (see section .
A test purpose may be considered as reduction hypothesis (uniformity/regu-
larity) for the exhaustive test set necessary to establish the correction of an
implementation;

e Test Purposes may be seen as a mechanism for selecting test sets for an imple-
mentation having a given specification. Tools implementing conformance test-
ing using the ioco (input/output conformance relation) [49] such TVEDA [50],
TGV [51] or TorX [52] use test purposes which are incomplete Labeled Tran-
sition Systems (LTS) allowing the selection of particular paths in the LTS of
the specification;

e Most model-based testing theories and tools include an implicit notion of suf-
ficient coverage of an SUT which is related to the the structure of the specifi-
cation formalism. For example, when Algebraic Specifications are considered
(see section an interesting possibility for testing the implementation in
a non-exhaustive fashion corresponds to the application of an unfolding tech-
nique [31] to the specification axioms. The previously mentioned technique of
Legeard and Peureux [53] of testing boundary states is also an example of ex-
ploiting the specification formalism — in this case the B language — in order
to perform informed assumptions that allow reducing the size of the required
test set.

Test purposes also encompass this exploitation of the constructs of the spec-
ification formalism, although this kind of test purposes are not supposed to
be explicitly stated by the test engineer — they correspond to test generation
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assumptions which are normally formally described in model-based testing
theories and implicit in test generation tools;

e Test purposes can be seen from an operational point of view, in the sense that
they can be used as heuristics to minimize the state space explosion of the
algorithm implementing the test derivation function.

2.4 Summary

We have presented a state of the art of model-based testing, with an emphasis on
model-based testing theories. We have started by identifying from a formal point
of view the actors involved in model-based testing, namely: the specification, the
SUT, the implementation relation, the test cases, the test derivation function, the
oracle and the test purposes. We have then described them in a precise fashion, such
that these concepts may used as a taxonomy for the classification of model-based
testing theories. In particular we establish the borders between the real and the
formal testing worlds which allows a clear distinction between model-based testing
tools and theories. Also, we state that in order to test real implementations using a
formal framework some kind of minimal hypothesis are necessary to allow passing
between the formal and the real worlds.

In a second step we have introduced a number of model-based testing theories
and classified them according to our taxonomy. The fundamental characteristic of a
model-based testing theory is the fact that a formal implementation relation exists
and that a — generally fictitious — ezhaustive test set can be built to establish that
relation. We have started by the BGM theory introduced by Bernot, Gaudel and
Marre in which test cases are derived from algebraic specifications. We have then
proceeded to study Tretman’s ioco conformance testing framework for concurrent
processes where the models are Labeled Transition Systems and the implementa-
tion relation is the well-known input-output conformance relation. ioco conformance
testing has subsequently been extended by Lestiennes and Gaudel in order to gener-
ate test cases for concurrent processes exchanging typed data. Finally we classify a
model-based testing theory having as specification language the CO-OPN ), language
— specifications in this case being built as concurrent communicating objects.

We then focus our attention on test purposes, which from our point view en-
compass many roles in merging the theory and practice of model-based testing. The
main subject of the present document is in fact to introduce a comprehensive test
purpose — or, in our vocabulary, test intention — language.



38

CHAPTER 2. MODEL-BASED TESTING STATE OF THE ART



Chapter 3

Formal Grounds

Let us start by introducing some notation that will be extensively used while defining
the formal aspects of this thesis.

Throughout the document we consider a universe including the disjoint sets:
S,F,M, G, V, | These sets correspond respectively to the set of all sort, operation,
method, gate, variable and test intention names. In particular we consider the S
set to be made of two disjoint sets S and S¢ which correspond to sort names in
algebraic specifications and type names in classes.

The 7 S-sorted” notation facilitates the subsequent development. An S-sorted
set A is a family of sets indexed by S €S and noted A = (4,),.q. Given two
S-Sorted sets A and B, an S-sorted function p : A — B is a family of functions

indexed by S and noted p = (us : Ay — Bs) g

Let <C (Sx.S5) be a partial order, i.e. a reflexive, transitive and antisymmetric
binary relation. We often extend < to strings of equal length in S* (Kleene closure
of S) by s1,...,8, < s,...,s, iff s; < st (1 <i<mn).

ren

3.1 Order-Sorted Algebras

Definition 3.1.1 Order-Sorted Signature

An order-sorted signature is a triple ¥ = (S, <, F'), where S C S is a finite set
of sorts, (S, <) is a poset and F' = (Fys),cq sc5 15 a (S*X S)-sorted set of function
names of F. Each f € Fy is called a constant.

Definition 3.1.2 Set of all Terms, Ground Terms
Let ¥ = (S, <, F) be a global signature and X be an S-sorted set of variables.
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The set of all terms over X with sort s € S denoted by (T, x ), is built in the following
fashion:

o v e (Ixx), for all x € X,

o fe(Tex), for all f:— s" € F such that s’ < s,

o f(ti,....ty) € (Tnx), forall f:sy,...,8, — s' € I such that s' < s and
fO’/’ all t; € <TE’X)SZ‘<1 <1 < ’fl)

The ground terms for sorts s € S are terms without variables and are noted (Tx )

Definition 3.1.3 Partial Order-Sorted X-algebra

Let ¥ = (S, <, F) be an order-sorted signature. A partial order-sorted X-
algebra consists of an S-sorted set A = (A),.q and a family of partial functions

A_ (A A - - -
FA=( Slmsnjs)f:SL“SaneF where f{ . . is a function from Ag x ... X A into A,
such that:

o s < €8 implies A, C A

o fEF ssNFy o o with(s1...5,,5) < (s]...5,,5) implies

- Sns
émsn7s(a17 e ,an) = f;?..‘sﬁl,S’(al’ ey a,n)

for all a; € A;, (1 <i<mn).

We usually omit the family F4 and write A for an order-sorted Y-algebra
(A, F4). The set of all order-sorted Y-algebras is denoted by Alg(X).

Definition 3.1.4 Ground Term Algebra

Let ¥ = (S, <, F) be an order-sorted signature and (X) g be an S-Sorted set.
The term algebra Terms (X )consists of the carrier set A = (Txp), where s € S

and of the family of functions F* = ( £~~~3n75)f:51...sn—>sEF where:
o fo s 18 a function from X x ... x X, into (Txy),
° é...sn,s(tl coty) = f(ty.. . t,) such that f € Fy, 5,5 and t; € X,

Definition 3.1.5 Assignment, Interpretation

Let ¥ = (S, <, F) be an order-sorted signature, X be a S-sorted variable set
and A in Alg(X). An assignment for X into A is an S-sorted function o : X —
A. An interpretation of terms of Tx x in A is an S-sorted partial function []7 :
(Ts x), — As where s € S is defined as follows:
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o ifx e X, and s < s then [z]] = o4(x)
o if fi—s€F and s < then [f]5 = f2
o if fis1,...,8, s € F and s < s then

f;‘,i.__s, 78,([[151]];, . [[tn]]zn) if all [t;]7. are defined

undefined otherwise

[[f(tla-~->tn)]]g = {

Whenever the interpretation function is applied with an empty assignment we will
omit the o parameter, i.e. instead of writing [. . ]]g we will write [...],.

Definition 3.1.6 Equation, Positive Conditional Equation

Let ¥ = (S, <, F) be an order-sorted signature and X be an S-sorted variable
set. An equation is a pair (t,t'), denoted t = t' such that t,t' € (Txx),.q- A
positive conditional equation is a set of pairs {(t;,t.),(t,t') | 1 < i < n}, noted
ty=1,...,t, =t, = t=1, where t;,t; (1 <i<mn) are equations.

Definition 3.1.7 FEquation Satisfaction

Let 3 = (S, <, F) be an order-sorted signature, X be a S-sorted variable set
and A be in Alg(X). Equation satisfaction is defined as follows:

o Ao Et=1t < [t]] =[t']] witht € (T x), and t' € (Tx x),;

e Aok ti=t,. =t —= t=t)<= AokEt=tA... NAoE
th=t = AokEt=t) (1<i<n)

3.2 Substitutions

Definition 3.2.1 Substitution

Let (S, <, F) be an order-sorted signature and X be an S-sorted variable set. A
substitution 0 € Subsg(X) is a family of functions 0, : X, — (I x), wheres € S. A
ground substitution 0 € GroundSubss(X) is a family of functions 0, : X, — (T ),
where s € S. In the context of substitutions we will often use the notation [v/x] € 0
to represent 6(z) = v.

Definition 3.2.2 Term Substitution

Let (S, <, F) be an order-sorted signature and X be an S-sorted variable set.
Let also 0 € Subsg(X) be a substitution. A term substitution 0% : (Ts x), — (Ts x),
with s € S is defined as follows:
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e ifz € X, and s < 5 then 0% (x) = 0,(x)
o iff:oseF ands<¢ then@jf(f):f

e iffis1,...,8, s € F and s < s then
OE(F(tr, . 1) :{ FOF (), ..., f(0F (tn)) if all 6F(t;) are defined,

undefined otherwise.

Definition [3.2.2] allows performing syntactic substitutions in the terms of an
order-sorted Y-signature.

Definition 3.2.3 Substitution /

Let (S,<,F) be an order-sorted signature and r € (X;),.q @ variable. A
substitution / of x by a term v € (Ty x) in a formula [ € Ty x is defined as
follows:

seS

v forx=y
y otherwise.

flv/x] = 07 (f) where 0(y) = { and 0 € Subsg(X)

3.3 Multi-Set Extension

A multi-set over a set F is a total mapping from F to N. The set of all multi-sets
over a set F is defined by the set of all functions [E] = { flf:E— N} equipped
with the operations [_] (coercion to the single element), + (set union) and () (empty
set) defined as follows:

€] El(e) = life= e" for all e,e’ € F
0 otherwise.

(f +E g)(e) = f(e) + g(e) for all f,g € [E] and for all e € E
@[E](e) =0forallec F

Definition 3.3.1 Multi-set Extension of Order-Sorted Algebras

Let ¥ = (S, <, F) be an order-sorted signature. The multi-set extension of ¥
1s defined as follows:

Sl =(sulULlsh <u U (sl DY FUF))

ses s,8'€S

where F' = J,cq {0 :— [s], [Z]¥ 0 s — [s], +1 2 [s],[s] — [s]} and s < &'
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Definition 3.3.2 Multi-set Extension of an Algebra

The multi-set semantics extension of an order-sorted Y-algebra A is defined as

follows:
)= (au (Ura), 7o (U 0" [, +140))

ses ses

3.4 Summary

In this chapter we have presented a set of definitions which will be extensively used
as the formal basis for this thesis. In particular we have introduced the notion of
order sorted signatures and order sorted algebras which provide an elegant fashion
of formalizing some of the syntactic and semantic aspects of our approach. We then
provided some useful definition for substituting variables with terms. Finally we
have described a multi-set extension of the order-sorted framework in order to be
able to both represent values in Petri Net places and express concurrency in the
semantics of CO-OPN.
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Chapter 4

CO-OPN — Introduction and
Syntax

The method we present in this thesis for model-based test case generation uses
CO-OPN (Concurrent Object-Oriented Petri Nets) as the specification language for
expressing models of the SUT. CO-OPN is a very rich language, including mech-
anisms to natively handle concurrency, Abstract Data Types and encapsulation
(through Object-Orientation and coordination modules). These mechanisms have
deeply influenced our choices while building a testing theory and in particular our
test intention language SATEL. This said, in order to be able to correctly introduce
and justify our test generation technique we will start by presenting in this chapter
a detailed account of the CO-OPN language.

We will provide a formal description of CO-OPN, including its formal abstract
syntax and semantics. The presentation of the syntax and the semantics borrows
from the work of Biberstein [1], Buffo [2] and Huerzeler [6] which we extend in order
to have a clear abstract syntax and an operational semantics which is suitable for
the test generation activity.

4.1 Historical Background

CO-OPN has been in continuous development since 1990 and it is based on two core
formalisms — Many-Sorted Algebras [25] to model data types (including subtyping
and polymorphism) and algebraic Petri Nets [20] to model behavior and concurrency.
One of the unique features of CO-OPN is the fact that it has a thoroughly defined
abstract syntax and, more importantly, a formal semantics — something relatively
rare for a specification language of CO-OPN’s dimension. A toolset has also been
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Language Toolset
CO-OPN (Object Based) : SANDS (C + Prolog)
Y

CO-OPN/5 (Object Oriented)

Y : Y
CO-OPN5,, (Coordination) : CO-OPN Tools (Java + Prolog)

Subtyping and improved Modularity

CoopnBuilder (Java + Prolog)

Figure 4.1: The evolution of CO-OPN

in continuous development along with the formal aspects of CO-OPN.

Figure represents the evolution of the CO-OPN language, with the left
row depicting the theoretical development and the right row depicting the tools
that were built alongside. The distinguishing feature of the first version of CO-
OPN (at the top of figure is the fact that it is object based. With the term
object based we mean that the typical concept of class as a template for the creation
of object instances is not present. All the objects (encapsulated Petri Nets) are
statically created and exist throughout all possible evolutions of the specification.
CO-OPN objects collaborate with each other by means of synchronizations. Buchs
and Guelfi [54] are the main authors of this first version for which a toolset called
SANDS was written (in the C and Prolog programming languages). SANDS allows
specification edition and animation.

Biberstein [I] was the main developer of CO-OPN , which extends CO-OPN
by introducing object orientation. This means that in CO-OPN ; the notion of class
as a template for object creation is present, along with inheritance and dynamic
object instantiation/destruction.

Buffo [2] added to CO-OPN /5 the concept of contest — implemented by COIL
(Contexts and Objects Interface Language) — and created CO-OPN jo.. Contexts
are entities whose task is to coordinate the computation of a certain amount of
objects that they manage. The idea behind the approach is to conceptually split the
notion of computation — done by objects — and coordination — done by contexts.
In particular, the notion of contezt is an interesting abstraction to model distributed
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systems where each context may correspond to a different execution environment
(machine or network of machines). In each of those executions environments objects
evolve and communicate with each other possibly using different technologies. Along
with CO-OPN 5 and COIL a new toolset was built, this time written in the Java
and the Prolog programming languages. This toolset implemented most of the ideas
present both in CO-OPN /; and COIL.

Huerzeler [6] introduced in his Ph.D. thesis a framework for describing subtyp-
ing relations (both syntactic and semantic) for component-based formalisms. One
important contribution of Huerzeler's work was the clear formalization of the se-
mantics of component-based systems, indirectly improving the work of Buffo on
coordination. In fact, the work in the present thesis builds on both Buffo’s and
Huerzeler’s ideas in order to provide a formal semantics to CO-OPN which is suffi-
ciently elegant and unified to be useful for test case generation. Although Huerzeler’s
work was not concretized in a toolset, roughly at the same time a new toolset called
CoopnBuilder was released. The new features of CoopnBuilder are that it includes
a unified GUI (in the style of modern IDEs) and automatic code generation [36] (in
Java).

It is important to notice that, given the very rich nature of the semantics of
CO-OPN and the operational limitations of general purpose languages, the toolsets
partially implement those semantics. However, important practical results have been
achieved (e.g. [55) 56]) even only considering just a subset of CO-OPN’s semantics.

In this thesis we will use the term CO-OPN to refer to the formal syntactic
and semantic description included in CO-OPN /5., modified by our work in order to
adapt some of the concepts developed by Buffo and Huerzeler to the activity of test
generation.

4.2 Overview of CO-OPN

CO-OPN is a specification language built to describe concurrent and distributed
systems, using the Object-Oriented approach to allow modularity and encapsulation.
CO-OPN specifications are described along two axes — data types and behavior.

Data types are defined using an algebraic approach, more precisely the notion
of Order-Sorted Algebras [57] which is an extension of the notion of Many-Sorted
Algebras.

Behavior is fundamentally described by algebraic Petri Nets which are en-
capsulated within objects that may provide or require services from the outside
— through ports respectively called methods and gates. CO-OPN objects collab-
orate with each other by means of synchronizations that connect required services
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Figure 4.2: Example of CO-OPN specification

to provided services. These synchronizations (which may be complex expressions)
are defined at the level of conterts, which are coordination units. Contexts also
provide and require services to and from the outside through method and gate ports
respectively. Contezts can be themselves coordinated by other contexts.

Example 4.2.1 Figure @ depicts a CO-OPN speciﬁcatimﬂ composed of three im-
bricated contexrts fContext, sContext and tContext. fContext coordinates sContext
and the object ol; sContext coordinates tContext; tContext coordinates object 03.

In the graphical syntax synchronization arcs connect the port that requires a
service to the port(s) that provide that (those) services — it is a 1-to-n connection.
Complex synchronizations are defined through expressions that can be built using the
operators ‘//’ (simultaneity), ‘.." (sequence) and ‘®° (disjunction). For example,
in figure [{.9 method tMethod of context fContext requires the service provided by
method m1 or (notice the usage of the ‘®’ operator) the service provided by method
sMethod.

!The graphical syntax in figure is an abstraction of the real graphical syntax of CO-OPN
where the internal behavior of objects is not described.



4.2. OVERVIEW OF CO-OPN 49

A CO-OPN specification is composed of modules that can be of three different
types: abstract data type (ADT) modules to provide abstract algebraic definitions of
data types; class modules to define templates for object creation; context modules
to define coordination units. In the concrete syntax all CO-OPN modules share the
same syntactic structure, including the following sections:

e A Header, including the module name and additional information concerning
genericity or inheritance;

e An Interface section including information describing the services the module
provides to other modules. The interface section is inspired by the notion
of signature in the Order-Sorted Algebra framework which defines the sorts
(data type names) and the names of the operations for those sorts together
with their arities — arity meaning the sort names of the domains and the
co-domains of the operations;

e A Body section, describing the behavior (the semantics) of the services it
provides to the exterior. The body section is inspired from the notion of Order-
Sorted Algebraic specification which, besides the signature for a set of data
types, also includes a set of axioms in equational logicE]. These axioms define in
an abstract fashion the behavior of the operations described in the signature.
The body of an ADT, class and context module include a set of specific axioms
to describe the behavior of the operations or services that module provides.

Being a very rich specification language, CO-OPN includes a series of inter-
esting mechanisms to tackle the modeling activity. The following sections provide
descriptions of the most relevant of those mechanisms.

4.2.1 Abstract Data Structures

The ADT modules allow describing types in a completely abstract fashion, following
the ideas of the Order-Sorted Algebra framework. In fact ADT modules implement
the notion of Order-Sorted Algebraic specification — in an ADT module it is possible
to describe a type by its signature (the module’s interface) and its set of axioms (the
module’s body including algebraic formulas and theorems). This is a very powerful
way of representing data structures given that, apart from the type’s syntax, we also
declaratively describe its properties independently of any implementation. Also,
ADT modules allow declaring sub-sorting (using the sub-sort relation in the Order-
Sorted Algebra framework), partial operations, overloading and polymorphism.

2First-order logic where the only predicate is the equality.
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ADT modules are typically used to define basic types such as integers, booleans,
strings or stacks. However, given that they have the power of Order-Sorted Alge-
braic specifications, they can actually be used to model any data structure and any
associated computation.

4.2.2 Object Orientation

A CO-OPN object is instantiated from a template declared in a class module. The
interface of a class module includes, among other information, the name of the
class type and the names of the methods and gates present in the module along
with their arity — in this case a list of sort names which make up the parameters
of those methods or gates. The body of a class module declares a number of axioms
that describe the behavior of the services the class provides to the outside (through
method ports). This behavior is expressed in terms of the evolution of the Petri
Net an instance of that class holds, and also in terms of required services from the
outside (through gate ports).

In particular, CO-OPN implements the following concepts in Object Orienta-
tion:

e Inheritance and Subtyping: Inheritance is achieved syntactically, by inheriting
all the services a given class provides. It is also possible to add services or
to change the services provided by the parent class. Subtyping is a semantic
concept, where an object of a certain type can be replaced by an object of
another type only if the semantics of the whole system remains unchanged.
The conformance relation is based on bisimulation between the semantics of
the two types. Given the fact that verifying the bisimulation relation between
the common parts of two Labeled Transition Systems (LTS) is an undecidable
problem, the concept of subtyping has been defined in [1] and [6] but has not
been implemented in the toolsets;

e Object Encapsulation: An object in CO-OPN holds a state which corresponds
to the marking of the algebraic Petri Net inside the object. The only way to
change the state of a CO-OPN object is by requesting a synchronization with
one of the object’s services, accessible through method ports. In this sense CO-
OPN promotes object encapsulation, given that access to an object’s internal
state is not directly modifiable from the exterior;

e Dynamic Object Instantiation: All classes in CO-OPN implicitly include a
creation and a destruction methods which allow dynamic instantiation and
destruction of objects;
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e Object identity: The formalism dynamically manages the identity of the ob-
jects present in a CO-OPN specification, automatically creating or deleting
object references in case of object creation or destruction;

e Communication: CO-OPN components (objects or contexts) communicate by
requesting services from each other in a synchronous fashion. A component
requests a service from another component (or a set of components) by syn-
chronizing one of its gate ports with a method (or a set of methods) belonging
to the component(s) that can provide the service. The possible synchroniza-
tions for a group of components are defined by a surrounding context.

4.2.3 Coordination and Distribution

CO-OPN provides a specific mechanism for modeling distribution and coordination
by means of context modules. These modules define the way in which commu-
nication happens between a set of components (objects or other contexts) using
synchronization expressions.

More precisely, in order to provide a service a component may require several
other services from various components to happen according to a certain synchro-
nization expression. Synchronization expressions are built using three binary syn-
chronization operators: ’a //b’ (simultaneity), meaning services a and b should be
possible at the same time — in other words enough resources are available for the
two services to execute simultaneously; ‘a@® b’ (disjunction), meaning that either
service a or service b should be possible; ‘a..b’ (sequence), meaning that service
b should happen after service a — in other words, after executing service a, there
are enough resources left to execute service b. It is important to say that complex
synchronizations between components are atomic and transactional: either all the
services are provided the way the synchronization expression specifies, or no changes
occur to the global state of the model.

In terms of distribution contexts provide an abstraction level for modeling in-
teractions between components. The fact that interactions are described by synchro-
nizations makes it possible to model systems that will eventually be implemented
using heterogeneous communications mechanisms. Also, the fact that components
rely on an upper layer to provide coordination helps in separating computing and
communication, thus avoiding non-trivial communication protocols between compo-
nents that accumulate both responsabilities.
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4.2.4 Concurrency and Non-Determinism

In a CO-OPN specification components (objects and contexts) communicate and
evolve concurrently. Concurrency is modeled at the level of the communication be-
tween components since when a component a requires a service from a component
b, both a and b evolve simultaneously (if possible). The ¢//’ (simultaneity) oper-
ator allows extending this concept by requiring services from several components
simultaneously.

Non-determinism is modeled in the communication between components by
using the ‘@’ (disjunction) operator or by requiring a synchronization with any
object which is a member of a given class.

4.3 The Banking Server example

We will now introduce the example specification we will be using throughout this
thesis to introduce our test selection technique. The specification models a simplified
concurrent Banking system where several users may connect simultaneously and
then perform standard banking operations. Before being able to perform operations
on his/her account, the user has to authenticate in a two-step process: log in with a
username; if the username exists, the system randomly proposes a challenge to the
user and asks for the password corresponding to that challenge. If the user provides
three wrong passwords, his/her account will become blocked and he/she will no
longer be able to connect to the system. After having successfully authenticated,
the operations available to a user are balance display, money deposit and money
withdrawal.

We will build the model of our Banking Server system bottom-up, starting
by the necessary data structures, then proceeding to an Object-Oriented analysis
of the problem, and finally building the coordination layer that orchestrates the
communication between the components of the system.

For clarity and space economy reasons in this chapter we will present a sub-
set of the Banking Server specification. In particular all the error handling part
(e.g. wrong password, user not logged) is absent, as well as the blocking behavior
after three wrong login attempts. We refer the reader to appendix [B| for the full
specification.



10

12

14

16

18

20

22

24

26

28

4.3. THE BANKING SERVER EXAMPLE 53

4.3.1 Data Structure analysis

A brief analysis of the problem statement allows identifying the need to model
the following concepts as data structures: the money in the account; the challenge
proposed by the system after login; the password for each user; the usemﬂ themselves.

Given the similarities between the data structures, we will only present in
this chapter the definition of the ADTs Challenge and Money. The definition of
the remaining data structures for the Banking Server specification can be found in

appendix [B]

ADT Password ;

Interface
Use
Digit ;
Booleans;
Sort
password ;
Generator
newPassword _ _ _ _ : digit digit digit digit —> password;
Operation
_ = _ : password password —> boolean;
Body
Axioms
(n1 = ml) = true & (n2 = m2) = true & (n3 = m3) = true & (nd = m4) = true
=> (newPassword nl n2 n3 n4 = newPassword ml m2 m3 m4) = true;
! ((n1 =ml) = true & (n2 = m2) = true & (n3 = m3) = true & (n4d = m4) = true)
=> (newPassword nl n2 n3 n4 = newPassword ml m2 m3 m4) = false;
‘Where

nl, n2, n3, n4d, ml, m2, m3, md : digit;

End Password;

Figure 4.3: The Password ADT

In figure we can find the definition of the password ADT in its concrete
syntax. The purpose of this data structure is to model the password the user will
insert after the login step. As we can see in the interface of the module, the type
name (the sort) defined by the module is password. The Generator and Operation
ﬁeldsﬂ define the profile of the available operations for the password sort. In this

3In a real model a user would probably be described by large amount of information and would
likely be modeled by a class. For our example purposes a simple identifier suffices.
4In the concrete syntax of ADT modules we distinguish between Generator operations — the
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case the only operation we will need is an equivalence relation between elements of
the sort (in order to be able to compare passwords) which we declare as an infix
binary predicate ‘=".

In the body of the module we find the abstract behavior of the predicate ‘=’
defined through conditional axioms. The first axiom states that the relation holds
when all the digits of both passwords are equal one by one. The second case covers
the cases where the relation does not hold. Both axioms use a set of variables
(defined in the where field) in order to generalize the behavior.

ADT User;
Inherit Characters;

Rename
char —> user;

End User;

Figure 4.4: The User ADT

The ADT in figure defines the user sort as a renaming of the sort char
declared in the ADT modules Characters — we identify a user simply by a character.
The inheritance defined in the the module is syntactic, meaning that the ADT
module Characters is totally reused simply changing the sort name char to user.
The simple renaming does not imply a subtyping relationship between sorts, which
in practice means we cannot substitute a user by a char — although the syntax of
ADT modules does allow real subtyping.

4.3.2 Object-Oriented analysis

In order to model the Banking Server we have decided to create two classes that
model two main concepts of the system: the security (login management) part and
the accounts. The LoginManager class is described in both its graphical and textual
concrete syntaxes in figures and respectively. The services provided by the
class are defined as the black rectangles on the border of outer square in figure
and in the field Methods of figure[d.6] The LoginManager class provides four services:
check if a user with a given identifier is currently logged (‘isLogged u’ method); login
a user with a given identifier (‘login u’ method); insert a password for a given user
(“insertPassword u p’ method); logout a given user (‘logout u’ method).

ones which are used to build the available elements typed by sort — and "normal” Operations —
the ones that have the sort as co-domain but do not produce new elements for that sort.
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isLogged u

isLogged u
insertPassword u p
\
N

I logout u . &I::I verifyPass u p

login u

I waltlngForPass

unLogged

logout u

I_I J
—J

askChallenge ¢
Figure 4.5: LoginManager Class (graphical syntax)

The behavior of the class is given by a Petri Net which can be graphically
seen in figure . The Petri Net includes three places (unLogged, waitingForPass
and logged) which represent the possible states of a given user. The initial state of
the net includes three users in the unlLogged place which we have represented by
the three tokens (‘d’, ‘e’ and ‘f’) inside the place. In the textual syntax these three
places are declared in the field Places and the initial state is defined in the field
Initial.

The semantics of the Petri Net inside an object of type loginManager is the
typical Petri Nets semantics extended by following modifications: the transitions
inside the class are synchronized with the class methods holding the same name; the
transitions may require other services to execute in order to fire. To illustrate this
concept let us examine the ‘insertPassword u p’ transition in its graphical syntax
in figure [4.5] This transition takes a user token from the unLogged place and puts
it in the Logged place. However, this only happens when the ‘insertPassword u’
service is called through the method of the same name and the user | exists in the
unlLogged place. Also, the transition requests the ‘verifyPassword u p’ service from
the outside (the dotted arrow from the transition to the ‘verifyPass v p’ method) to
check if the password is the correct one for the given user. Notice that in our model
the password for a given user is contained in the user’s account.

Referring now to the textual syntax of the loginManager class in figure |4.6|

5In the present context u and p are variables of type user and password respectively.
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Class LoginManager;
Interface

Use
Password ;
Challenge;
User;

Type
loginManager;

Gates
verifyUser _ : user;
verifyPass _ _ : user password;
askChallenge _ : challenge;

Methods
isLogged - : wuser;
login _ : wuser;
insertPassword _ _ : user password;
logout _ : wuser;

Body

Places
unLogged _ : wuser;
waitingForPass _ : user;
logged _ : wuser;

Initial
unLogged d, unLogged e, unLogged f;

Axioms

login u With

this . askChallenge (newChal a 1)::

unLogged u —> waitingForPass u;
insertPassword u p With

this . verifyPass u p::

waitingForPass u —> logged u;

logout u::
logged u —> unLogged u;
isLogged u::
logged u —> logged u;
‘Where
u : user;
p : password;

this : loginManager;

End LoginManager;

Figure 4.6: LoginManager Class (textual syntax)

the ‘insertPassword u p’ transition is declared in the axiom in line 38. The axiom
is divided into four parts:
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e Condition: the empty condition;

o Fvent: ‘insertPassword u p’ declares the name of the service the axiom de-
scribes and its parameters. In the graphical syntax in figure this corre-
sponds to the ‘insertPassword u p’ transition and its associated method (in
the border of the outer square);

e Synchronization: ‘this . wverifyPass u p’ corresponds to requiring a service
from the outside (through a gate of the object) in order to verify the password
is correct for the given user;

e Preconditions/Postconditions: ‘waitingForPass u -> logged u’ declares the
weight of the input and the output arcs of transition ‘insertPassword u p’.

4.3.3 Coordination analysis

Given the Object-Oriented analysis performed in section let us now introduce
the contert module that will coordinate the activity of the objects that compose
the model of the Banking Server. The module is depicted in figure and includes
three objects: the ImObj which is an instance of the LoginManager class and two
instances of the Account class called accObj1 and accObj2. In the textual syntax
of the module (figure the declaration of the objects that compose the class is
done in the Objects field.

As we have previously mentioned, the object coordination itself is achieved
by linking required services to provided services. Let us examine how the withdraw
operation (see line 35 of figure is achieved at the context level: the ‘withdraw
u am’ port of the BankingServer context requires the ‘isLogged v’ service from the
loginManager object and (simultaneously) the ‘withdraw u am’ service from the
user’s account. In the textual syntax this coordination expression is declared by the
axiom in line 35 of figure [4.8] The axiom is split into the required and the provided
parts by the With keyword.

Notice that in the provided part of the axiom ‘ImObj . isLogged v // accVar
withdraw u am’ the accVar variable stands for any object of type Account. In
practice, this means that the synchronization will be done on any object of the class
in a non-deterministic fashion. Since in fact only one account will respond at a time
— the account belonging to the correct user — this mechanism allows modeling an
account database. If we would add more Account objects to the model no changes
would be necessary at the coordination level.

At the graphical level the coordination axioms are represented by arrows and
synchronization operators connecting required to provided services. Since the rela-
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login u

insertPassword u p

logout u
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deposit u am

withdraw u am

insertPassword u p

Voo

login u

logout u

askChallenge ¢

deposit am  withdraw am
\4 \4 '
giveMoney am
v [Jrmmmmmmmeeeee >|
- > . ‘.‘
accObj2 N
hasPass u p notEnoughMoney N
................................... >| B
—

verifyPass u p

deposit am

hasPasS up

accObj1

: withdraw u am
V

notEnoughMoney

Is

] giveMoney am

notEnoughMoney

askChallenge ¢

Figure 4.7: The BankingServer Context (graphical syntax)

tion between the textual syntax (figure and the graphical syntax (figure is
trivial, we will not provide further explanations on the subject. Let us just mention
that graphically we have replicated (using dotted arrows) coordination expressions
involving services provided non-deterministically by any of the instances of the Ac-

count class.
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Context BankingServer;
Interface

Use
User;
Money ;
Password ;
Challenge;
LoginManager;
Account ;

Gates
askChallenge _ : challenge;
giveMoney _ : money;

Methods
login _ : wuser;
insertPassword - _ : user password;
logout _ : wuser;
deposit - _ : user money;
withdraw _ _ : user money;

Body

Objects
ImObj : loginManager;
accObjl : account;
accObj2 : account;

Axioms
login u With ImObj . login u;
insertPassword u p With lmObj . insertPassword u p;
logout u With ImObj . logout u;
deposit u am With ImObj . isLogged u // accVar . deposit am;
withdraw u am With 1ImObj . isLogged u // accVar . withdraw u am;
accVar . giveMoney am With giveMoney am;
ImObj . askChallenge ¢ With askChallenge c;
ImObj . verifyPass u p With accVar . hasPass u p;

‘Where
accVar : account;
u : user;
p : password;
c : challenge;
am : money;

End BankingServer;

Figure 4.8: The BankingServer Context (textual syntax)
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4.4 Abstract Syntax of CO-OPN/,,, |

In this section we will present the abstract syntax of CO-OPN/s.,, in a formal
fashion. The purpose of the description is not only to provide a detailed definition
of our specification language, but also to establish a formal basis on which the
semantics of CO-OPN and later of our test language SATEL will be based on. Note
that in this description is strongly inspired from [58], although we introduce new
concepts at the level of the abstract syntax for contert modules.

We do not provide a concrete syntax for CO-OPN as we consider that the
examples of specifications throughout the present thesis provide enough insight.
However, the interested reader may consult [I] for an account on the subject.

Let us remind the reader that throughout following text we consider a universe
including the disjoint sets: S, F,M, G and V. These sets correspond respectively to
the set of all sort, operation, method, gate, and variable names. In particular we
consider the S set to be made of two disjoint sets SA and S¢ which correspond to
sort names in algebraic specifications and type names in classes.

4.4.1 Signature and Interfaces

An ADT module signature groups three elements of an algebraic abstract data type,
i.e. a set of sorts, a sub-sort relation, and some operations. However, in the context
of structured specifications, an ADT signature can intrinsically use elements not
locally defined, i.e. defined outside the signature itself. For this reason, the profile
of the operations as well as the sub-sort relation in the next definition are respectively
defined over the set of all sorts names S and not only over the set of sorts SA defined
in the module itself. When a signature only uses elements locally defined we say
that the signature is complete.

Definition 4.4.1 ADT module signature

An ADT module signature (ADT signature for short) (over S and F) is a
tm’pleﬁ YA = (SA <AF), where:

o SA is a set of sort names of SA;
o <AC (SAXSA)U (SAxSA) is a partial order (partial sub-sort relation);

o F'=(Fys),csnses 15 @ (8° X S)-sorted set of function names of F.

6The A superscript indicates that the module and its components are in relation with the
abstract data type dimension.
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Similarly to the notion of ADT module signature, the elements of a class
module which can be used from the outside are grouped into a class module interface.
The class module interface of a class module includes: the type of the class, a sub-
type relation with other classes, the set of methods that corresponds to the services
provided by the class and the set of gates that corresponds to the services required
by the class.

Definition 4.4.2 Class module interface

A class module interface (class interface for short) (over S and F) is a quadru-

pl O = ({c}, <5, M, G), where:

o cc SC is the typ name of the class module;
o <°C ({c} xS®) U (S€x{c}) is a partial order (partial sub-type relation);

o M= (M.y) is a finite ({c}xS*)-sorted set of method names of M;

weS*

o G=(G.u) is a finite ({c}xS*)-sorted set of gate names of G;

weS*

Recall that a method is not a function but a parameterized transition which
may be regarded as a predicate. The set of methods M is ({c}xS*)-sorted, where
¢ is the type of the class module and S* corresponds to the sorts of the method’s
parameters. A method m € M., . is often noted m. : s1,...,s,, while a method
without any argument m € M, is written m, (e denotes the empty string). The
same argument is valid for gates.

Let us also introduce the notion of interface for context modules. As for class
modules, a context module interface describes the elements of a context module that
can be seen from the outside. Unlike class modules, context modules are not typed
— they exist only as singletons. In this sense, all typing information that is needed
for class modules is irrelevant for context modules. In the concrete syntax context
modules have names, but since we can distinguish them simply from their set of
methods and gates we will use only this information at the level of the interface’s
abstract syntax.

Definition 4.4.3 Context module interface

A context module interface (over S) is a pairf| =X = (M, G) where:

"The C superscript stresses the belonging to the class dimension.

8In general, we use s symbols for sorts of the abstract data type dimension and ¢ symbols for
types (in fact sorts) of the classes,

9As for the previous module interfaces, the X superscript indicates the belonging to the context
dimension.
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o M = (My)yes+is a S*-sorted set of method names of M;

o G = (Gy)uwes+is a S*-sorted set of gate names of G;

We will now introduce a series of definitions which we will use in the subsequent
development of this thesis. From a set of ADT signatures ¥ = (X/);<;<,, and a set of
class interfaces Q = (Q5)1<j<m we build a global sub-sort/sub-type relation denoted
<s o which gathers the partial sub-sort and sub-type relations of the elements of >
and 2 as follows:

<so= (U =tu U <)

1<i<n 1<j<m

Note that the in the above definition the R* notation represents the reflexive and
transitive closure for binary relation R.

For each class interface Q¢ = ({c}, <%, M, G), we induce an ADT signature
Shc = ({c}, <&, Foc) in which Foc contains the operations necessary to the manage-
ment of object identifiers. These operations are defined on the global sub-sort/sub-
type relation as follows:

Foc = {init. : — ¢,new, : ¢ — ¢} U
{subee ¢ —  superoer ic— " | <sqc,c<sq '}

Definition 4.4.4 Global signature

Let ¥ = (30)1<i<n be a set of ADT signatures and Q = (Q5)1<j<m be a set
of class interfaces such that 3 = (SM, <M FA) and QS = ({¢;},<§, M;,G;). The
global signature over ¥ and §2 is:

EZ,Q:< U SAU U {¢j}, <sa, U F,uU U FQ]‘?>

1<i<n 1<i<m 1<i<n 1<j<m

Since the context interfaces do not define types, they are not included in the
global sub-sort/sub-type relation. A possible extension to the current version of CO-
OPN would include introducing dynamic contexts. This would justify context type
names and introducing a context sub-type relation in the context interface.

4.4.2 ADT Module

ADT modules describe abstract data types which may be used by other ADT or class
modules. An ADT module consists of an ADT signature, a set of positive conditional
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equations also called axioms, and some variables. Remember that, in the context of
structured specifications, an ADT module may use elements not locally defined, i.e.
defined in other modules.

Definition 4.4.5 ADT module

Let X be a set of ADT signatures and 2 be a set of class interfaces such that
the global signature ¥y q = (S, <,F) is complete. An ADT module is a triplet
]\4al/£Q = (XA, X, ®), where:

o YA is an ADT signature;
o X = (X,),cq is a S-disjointly-sorted set of variables of V;

o ® a set of positive conditional equations over Xy q and X.

4.4.3 Behavioral Formulas

Before defining a behavioral formula let us define the set of events possible over
a set of CO-OPN objects. The object events correspond to internal transitions
of an object which are implicitly synchronized with the object’s method ports of
the same namﬂ Internal transitions of a given object can optionally be synchro-
nized with gate ports of that same object through synchronization expressions. As
we have previously explained, three synchronization operators are provided: ‘//’
for simultaneity, ‘..” for sequence, and ‘@’ for alternative. Gate ports express re-
quired services for a transition to be fired and can themselves be connected to other
CO-OPN components (through coordination events as described in section
allowing component communication. As an example, if we consider an object o of
type LoginManager as defined in figure , the object evenﬂ:

o.insertPass d (newPass 1 2 3 4) with o.verifyPass d (newPass 1 2 3 4)

would be a possible event of object o where the transition ‘insertPass d (newPass1
2 8 4) requires the ‘verifyPass d (newPassl 2 8 4) service from outside the object.
Notice that we use the ‘.’(dot) notation to represent a method or gate port belonging
to a specific object.

10Tn [1] the additional notion of invisible event is defined, where an object’s transition may not
be synchronized with a method port and thus may occur spontaneously. Due to the fact that this
modeling feature is rarely used, we have not taken it into consideration in this thesis.

Hswritten in CO-OPN’s concrete syntax
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CO-OPN 5. includes the possibility of directly synchronizing a method port of
a given object with method ports of other objects (or itself). As an example, if we
consider two objects o1 and 02 of type LoginManager the object event:

ol.insertPass d (newPass 1 2 3 4) with o2.insertPass e (newPass 5 6 7 8)

would be a possible event which involves simultaneous logins of users ‘d’ and ‘e’ in
two different LoginManager objects. In CO-OPN 5.4 we do not allow this kind of
synchronization as, without loss of generality, a method—method synchronization can
be converted into a gate—method synchronization at the level of the context module
coordinating the synchronized objects. We propose a technique for converting CO-
OPN 9. specifications to CO-OPN 5.4 1 specifications in appendix @

We write OE4 ¢ po for the set of all events over a set of parameter values A,
a set of types of classes C', set of ports P and a set of object identifiers O. Because
this set is used for various purposes, we give here a generic definition.

Definition 4.4.6 Gate Synchronization Expressions, Object Fvents

Let S = SAUSC be a set of sorts such that S* C S* and S© C S€, A = (Ay), .4
and C' C S© be a set of type names. Let also P = (M, G) be a pair of S¢ x S*-sorted
sets of method and gate names and O = (Oy), . gca set of object identifiers. The gate
synchronization expressions GateSyncExprac po are built as follows:

o 0.g9(vy,...,v,) € GateSyncExprac.po forallg € (Ges,...s,), Vi € As;, 0 € O,

o sync op sync € GateSyncExprac.po for all sync, sync’ € GateSyncExprac.p.o,

ope{//.. &}
The object events OE4 ¢ p.o are built as follows:

e o.create € OE ¢ po for all o € (Oy), gc
e o.destroy € OE ¢ po for all o € (Oy),cqc

e o.m(vy,...,v,) € OEqcpo forallm € (M, .. s.), vi € As,, 0 € (Oc) e

n

o o.m(vy,...,v,) with sync € OE cpo for all m € (M.s,  s.), vi € A,
0 € (Oc) ccr sSYnc € GateSyncExprac.po

o cvopev' € OEsc po forallev,ev' € OExcpo, ope{//,...B}
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In every ‘m with sync’ event (sync € ObjSyncExprac.po) ‘m’ and any gates of
‘sync’ are ports of the same object identifier instance. In other words, methods of
an object are only synchronized with gates of the same object.

Note that the actual and the formal parameters of a method involved in a
synchronization may not have the same sorts, but their sorts must be connected
through the sub-sort relation. Also, the left side of the event includes a single port
synchronization, while on the right side it may include a complex synchronization
expression involving several ports.

We now give the definition of the behavioral formulas that are used to describe
the properties of events of class modules. A behavioral formula consists of an object
event as established in definition a condition expressed by means of a set of
equations over algebraic values, and the usual Petri Net pre/post-condition of the
event. Both pre/post-conditions are sets of terms (of sort multi-set) indexed by the
places of the net. A event can occur if and only if the condition on the algebraic
values is satisfied, enough resources can be consumed/produced from/in the places
of the module, and if the events involved in the synchronization can occur.

Definition 4.4.7 Behavioral formula

Let ¥ = (S, <, F) be an order-sorted signature such that S = S* U S¢ (SAC
SAand SCCSC). For a given pair P = (M,G) of S¢ x S*-sorted port names, an
S-disjointly-sorted set of places Pl, a set of types C C S¢ and an S-disjointly-sorted
set of variables X, a behavioral formula is a quadruplet (Event, Cond, Pre, Post)
where:

o Event € OE(zy, 1) 0P (15 x), Such that s € S¢;
e Cond is a set of equations over ¥ and X;

o Pre = (Prep) p and Post = (Post,),p, are two families of terms over
[X], X indexed by Pl and of sort [s] if p us of sort s.

We also denote a behavioral formula (Event, Cond, Pre, Post) by the expression

FEvent :: Cond = Pre — Post

It is important to notice in definition that the event part of the behav-
ioral formula belongs to OEry, )¢ p 1y ), Where T x corresponds to terms with
variables built on the signature Y. In this way the object events in the behavioral
formulas may contain variables, allowing the description of generic behaviors. The
same reasoning is valid for the condition and the pre- and post- condition part of
behavioral formulas.
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Example 4.4.8 Consider the following behavioral formula in line 38 of figure [4.0
which is defined in the concrete syntax of CO-OPN:

insertPassword u p with this . verifyPass u p::
waitingForPass u -> logged u;

According to the abstract syntax in definition [{.4.7 this behavioral formula can be
split in the following components:

e the event part: ‘“insertPassword u p with this . verifyPass u p’
e the condition part: empty
e the pre-condition part: ‘waitingForPass u’

e the post-condition part: ‘logged u’

Notice that in the example “u’, ‘p’ are variables.

4.4.4 Class Module

The purpose of a class module is to describe a collection of objects with the same
structure by means of an encapsulated algebraic net. Actually, a class module
is considered as a template from which objects are instantiated. A class module
consists of: a class interface, a set of places, some variables, the initial values of the
places (also called the initial state of the module), and a set of behavioral formulas
which describe the properties of the methods and of the internal transitions.

Note that the following definition establishes that class instances are able to
store and exchange object identifiers because the sorts of the places, the variables,
and the profile of the methods belong to the set of all sorts S, therefore, these
components can be either of sort S” or S¢.

Definition 4.4.9 Class module

Let X be a set of ADT signatures and S0 be a set of class interfaces such that
the global signature Xy q = (S, <, F) is complete. A Class module is a quintuplet
Md§ o = (Q°, P, 1,X, V), where:

o O¢ = ({c},< M,G) is a class interface;

o P = (P), g is a finite S-disjointly-sorted set of place names;
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o | = <Ip)p€P 15 an wnitial marking, a family of terms indexed by P and of sort
[s] if p is of sort s;

o X = (X,),cq 15 an S-disjointly-sorted set of variable of V;

o U is a set of behavioral formulas over: the global signature X5 q; a set of
methods composed of M and all the methods of Q; a set of gates composed of
G and all the methods of Q; the set of places P; the set {c}; and X.

4.4.5 Coordination Formulas

Let us now define the concept of coordination formula, which is similar to the concept
of behavioral formula. Coordination formulas deal with synchronizations involving
any kind of CO-OPN component — objects and contexts — and also state under
which conditions the events resulting from those synchronizations may occur. Let
us first define the set of possible coordination events over a local context, a set of
interior contexts being coordinated by the local context and a set of interior objects
also being coordinated by the local context.

In order to introduce the notion of coordination events let us analyze figure [4.7]
depicting the Banking Server context and the components it coordinates. Examples
of coordination events in this system are:

login d wzth 1mObj . login d

The context method port ‘login’ is synchronized with the method port of the
same name of the object ‘lmOb;’.

1mObj . verifyPass d (newPass 1 2 3 4) with

accObjl . hasPass d (newPass 1 2 3 4)

The object gate port ‘verifyPass’ is synchronized with the method port ‘has-
Pass’ of the object ‘accObj1’.

Remember that coordination events correspond to the coordination of com-
ponents living inside a context and as such may correspond to synchronizations
between the local context and any of its internal components, or between internal
components themselves.

Definition 4.4.10 Required Service Fxpression, Provided Service FExpression, Co-
ordination Fvents
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Let S = SAU S be a set of sorts such that SA C S® and SA C SA. Let us
consider A = (Ay),cq and L = (M,G) and I = (M',G") two pairs of S*-sorted sets
of context method and gate names. Also, let IO = (M" G") be a pair of S¢ x S*-
sorted sets of method and gate names and O = (Oy),cqc be a set of object identifiers.
The required service object expressions set ReqExpra 1,100 %5 built according to the
following rules:

e 0.g(vy,...,v,) € ReqExpra 100 forall g € (G ), v; € Ag,, 0 € O,

C,81,...,5n
e g(vi,...,vn) € ReqExpra 00 forall g€ (G, ), vi € A,

o m(vy,...,v,) € ReqExprar 00 for allm e (M, s.), vi € Ag,

The provided service object expressions set ProvExpra 0.0 s built as follows:

e o.create € ProvExpra . 1100 for all o € (Os)sesc

o.destroy € ProvExpra 1,100 for all o € (Os),cqc

e o.m(vy,...,v,) € ProvExprari0.0 for allm e (M ), v; € Ag,, 0 € O,

Cy81,+ySn

o m(vy,...,v,) € ProvExpraprioo for allme (M ), v €A,
o g(v1,...,v,) € ProvExprar o0 for all g € (Gs, . s.), vi € As,

e prov op prov’ € ProvExpra 100 for all prov,prov’ € ProvExprar 1,100,

ope{// .. &}
Finally the coordination events CE4 1 1100 are defined in the following fashion:

o req with prov € CE4 11500 for all req € ReqExpra 11100,
prov € ProvExpra 1100

We can now formally introduce the concept of coordination formula which state
under which conditions coordination events may happen. Namely, conditions are
stated by algebraic equations involving the parameters of the port synchronizations
involved in the event.

Definition 4.4.11 Coordination formulas

Let Y = (S, <, F) be an order-sorted signature such that S = SAUSC (SA C SA
and S¢ C SC). Let us consider a pair L of S*-sorted methods and gates of a
local context module, a pair I of S*-sorted methods and gates of context modules
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contained by the local contest, a pair 10 of S¢ x S*-sorted methods and gates of
objects modules contained by the local context, an SC-disjointly-sorted set of internal
objects contained by the local context and a S-disjointly-sorted set of variables X. A
coordination formula is a pair (Cond, CoordEv), where:

e Cond is a set of equations over ¥ and X;

o CoordEv € CE1y, ) 1.1,10,Ts x). Where s € S

We also denote a behavioral formula (Cond, CoordEv) by the expression

Cond = CoordEv

Example 4.4.12 Consider the following coordination formula in line 38 of fig-
ure [{.§ which is defined in the concrete syntax of CO-OPN:

ImObj . verifyPass usr p with accVar . hasPass u p;

According to the abstract syntax in definition this coordination formula can
be split in the following components:

e the event part: ‘ImObj . verifyPass u p with accVar . hasPass u p’

e the condition part: empty condition

Notice that in the example “u” and ‘p’ are variables, ‘lmODbj’ is an object reference,
and ‘accVar’ is a variable standing for any object reference of type ‘account’.

4.4.6 Context Module

Context Modules coordinate the interaction of a number of CO-OPN components.
They are thus composed of other conterts and objects and include a number of
coordination formulas involving the ports of the local context and/or the ports of
the coordinated components.

Definition 4.4.13 Context module

Let X be a set of ADT signatures and 2 be a set of class interfaces such that
the global signature Xy q = (S, <,F) is complete. Let also = be a set of context
signatures. A context module is a quintuplet Md)é,g,z = (2%,0,C, X, x) where:

—_

o =X = (M,G) is a context module interface;
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O = (Oy),cqc is an SC-sorted set of static objects and S© C S;

C= {Md?}ie{l 77777 ny 8 a family of context modules where Md} = (=X, 0;,Ci, X4, Xi),
=X = (M,G); and =X € =;

o X = (X,),cq 5 an S-sorted set of variables;

e x is a set of coordination formulas over Ty, x, (M,G), | J,(M,G); (1 <i<n),
a pair of methods and gates of the classes objects O belong to, the objects O
themselves and variables X .

4.4.7 CO-OPN Specification

We can now present the notion of CO-OPN specification as a set of ADT, Class
and Context modules built from a set of ADT signatures, Class interfaces and Con-
text interfaces. The definition of CO-OPN specification we introduce in this thesis
extends the one introduced by Biberstein in [I]. It also integrates the syntax of con-

text modules introduced by Buffo in [2] in the typical algebraic specification syntactic
style adopted in CO-OPN.

Definition 4.4.14 CO-OPN Specification

Let ¥ be a set of ADT module signatures and  be a set of class module
interfaces such that the global signature Xx o is complete. Let also = be a set of
context module signatures. A CO-OPN specification consists of a set of ADT, Class
and Context modules such that:

Specs o=z = {(Mdé79)i |1<i< n} u

{(Mdgg) 11<j <m} u{(Mdtgz), |1 <k <o}

Two dependency graphs can be constructed from a CO-OPN/y.,, specifica-
tion Spec. The first one consists of the dependencies within the algebraic part of
the specification, i.e between the various ADT modules. The second dependency
graph corresponds to the ” contains” relationship between the context modules. Both
these graphs are composed of the specification Spec and a binary relation over Spec
denoted noted Dépec for the algebraic dependency graph, and Dépec for the con-
text 7 contains” dependency graph. The relation Dépec is constructed as follows:
for any ADT module Md, Md' of Spec (Md # Md'), (Md,Md') € D% . if and

Spec
only Md uses some elements defined in the signature of Md'. As for the relation
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D%, it is constructed as follows: for any context module Md, Md' (Md # Md'),
(Md,Md') € D5, if and only if Md' is part of the contert modules contained in
Md.

A well-formed CO-OPN /s,y specification is thus a specification with two
constraints concerning the dependencies between the modules which compose the
specification. These hierarchical constraints are necessary for the theory of algebraic
specifications and in order to allow the construction of the semantics of a CO-
OPN /.44 specification, as we will show in the next chapter.

Definition 4.4.15 Well-formed CO-OPN /5., specification
A CO-OPN /ey 1 specification Spec is well-formed if and only if:

A

Spee) has mo cycle;

1. the algebraic dependency graph (Spec, D

X

Spec) has mo cycle.

2. the “contains” dependency graph (Spec, D

4.5 Summary

We have started by providing an historical introduction to the CO-OPN language.
From a formal point of view CO-OPN was developed in several iterations: a first
object based CO-OPN version encapsulated Algebraic Petri Nets within static struc-
tures providing a set of services synchronized with the nets’ transitions; a second
CO-OPN/; object oriented version including class templates, subtyping and dynamic
object creation and destruction; a third CO-OPN )5, version included coordination
modules allowing the modeling of distribution. More recently some work was devel-
oped at the level of the semantics of the coordination and composition of CO-OPN
components.

All the formal work on CO-OPN was relatively dispersed, with each of the
versions introducing new notations which were not necessarily well integrated with
the previous ones. In particular, the formalization of the CO-OPN /5. version did not
take into consideration a good syntactic integration with the previous object oriented
version and the semantics were defined in a transformational manner — not directly
taking into consideration the new coordination and composition concepts of the
language. The most recent work on the semantics of coordination and composition
by Huerzeler [6] was done at an abstract level and was not directly applied to the
formal definition of CO-OPN.

We have thus decided to introduce a new integrated and reviewed version of
the CO-OPN specification language — which we have called CO-OPN /5.4 1. In
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this chapter we introduce a new formal definition of the abstract syntax of the
language. The new abstract syntax is based on the work of Buffo [32], which we
have reviewed for better presentation, integration and bug correction. In particular
we have introduced:

e distinct object events and coordination events which allowed us to later define
a new coordination and composition semantics;

e a new syntax for context module interfaces and context modules, following the
algebraic specification style used in CO-OPN /5. This new notation also allowed
introducing a methodology for formally adding new modules to the CO-OPN
language, which we have used while formalizing test intention modules;

e a new definition of CO-OPN specifications, including context modules. We
have also added a new constraint on the well-formedness of a CO-OPN spec-
ification, i.e. that there are no cycles in the ” contains” dependency graph of
the specification’s context modules.

Within the chapter we have also introduced a complete CO-OPN specification
of a Banking Server application, illustrating many of the features of the language.
The only features not explored in the example are subsorting, subtyping and dynamic
object creation and destruction. The Banking Server example will be used in the
subsequent chapters in order to provide examples for the definitions of CO-OPN
and SATEL.

Given the fact that this chapter is a revision of the abstract syntax of CO-
OPN, some of the formal definitions present in this chapter are inspired or taken
without change from [58] and [32].



Chapter 5

CO-OPN — Semantics

This section presents the semantical aspects of the CO-OPN /o, formalism which
are based on two notions: order-sorted algebras and transition systems.

First of all, we concentrate on order-sorted algebras as models of the data
structures of a CO-OPN 5.4, specification. Then, we introduce an essential element
of the CO-OPN 5.4+ formalism, namely the order-sorted algebra of object identifiers,
which is organized in a very specific way.

Afterwards, we present how the notion of transition system is used so as to
describe a system modeled by a CO-OPN 5., specification. Then, we provide all
the inference rules which allow us to construct the transition system representing
the semantics of a CO-OPN /5., 4 contert module. The semantics of a CO-OPN /9., ¢
specification Spec will correspond to the union of all the semantics of the context
modules of Spec which are at the top of the contexrt module ” containment” hierarchy.

5.1 Algebraic Models of a CO-OPN ., Specifi-

cation

Here we focus on the semantics of the algebraic dimension of a CO-OPN /., speci-
fication. Remember that an ADT signature can be deduced from each class interface
of the specification. It is composed of a type, of a subtype relation, and of some
operations required for the management of the object identifiers. We now provide
the definition of the ADT module induced by each class module of the specification.
Such an ADT module is composed of the induced ADT interface and of the formulas
which determine the intended semantics of the operations.

Definition 5.1.1 ADT module induced by a class module

73
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Let Spec be a well-formed CO-OPNjgeqy specification and < be its global
subsort/subtype relation. Let Md- = (Q%, P,I,V,VU) be a class module of Spec
in which Q¢ = ({c}, <, M,G). The ADT module induced by Md is denoted
Mdg2c = (Zh¢, Ve, Pac) in which e = ({c}, <€, Foc), and where:

o [ = {init, : — ¢, new.:c— c} U
{subee ¢ — ', superes c—d' | d <ce <}

o Voc={o.:¢, ov:c | <c};

o O = {sub. o (init,) = inity,
sub. . (new, o.) = newy (sube o),
superq (init.) = init,,
supere (newy og) = new.(supery . ou) | ¢ < c}

Each class module (see definition defines a type and a subtype relation
which are present in the ADT module induced by each class module presented in
definition On the one hand, each type (actually a sort) defines a carrier set
which contains all the object identifiers of that type and, on the other hand, the
global subtype relation imposes a specific structure over the carrier sets. Moreover,
four operations are defined in each ADT module induced by each class module.
These operations over the object identifiers are divided into two groups: the gener-
ators (the operations which build new values) and the regular operations. For each
type ¢ and ¢ of the specification these operations are as follows:

1. the generator init. corresponds to the first object identifier of type c;
2. the generator new,. returns a new object identifier of type c;

3. the operation sub. maps the object identifiers of type ¢ into the ones of type
c, when ¢ < ¢;

4. the operation supery . maps the object identifiers of types ¢’ into the ones of
type ¢, when ¢ < ¢;

5. as indicated by their names, supery . is the inverse operation of sub, ..

The presentation of a CO-OPN /o, ; specification Spec — denoted Pres(Spec)
— consists of collapsing all the ADT modules of the specification and all the ADT
modules which are induced by the class modules. Renamings are necessary to avoid
name clashes between the various modules.

In the following text, we often denote the set of all sorts, types, methods,
and places of a specification Spec by, Sorts(Spec), Types(Spec), Methods(Spec),
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Places(Spec), respectively. Note that Sorts(Spec) represents the sorts defined in
the ADT modules of the specification, while T'ypes(Spec) corresponds to the sorts
(types) induced by the class modules.

The initial approach has been adopted throughout this work. The semantics
of the algebraic dimension of a CO-OPN )5, 1 specification Spec is therefore defined
as the semantics of the presentation of the specification. We denote this model
Sem(Pres(Spec)).

The semantics of such a presentation is composed of two distinct parts. The
first one consists of all the carrier sets defined by the ADT modules of the spec-
ification, i.e. the model of the algebraic dimension of the specification without
considering the ADT modules induced by the class modules. The second part is
what we previously called the object identifier algebra. This “sub-algebra” is con-
structed in a very specific way and plays an important role in our approach because
it provides all the potential object identifiers as well as the operations required for
their management.

Let Sem(Pres(Spec)) = A. The models of the ADT modules of the specifica-
tion are usually denoted A, while the object identifier algebra defined by the ADT
modules induced by the class modules of the specification is A. A and A are disjoint

and A= AUA.

Intuitively, the idea behind the object identifier algebra of a specification is
to define a set of identifiers for each type of the specification and to provide some
operations which return a new object identifier whenever a new object has to be
created. Moreover, these sets of object identifiers are arranged according to the
subtype relation over these types. It means that two sets of identifiers are related
by inclusion if their respective types are related by subtyping. In other words, the in-
clusion relation reflects the subtype relation. Furthermore, two operations mapping
subtypes and supertypes are provided. The structure of the object identifier algebra
and the operations mapping subtypes and supertypes can be used to determine, for
example, if an object identifier belongs to a given type.

5.2 Management of Object Identifiers

Whenever a new class instance is created, a new object identifier must be assigned
to it. This means that the system must know, for each class type and at any time,
the last object identifier used, so as to be able to compute a new object identifier.
Consequently, throughout its evolution, the system retains a function which returns
the last object identifier used for a given class type. Moreover, another information
has to be retained throughout the evolution of the system. This information consists
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of the objects that have been created and that are still alive, i.e. the object identifiers
assigned to some class instances involved in the system at a given time. This second
information is also retained by means of a function the role of which is to return, for
every class type, a set of object identifiers which corresponds to the alive (or active)
object identifiers.

For the subsequent development, let us consider a specification Spec, A =
Sem(Pres(Spec)), and the set of all types of the specification S¢ = Types(Spec).

The partial function which returns, for each class, the last object identifier
used, is a member of the set of partial functions:

Loidgpee s = {1 : S¢ — A | l(c) € A, or is not defined}

in which ﬁc = A\C \ Ucz<czzl\c/ represents the proper object identifiers of the class
type ¢ (excluding the ones of any subtype of ¢). Such functions either return, for
each class type, the last object identifier that has been used for the creation of the
objects, or is undefined when no object has been created yet.

For every class type ¢ in S¢, the computation of a new last object identifier
function starting with an old one is performed by the family of functions {newloid, :
Loidspee a — Loidspeca | ¢ € S} (new last object identifier) defined as:

(Ve,d € SO) (VI € Loidspee.a) newloid.(l) = I’ such that

z'm't§ if [(c) is undefined and ¢ = ¢,
() =< new?(l(c)) ifl(c) is defined and ¢’ = c,
l(c) otherwise.

The second function retained throughout the evolution of the system returns
the set of the alive objects of a given class. It is a member of the set of partial
functiond’t

Aoidspees = {a: S — C | C C P(A), alc) € P(A)}.

The creation of an object implies the storage of its identity and the computation of
a new alive object identifiers function based on the old one. This is achieved by the
family of functions {newaoid, : Aoidspeen X A — Aoidspeen | ¢ € S¢} (new alive
object identifiers) defined as:

(Ve, ¢ € SO) (Vo € A,)(Va € Aoidgpeen) newaoid(a,0) = a' such that

() — {Z@ U{o} ifd=c,

(c) otherwise.

!The notation P(A) represents the power set of a set A.
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Both of those families of functions newloid. and newaoid, are used in the
inference rules concerning the creation of new instances.

The set of functions {remaoid, : Aoidgpec,a X A Aoidspeen | ¢ € S€} is the
dual version of the newaoid,. family in the sense that, instead of adding an object
identifier, they remove a given object identifier and compute the new alive object
identifiers function as follows:

(Ve,d € S€) (Vo € ﬁc)(Va € Aoidgpec.a) remaoid.(a,0) = a’ such that

() — {Z@ \o} ifd=c

(¢) otherwise.

This family of functions is necessary when the destruction of class instances is con-
sidered.

We now define three operators and a predicate in relation with the last object
identifier used and the alive object identifiers functions. These operators and this
predicate are used in the inference rules of definition [5.4.6} they have been developed
in order to allow simultaneous creation and destruction of objects. For the moment
we only provide their formal definition; the explanations related to their meaning
and their use is postponed until the informal description of the inferences rules in
which they are involved. The first two operators are ternary operators which handle
an original last object identifiers function and two other functions. The third binary
operator and the predicate handle alive object identifiers functions.

A Loidgpee,a X Loidgpec,a X Lotdgpec, 4 — Loidgpec a such that

Ulc) ifl'(c) # 1(c) N1"(c) = I(c),
(Ve e SO) (' s 1")(e) = I"(e) if l'(c) =1(c) ANl"(c) # (c),

[(¢) otherwise.

A . . ,
= : Loidgpec,a X Loidgpec,a X Loidgpec, 4 such that

(Ve € S) (I' 201" (e) = () = U'(e) = 1"(e)) V (I'(c) # U"(e))

U : Aoidgpec,a X Aoidgpec.a — Aoidgpec 4 such that
(Ve € S€) (aUd)(c) = a(c) Ud(c)
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P: AOZ'dSpech X AOidSpqu X AOidSpec,A X AO’idgpec’A such that
/ /
P(ay,ay,as,ay) <

(Ve € S) (((ar(e) N ((az(c) \ ay(c)) U (az(c) \ az(c)))) = B)A
((ah(c) N ((az(e) \ a5()) U (a5(c) \ az(c)))) = DA
((a2(c) N ((ar(e) \ a1(e)) U (ar(c) \ ar(e)))) = DA
((a5(c) N ((a1(c) \ @i (¢)) U (@i (c) \ aa(€)))) = D))

5.3 State Space

In the algebraic nets community, the state of a system corresponds to the notion
of marking, that is to say a mapping which returns, for each place of the net,
a multi-set of algebraic values. However, this current notion of marking is not
suitable in the CO-OPN /5., context. Remember that CO-OPN 5., is a structured
formalism which allows for the description of a system by means of a collection
of entities organized in a hierarchical fashion. In fact, the definitional unit in a
CO-OPN specification is the context module that possibly coordinates a collection
of objects and context modules. Also, the collection of objects contained in each
contert module can dynamically increase or decrease in terms of number of entities.
We are thus primarily interested in defining the state of a context module. In order
to do this we will proceed in two steps. Firstly we will define the state of a set of
objects which are instances of a set of class modules. We will then compose this
object state with the state of a set of contert modules in order to produce the state
for an enveloping context module. As we will see, this compositional definition will
also be useful while defining the semantics of a context module. For the subsequent
development we often denote the set of ports of a context module or set of context
modules by Ports(Md). We will also denote the set of ports of the class modules
contained in a specification Spec by ClassPorts(Spec).

In terms of object management, the state of a context consists of three ele-
ments. The first two ones manage the object identifiers, i.e. a partial function to
memorize the last identifiers used, and a second function to memorize which iden-
tifiers are created and alive. The third element consists of a partial function that
associates a multi-set of algebraic values to an object identifier and a place. Such
a partial function is undefined when the object identifier is not yet assigned to a
created object.

Definition 5.3.1 Marking, Definition Domain, State of an Object Collection
Let Spec be a specification, A = Sem(Pres(Spec)), S = sorts(Spec) and

P = Places(Spec). A marking is a partial function m : Ax P — [A] such that
if o € A and p € Ps with s € S then m(o,p) € [A],. We denote the set of all

s*
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markings over Spec and A by Markspe.a. The definition domain of a marking
m € Markspec a ts defined as

Domgpec.a(m) = {(o,p) | m(o,p) is defined,p € P,o0 € ﬁ}

A marking m is denoted L when Domgpe.a(m) = 0.

The state of an object collection where the objects are instances of a set of
class modules belonging to a specification Spec is denoted by ObjStatespeca. It
corresponds to a triple (I,a,m) € Loidgpec,a X Aoidgpec.a X Markspee a.

We now possess all the information required to define the state of a CO-OPN
contert module. In order to do that we need to add to the state of a collection of
objects (see definition the state of a collection of context modules contained
by the enveloping context module.

Definition 5.3.2 State of a CO-OPN Context

Let Spec be a well-formed CO-OPN specification, A = Sem(Pres(Spec)) and
Md* = (=ZX,0,C, X, x) be a CO-OPN context module belonging to Spec.

The state of Md* is a pair (oState, cState) € CtaStategpee a prax where:

e oState € ObjStatespec,a

e cState = {(CthtatQSpec,A,Md)i()i}
where Md} € C

ie{l,...,n} 15 a family of context states

Notice that definition [5.3.2] is recursive and the stop condition consists of an
inner context that either contains only static objects and no contexts, or is empty.
Also, the states of sub-contexts are ordered in the same fashion (by the notion of
family) they are ordered in the context module specification (see definition |4.4.6]).
Finally, the state oState is dynamic in the sense that it can represent any number
of instances of objects inside a given context module.

The notion of transition system is an essential element of the semantics of a
CO-OPN jgc4+ specification. In the context of the structured operational semantics
the semantics of a system is expressed by a relation involving a state, a command (or
event) and the new state resulting from the effect of the command on the original
state.

Let us introduce the notion of transition system for a context module, which
we need to calculate the semantics of a CO-OPN specification.This transition system
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will have as states the contert module state we have defined in [£.3.2] and as events
the subset of coordination events (see definition 4.4.10)) involving only methods and
gates of the considered contert module.

Definition 5.3.3 Context Transition system

Let Spec be a well-formed CO-OPN specification, A = Sem(Pres(Spec)) and
Md* = (Z%,0,0,X,x) a CO-OPN context module belonging to Spec. Let also
L = Ports(Md*), I = Ports(C) and IO = ClassPorts(Spec). A context transition
system over Spec, A and Md* is a set of triples:

TSSpeC,A,MdX - Cta:StateSpecyAﬁde X CEA,L,(Z),(Z),A\ X Ctl’sta/tespqu’de .

The set of all transitions systems over Spec, A and Md* is denoted TSspecanax-
A triple (st, e, st') represents the occurrence of an event e between two states st and
st' and is commonly written st —s, st'. Due to the generic nature of the definition
of coordination events (see definition we use the ) parameter to avoid that
events internal to the context appear in the context transition system.

Let us now informally introduce some basic operators on markings and for the
management of the object identifiers. These operators will be intensively used in
the inference rules designed for the construction of the transition system associated
to a given CO-OPN /9., specification.

Informally, the sum of markings ‘+ adds the multi-set values of two markings
and takes into account the fact that markings are partial functions. The com-
mon markings predicate ‘>’ determines if two markings are equal for their common
places. As for the fusion of markings ‘m; < 'my’, it returns a marking whose the
values are those of m; and those of my which do not appear in m;.

Definition 5.3.4 Sum of markings, common markings, fusion of markings

Let Spec be a well-formed CO-OPN specification and A = Sem(Pres(Spec)).
Let also S = Sorts(Spec) and P = Places(Spec).

The sum of two markings is the function: 4+ : Markspec aX Markspec a — Markspee,a
defined as follows:

(Vs e S) (Vp e Py) (Vo e 2)

mi(o,p) +4I my(0,p) if (0,p) € Dom(my) N Dom(my)
mi (o, p) if (0,p) € Dom(my) \ Dom(ms)
ma(0,p) if (0,p) € Dom(ms) \ Dom(m;)

undefined otherwise.

(m1 +ma)(0,p) =
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Common markings is the predicate: ><: Markgpee,a X Markgpe,a defined as follows:

my XIme <= Y(o,p) cAxP
(Oap) € Dom(ml) N Dom(mQ) - ml(oap) = m2(07p)

The fusion of two markings is the function: < : Markspeea X Markspeca —
Markgspee,.a defined as follows:

-~

my < mg = mg such that (Yo € A)

mi(o,p)  if (0,p) € Dom(my)
(m3>(07p) = mZ(Oap) Zf (07p) S Dom(m2)\D0m(ml)
undefined otherwise

Let us also introduce an additional operator and a predicate for managing the
part of a context state which deals with keeping the states of the contained con-
text modules. Again, for the moment we will only provide their formal definition.
They will be used in the inference rules to calculate the semantics of a well-formed
CO-OPN specification and at that point in the text we will introduce their infor-
mal meaning. For the definition of these operators consider a specification Spec,

A = Sem(Pres(Spec)) and a family of context modules states {Md}, .

v {(CMStateSP@CAMd?)i}ieN X {(CthtateSpqu’Md;()i}ieNX

{(C’thtateSpqu’Md?)i}ieN — {(CmStatespechdeﬁ()i}ieN such that
SIS - UisiUU; 85 UU, s where s; = 57 = ], 8% # s; and sj # s
° undefined otherwise

for all {s;, s;,s1} € 5, {s;,s;} € S" and {s}, s}, } € 5"

Q : {(C’thtateSpqu’Md?)i}ZEN X {(CmStateSpec,Ade’i‘)i}ieNX
{ (CtIStCLtGSPEC’A’Md?)i}ZEN Such that
Q(S,5,5") < (Vs; € 8,5, €8s €8") (si # siNsi =8 )V (s; # 8] Nsi = 8))
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5.4 Component Semantics

We will now concentrate on defining the semantics of the behavioral part of CO-
OPN, which is given by the class and contert modules. Remember that a CO-
OPN /3¢, specification is composed of a set of contexrt modules possibly coordinat-
ing several other contert modules and objects. On their turn, the internal context
modules may themselves contain other context modules as we have explained in sec-
tion [4.4.6] It then seems reasonable to start by providing the semantics of a context
module by composing the individual semantics of its components. This will allow
us to define an inductive step of the definition of the full semantics of a CO-OPN
specification.

We will thus proceed in a sequence of steps, which are the following:

1. Defining the semantics of the individual objects inside a context module as-
suming they do not interact with each other. This will be done by building the
transition system of the set of possible objects which are instances of the class
modules contained in a considered CO-OPN 5.4 specification. The transi-
tion system for the possible objects of a CO-OPN /., specification will be
described by a set of inference rules describing the operational semantics of
those objects;

2. Adding to the transition system calculated in step 1 the semantics of the
context modules coordinated by the context module we are considering. In fact
we do not know these semantics (since we are in fact building the semantics of
context modules), so we will consider them as known. We may then produce
an integrated transition system where the total state includes the individual
states of the objects and of the contained context modules;

3. Calculating the semantics of the composition of all the possible components in-
side a contexrt module. This composition will be done taking into consideration
the coordination expressions which are defined at the level of the enveloping
context module;

4. Filtering the obtained transition system by only considering events which are
accessible from the interface of the enveloping context module.

The present method for calculating the semantics of a contexrt module is in-
spired from the work of Buffo in [2] and mostly from the work of Huerzeler in [6].
Huerzeler defines a generic framework for component-oriented formalisms such as
CO-OPN /¢4 We partially reuse this framework, especially in what concerns the
composition of the individual behaviors of the components inside a context module.
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First of all, we provide some auxiliary definitions used in the subsequent con-
struction of the semantics of class and context modules. Let us consider a spec-

ification Spec, A = Sem(Pres(Spec)), a class module Md® = (Q¢, P, I, X,V¥) of
type ¢ belonging to Spec. Let SA = sorts(Spec), S¢ = types(Spec), (M,G) =
classPorts(Spec), and ¥ be the global signature of Spec.

The evaluation of a set of terms of Is) x indexed by P for a given assignment
o and a given class instance o into the set of markings Markgye. 4 is defined as:

[(ty),cp]] = m such that (Vp € Places(Spec))(Vo' € A)

m(ol.p) = {[[tp]]g if o =oandpe€ P,

undefined otherwise.

Such terms form, for example, a pre/post condition of a behavioral formula or
an initial marking.

Another kind of evaluation required by the inference rules is the evaluation of
an event which consists of the evaluation of all the arguments of the methods, but
also the evaluation of the object identifier terms.

The synchronization evaluation [ [” : ObjSyncExpr oy o) (a.m.6)Ts x). —

ObjSyncExpr , (. (MG).A is inductively defined as:

[t.create]” = [t]°.create
[t.destroy[” = [t]”.destroy
[t.m(ve,...,v)]" = [t]7-m([v1]7, - - -, [va]”)
[t.g(vi,...;v)]7 = [t]7-9([v1]%, - - -, [va]”)

[sync op sync']” = [sync] op [sync]’

The object event evaluation [ ]7 : OE (1 1), (e}, (M.G)(Tx x), — OEA,{C},<M,G>,A
naturally follows from definition [4.4.6| and is inductively defined as:

[t.m(vy, ..., v)]7 = [(]°-m([o1]°, .-, [0a]7)
[t.m(vy, ..., v,) with sync]” = [t.m(v1,...,v,)]” with [sync]”

[ev with ev']” = [ev]” with [ev']”

for all:

® cu, ev € OE(TE,X)’{C}7<M:G>7(TE,X) with s € SC

S



84 CHAPTER 5. CO-OPN - SEMANTICS

sync € ObjSyncExpr ¢y ) 1e,(m,6),(Ts.x), With s € S¢
ot c (TE,X>8 with s € S¢

e m& My, . withse SC and s; € SA

® vy,...,v € (Ty x), withse S

e synchronization operators op € {//,..,®}

Note that the evaluation of any term ¢ of (T% x), with s € S© belongs to A and
then represents an object identifier. The evaluation of such terms, in the previous
definition, is essential when data structures of object identifiers are considered.

We need a similar evaluation function for coordination events. Consider a
context module Md* = (2%,0,C, X, x) belonging to specification Spec having a
set of local ports L, a set of internal context ports I and a set of internal object
ports 10. Similarly to object event evaluation, the coordination event evaluation is
derived from definition 4.4.10, For space and clarity reasons we will only provide in
this text its signature. The formal definition is analogous the one for object events:

H ]]J : CE(TE,X)vLJvIOa(TE,X)S - CEA,L,I,IO,K with s € S

Finally, the satisfaction of a condition of a behavioral or coordination formula
is defined as:

Ao Cond < (Cond=0)Vv (¥(t=1t)€ Cond . Ao = (t=1)).

5.4.1 Class Modules

We now develop the partial semantics of a class module in a CO-OPN specification.
We call it partial because at this point we only take into consideration the events
induced by behavioral formulas and not the possible simultaneous, sequential or
alternative synchronizations of those events. Also, we do not address the interaction
between the possible object instances. This interaction will be later addressed when
we will perform the composition induced by the synchronizations defined at the level
of the enveloping context module by means of coordination formulas.

In figure we depict the intuition behind the formal concept of class seman-
tics. We wish to produce a transition system which will encompass all the possible
instances of the classes present in a CO-OPN specification. The difficulty resides
in the fact that the number of objects is dynamic given that each class implicitly
possesses a " static” create and destroy method. Figure [5.1| presents a state of the
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Figure 5.1: Class Semantics

transition system we wish to produce. The state is composed of six instances of
classes A, B and C. We also include in the figure some events which are possible
from that state. It is important to notice that the state of an object collection we
have introduced in definition is able to encompass a dynamic amount of class

mstances.

Let us now define the semantics of a single class module. The semantics of
all class modules will be produced by uniting all transition systems obtained for all
class modules.

Definition 5.4.1 Partial semantics of a class module

Let Spec be a specification and A = Sem(Pres(Spec)). Let Md® = (Q¢, P, I, X, ¥)

be a class module of Spec, where Q¢ = ({c}, <% M,G). The semantics of Mdc )
the PSemgpec a(Md©) transition system (noted —o) which is the least fived point
resulting from the application of the inference rules: Class, Mono, Create, and De-
stroy defined in the following rules:

Event :: Cond = Pre — Post € ¥, do: X — A,
A,o = Cond, o € a(c)

(I a, [Pre]7) £,

Class
a (l,a, [Post]?)

do: X — A,
' = newloid.(l), a' = newaoid.(a,0), o=1(c), o & a(c)

<l7a7 J—) Leate)d <l/7a’,7 [[IHZ>

Create

o € a(c), a’ = remaoid.(a,o)

(I a, L) 220, (@, 1)

Destroy
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Mono (l,a,m) — (I',a',m')

(l,a,m +m") ——q (I',a,m' +m”)

where 1,I' € Loidgpec,a, a,a’ € Aoidgpec,a, m,m',m" € Markgpec,a, 0 € A,

and e € OEA,{C},<M,G>,2~

The inference rules introduced in definition can be informally formulated

as follows:

e The Class rule generates the basic transitions that follow from the behavioral

formulas of a class. For all the object identifiers of the class, for all last object
identifier function [, and for all alive object identifier function a, a firable (or
enabled) transition is produced provided that:

1. there is a behavioral formula Event :: Cond = Pre — Post in the class;
2. there exists an assignment o : X — A;

3. all the equations of the global condition are satisfied (A4, o = Cond);

4. the object o has already been created and is still alive, i.e. it belongs to

the set of alive objects of the class (o € a(c)).

The transition generated by the rule guarantees that there are enough values
in the respective places of the object. The firing of the transition consumes and
produces the values as established in the pre-set and post-set of the behavioral
formula.

The Create rule generates the transitions aimed at the dynamic creation of
new objects provided that:

1. for any last object identifier function [ and any alive object identifier
function a;

2. a new last object identifier function is computed (I’ = newloid.(1));

3. a new object identifier o is determined for the class (o = I'(c));

4. this new object identifier must not correspond to any active object (o &

a(c)).

The new state of the transition generated by the rule is composed of the new
last object identifier function I, an updated function o’ in which the new object
identifier has been added to the set of created objects of the class, and the
initial marking [I]?.
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e The Destroy rule, aimed at the destruction of objects, is similar to the Create
rule. The Destroy rule merely takes an object identifier out of the set of created
objects, provided that the object is alive.

e The Mono rule (for monotonicity) generates all the firable transitions from
the transitions already generated. This rule allows building the state so that
we take into consideration all the possible markings of the objects that allow
an event of the class to occur.

5.4.2 Composition Semantics for Context Modules

Let us now proceed to the composition of the semantics of the components (objects
and context modules) inside a considered context module. This will be achieved by
composing the individual semantics of those components given a set of coordination
formulas defined at the level of the considered context module. As for the individual
components, the semantics of the composition will also be given as a transition
system where the states correspond to the states of all the involved components
and the labels correspond to the events possible in that composition. Given a set of
objects and context modules let us start by defining the auxiliary notion of composed
events.

Definition 5.4.2 Composed Gate Synchronization Fxpression, Composed Method
Synchronization Expression, Composed Fvents

Let Spec be a well-formed CO-OPN specification, ¥ = (S, <, F) be the global
signature of Spec, A = Sem(Pres(Spec)) and C C S be a set of class type names.
Let also M = (M) e g- U (My) s+ e a set of class and context method ports and
G = (Gew) U (Gy) be a set of class and context gate ports where ¢ € C.

The composed gate synchronization expressions GateExpracq are built as
follows:

weS* weS*

e g(vi,...,v,) € GateExpracg for all g € (Gs,.._s,), Vi € As,
e 0.9(v1,...,v,) € GateExprac for all g € (Ges,..s,), Vi € As;, 0€ Al

o cxp op exp’ € GateExprac g for allexp,exp’ € GateExpraca, op € {//,..,®}

The composed method synchronization expressions MethodExpra c.q are built
analogously to GateExprac,c. The set of composed events CompEvac vc 5 re-
cursively built with the sets GateExpr o and MethodExpracar in the following
fashion:
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o m(vy,...,v,) € CompEvac oy for allm e (M, s.), vi € A,

o m(vy,...,v,) with exp € CompEvacmc for allm € (M, . s.), vi € As,,
exp € GateExpra c.a

o o.m(vy,...,v,) € CompEvac g for allm € (Mes,,..s.), Vi € Ag,, 0 € A,

o o.m(vy,...,v,) with exp € CompEvac o for allm € (M., . s.), vi € As,,
o€ A, exp € GateExpry c.a

o cvopev € CompEvac e for all ev,ev’ € CompEvacya, op €{//,... B}

In definition [5.4.2] we build the set of all possible events while composing the
behavior of a set of class and context modules. Notice that the dynamic aspect of
class modules is taken into consideration by the fact that we consider the object
identifiers (belonging to the object identifier algebras of the considered types) while
building the synchronizations. Composed events are similar to object events (see
definition and coordination events (see definition , the difference being
that in this case we consider all the possible events resulting from the interaction of
objects and context modules.

Composition of Event Names

In order to compose a set of components we have to take into consideration the
coordination events connecting those components. These connections allow linking
the transition systems of the individual components in order to form the composed
transition system. The calculation of the composed transition system involves two
aspects: firstly, the individual components need to hold enough resources to satisfy
the synchronization expressions in the coordination events; secondly, the labels of the
composed transition system — which identify the events of the composed transition
system — will be formed by composing the event names of the individual component
transition systems using the coordination events. Let us start by the problem of
composing event names.

Consider the set of components depicted in figure 5.2l The boxes represent
arbitrary components (objects or contert modules) with their method and gate
ports. The dashed lines inside the components represent internal synchronizations
between method and gate ports. Notice that for the sake of explanation we abstract
the representation of the resources which would be associated to the places of the
Petri Nets encapsulated by the components. The full lines between the components
indicate the synchronizations connecting components. A possible composed event
name from the example of figure [5.2] would be:
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Figure 5.2: Component Composition

ml with (92..¢3) // g1

Notice that the name of this event is built by performing a kind of transitive
closure of the connections between components. Informally, in order to build the
name of this event we need to compose some events from components C;, Cy and
C3 using the coordination event g1 with (m2..m3), as follows:

Cy: ml with (g1 // g1’)
Cy: m2 with g2 . /
- m3 with g3 ml with (g2..93) // g1

Coordination : gl with (m2..m3)

The main difficulty amounts then to, given a method port synchronization,
calculating the remainder gate synchronization taking into consideration the tran-
sitivity induced by the coordination events. In order to do this, we will start by
building an exhaustive relation that, for a method synchronization and an event
name involving that method synchronization allows us to know the remainder gate
synchronization.

Definition 5.4.3 Relation MethodEvRem

Let Spec be a well-formed CO-OPN specification, ¥ = (S, <, F) be the global
signature of Spec, A = Sem(Pres(Spec)) and C C S be a set of class type names.
Let also M = (Mcw),cqe U (My),cg- be a set of class and context method ports
and G = (Gew) yeg U (Gu)ypege be a set of class and contert gate ports where ¢ €
C. The relation MethodEvRemacma C MethodExprac .y x CompEvac e X
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GateExpracc is defined as follows. For readability we note x «— y/, for (z,y, z)
in the relation:

m e <M517--~75n)7 v; € Asi

ctzSimple M ethodSync
m(vy,...,vn) «— m(v1,...,0)/c

m € (Ms,,..s.):0i € A, 2 € GateExprac.a
m(vy, ..., v,) «— m(vy,...,v,) with z/,

ctxMethodSync

m e (Mes,...sn),vi € As;0 € A,
om(vy,...,v,) <~ om(vy,...,v,)/c

-----

obj Simple M ethodSync

m € (Mes,...sn): Vi € A0 € Ay 2 € GateExpraca
o.m(vy,...,v,) < om(vy,...,v,) with z/,

objSimple MethodSync

vyl —y ) zFe2 Feopel//, ., B}
xopx/&yopy//zopz/

compOp

z—y/.,2 —y/,ope{// . B}
zopax —yopy'/.

compEmptyOpl

v—y/.,a —y/,ope]/], .. B}
' opr—1y opy/.

compEmptyOp2

where v € MethodExpracm, y € CompEvac e and x € GateExpracq.

The first four inference rules in definition [(.4.3] are trivial and state that:
a method synchronization without a gate synchronization has no remaining gate
synchronization; an method synchronization with a gate synchronization has that
gate synchronization as remainder. Note that we treat both object and context
module components. The ” compOp” rule treats composed method synchronizations
using the usual synchronizations operators and propagate those operators to the
remainder. The last two inference rules treat the case where one of the method
synchronizations has no remainder and does not take it into consideration in the
composed remainder.

Definition [5.4.3| gives us all the possible event names in a composed system,
but does not take into consideration the coordination events. Taking the relation
MethodEvRem, let us now build a relation GateEvRem that, given a gate synchro-
nization and an event name allows knowing the remainder gate synchronization that
results from coordinating the gate synchronization with the event name.



5.4. COMPONENT SEMANTICS 91

Definition 5.4.4 Relation GateEvRem

Let Spec be a well-formed CO-OPN specification, ¥ = (S, <, F) be the global
signature of Spec, A = Sem(Pres(Spec)) and C C S be a set of class type names.
Let also M = (Mcw)eg- U (Mw),cg- be a set of class and context method ports
and G = (Gew)ypeg U (Guw)ypege be a set of class and context gate ports where
c € C. Finally let ce € CE,; ; ;07 be a set of coordination events. The relation
GateEvRema,c v,cee Met’h(’)EZvaprA,C,M X CompEvacma x GateExprac.a 1S
defined as follows. For readability we write x < y/, for (x,y,z) in the relation:

g withx € ce,x «— y/,
9<y/:

sync

vey/l ey 2 Fe 2 £eoped{//, .., B}

compop
vopv <=yYyopy'/ope
¢ yA) /¢ ! € 6 AR
compEmptyOp1 Y/ /y/ op /{// o}
vopv' <=yopy'/.
¢ yA) /¢ ! € 6 AR
compEmptyOp2 " y/ v <=y /,oped//, ..o}

vopv <=y opy/.

v<y/l,zF#eoped{//,..,d vV € GateExprac.a

enrichl /
VOop U <= y/z op v’
enrich? L y/Z7 4 7£ €, Ople {//’ ©y @}72)/ c G(It@El’p?"I&C’G
V' OpU =Y/ op 2
<Y/ 0P € ..., 0hv € GateE
emptyEnrichl veEylowed// ?9} v atebxprac,g
vop v <= y/v’
<~ 2] I G PIRRS) 9 ! 6 G t E
empty Enrich?2 vyl zFeoped{//,. @ ateLxprac.a

v op v <= y/y

where v € MethodExpracu, y € CompEvac e and x € GateExprac .

The first inference rule in definition states that if we coordinate a gate
synchronization with an event name having a given remainder, the remainder of the
coordination is the same. An application of this rule to the example presented in
figure [5.2) can be seen in the following example:
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Event : (m2..m3) with (g2 .. ¢3) .
Coordination : gl with (m2..m3) } gl with (g2 .-3)

As in the MethodEvRem relation, the ” compOp” rule in the definition of the
GateFEvRem relation allows composing several gate synchronizations coordinated
with event names by using the known synchronization operators. As previously,
the last argument of the relation includes the propagation of the operators to the
remainder gate synchronization. The “compEmptyOp1” and "compEmptyOp2” also
perform composition, but do not take into consideration empty remainders.

Finally, the last four enrich rules allow propagating additional gate synchro-
nizations to the already formed coordinations of of gate synchronizations with events.
The usefulness of this notion will become clearer in the text that follows. For the
time being let us exemplify again with the composition shown in figure [5.2}

Coordinated event : gl with (g2.. g3) ;o /
o 1//g1 2. 1
Gate Synchronization : g1’ g1/ /91" with (92 .3)/ /g
At this point we have described a fashion of composing event names that we
will use as labels while building the transition system representing the semantics of
a composed system. We now need to associate the fashion in which the event names
are built to the state of the composed system, i.e. to the available resources.

Partial Semantics of the Composed Modules

In section [5.4.7] we have introduced the semantics for a class module. With the set
of rules in definition [5.4.1] we have the transition system representing the individual
behavior of each of the objects instances of a given class module. We would now
like to to build a unified transition system including not only all the possible transi-
tion systems of the potential individual objects inside a an enveloping context, but
also the transition systems for the unified contexrts modules inside that enveloping
context. We call this transition system the unified partial semantics because it does
not take yet into consideration compositional aspects.

In figure [5.3| we present the intuition behind the formal notion of unified tran-
sition system. We take transition system produced by all the class modules in a
specification (see section and augment it by adding the transition systems of
a set of context modules. We do not yet take into consideration any interactions
between any context modules or class instances and consider that they evolve inde-
pendently. Figure |5.3[ can be seen as a snapshot of the unified transition system, i.e
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Figure 5.3: Unified Partial Semantics

it represents a state including both context modules and class instances as well as
some events possible from that state.

Definition 5.4.5 Unified Partial Semantics

Let Spec be a well-formed CO-OPN specification, A = Sem(Pres(Spec)) and
Md* = (=X ,0,C, X, x) be a CO-OPN context module belonging to Spec. Let also
S¢ = Types(Spec), (M,G) = Ports(C) U ClassPorts(Spec), MdS € Spec (0 <
j < n) be a set of class modules and Md* € C (0 < i < m) a set of context
modules coordinated by MdX. Finally let U]. PSemgpqu(Mdjc) be the transition
system (noted — ) which results from the union of the partial semantics of the class
modules of Spec and Semgpeea(MdX) be the transition system (noted —.,) which
represents the semantics of context module MdX € C.

The unified partial semantics for Md* is the transition system U P Sgpee a(Md*) C
CtaStategpee a pax X CompEva o avr,q X CtaStategpee a pax (noted —) defined by the
following rules:

€ /
0S8 ——¢ 0S

CS,0s) —, (CS,05)

includeClassEv

€ !
CS; —y; CS;

includeContext Ev , S ,
(CS™ U{cs;},08) —, (CST U{csl}, 0s)

where

o ¢,¢’ € CompEvysc g, op€{//,...®}

e 0s,08 € ObjStatespec,a, csi, cs; € CluStalegye, 4 nax
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i

o USc {(CthtateSPec’A’Md?) }ieN where Md* € C

o CS* € {(C’thtateSpqu’Md?)i}ieN\{Cthtatespec7A7Md>é} where Md* € C
and k € N

Notice that definition [5.4.5| performs a kind of ” cartesian product” between
the semantics of the object collection and the context modules.

Closure Operation

In the definition of partial unified semantics (see definition we have consid-
ered the behavior of a system including a set of class and context modules. However
we have considered both the class instances (objects) and the context modules sep-
arately. We now need a means of calculating the possible simultaneous, sequential
and alternative behaviors given a transition system involving the behavior of a set
of objects and context modules.

v, E""ll\::w:l2'-"!"‘:'”""::.2‘'

a1 1
BV p 6}/'/ By + BV,
cxi e
Vo1
BV, -
a2 .
@ .H Cx3

Figure 5.4: Closure Operation

Gx2

J

Figure [5.4] can be seen as the "next step” after the snapshot of a state of
the example wunified partial semantics transition system that can be observed in
figure [5.3 The intuition behind the closure operation corresponds to taking the
possible events for a state of the unified partial semantics transition system and
producing their possible synchronizations according to the typical operators. The
possibility of synchronizing two events depends on the resource availability in the
state we are considering. For the simultaneous synchronization of two events we
demand that is no conflict between the resources required both events. For the
sequential synchronization of two events we demand that the resources required
by the second event are available after the first event occurs. For the alternative
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synchronization we demand that resources are available for either one or the other
event.

Definition 5.4.6 Closure Operation

Let Spec be a specification, A = Sem(Pres(Spec)) and Md* = (ZX,0,C, X, x)
be a CO-OPN context module belonging to Spec. The closure operation consists of
the function Closure : TSgpee anmsax — TSspec,amax such that Closure(TS) is the
least fized point which results from the application on T'S of the inference rules Seq,

Sim, Altl and Alt2 which are defined as follows:

m) 1 meg,
<Sa <l7a17m1>> i> <Sla <l,7a,17m,1>>7 <<S,7l,7a,27m2>> & Sﬂa <l”7a,27m/2>>
eq

S
<S, (I,a,my; < m2)> AN <S”, (1" aby, mh < m/1>>

lléll”a P(alaallaa%aé)7 Q(Sa SI7SII)7
Sim <S, (l,al,m1>> =, <S', (l’,a’l,m’1>>, <S, <l’,a’2,m2)> =2, <S”, (l”,a’Q,m’2>>

<S7 <l,CL1 U a9, My +m2>> M}

(S'VsS" (I 17, a U dh,my +mh))

<S, <l,a,m)> 2N <S’, <l’,a/,m’)>

<S, (I,a,m) ades, <S’, (' a’,m')

Altl

<S, <l,a,m>> =L <S’, <l’,a’,m’)>
<S, (l,a,m>> 2%, <S’, (l’,a’,m’>>

Alt2

where

o my,my, mao,mh in Markspeea and [,I',1" in Loidspec,a
o a,d,ay,ay,az,ay in Aoidgpeca and ey, es in CompEvy sc
e S 5. 8" ¢ {(thStateSPec’A’Md?) } N where Md* € C

IS

The inference rules of definition [5.4.6| can be informally formulated as follows:

e The Seq rule infers the sequence of two transitions provided that the markings
shared between m/ and msy are equal.
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e The Sim rule infers the simultaneity of two transitions, provided that some
constraints on the [ and a functions are satisfied. The purposes of these con-
straints are:

1.

to avoid that an event can use a given object being created by the other
event (i.e. which does not already exist);

to avoid that an event can use a given object being destroyed by the other
event (i.e. which does not exit any more).

Informally, the operators defined in section [5.2] are used to:

1.

U éll” avoids the conflicts when simultaneous creation is considered. Re-
member that the assignment of a new object identifier is handled by a
different function for each type. Consequently, this characteristic does
not permit the simultaneous creation of two objects of the same type.

. I' Ay I" combines the last object identifier functions according to the

creations involved in e; and es;
a U a’ makes merely the union of the a and a’ for each type;

the predicate P(aq,a},as,al) guarantees that the objects created or de-
stroyed by the events e; do not appear in the upper tree related to the
event e; and vice versa; more precisely, for each type ¢ the active objects
of a1(c) (and a)(c)) and the “difference” between as(c) and a)(c) have
to be disjoint, as well as the active objects of as(c) (and a)(c)) and the
“difference” between a;(c) and d/(c).

e The Alt1 and Alt2 rules provides all the alternative behaviors. Two rules are
necessary for representing both choices of the alternative operator ‘@’.

In consequence, several intuitive but important intended events can never occur
in a system that is built by means of such formal system. These are :

. the use of an object followed by the creation of this object;
the destruction of an object followed by the use of this object;

the creation (or destruction) of an object and the simultaneous use of this

object;

. the creation (or destruction) of an object and the simultaneous creation (or

destruction) of another object of the same type;

the synchronization of the use of an object with the creation (or destruction)

of this object;
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6. the multiple creation of the same object;
7. the multiple destruction of the same object;

8. the destruction followed by the creation of the same object;

Compositional Semantics

We have introduced with the closure operation (see definition a fashion of
calculating the behaviors induced by the synchronizations of elementary behaviors.
However we have still to calculate the behaviors induced by the coordination events
implied by the coordination formulas declared at the level of the enveloping context
module. In order to this we now need the composition of event names we have previ-
ously described in section [5.4.2] In particular we are interested in the Gate EvRem
relation (noted = < y/.) we have introduced in definition [5.4.4]

Cx1

cxa

Figure 5.5: Composition Solution

Figure depicts the intuition behind the notion of calculating the composi-
tion solution of a transition system given a set of coordination events. The figure
presents a state of a transition system including the integrated behaviors of class
instances and contexrt modules. For clarity reasons we omit the events which are
possible from this particular state. The coordination events are depicted as the
lines connecting gate ports to method ports. With the Gate FvRem relation are able
to calculate all the possible composed event names resulting from the transitivity
induced by coordination events. From those composed event names we are only
interested in those for which there are sufficient available resources.

Definition 5.4.7 Composition Solution

Let Spec be a specification, A = Sem(Pres(Spec)) and Md* = (=X, 0,C, X, x)
be a CO-OPN context module belonging to Spec. Let also S¢ = Types(Spec), L =
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Ports(Md*), I = Ports(C), 10 = ClassPorts(Spec) and (M,G) = I UIO. Fi-
nally let T'S € TSgpec,a,max be a transition system (noted —c) and ce € CE, | |1 7
be a set of coordination events. The composition solution consists of the fﬁﬁctz’én
Comp : CE, ; ;104 X TSspecamax — TSgpeearax such that Compe.(T'S) (noted
—s) is the least 7ﬁ1,:6d point which results from the application of the following rules:

€ /
) § —¢ S
include
s —¢ 8

l’éll”, P(al,a’l,ag,.aé), Q(S,S5",5"), x < y/. € GateEvRem y sc p1 G ces
<S, <l,a1,m1>> Mg <S’, (l’,a’l,m’1>>, <S, <l’,a’2,m2>> AN <S”, <l”,a’2,m’2>>

rest -
(S, (l,a1 Uaz, my + mo)) munthz, (S'VsS" (I oy 17, ay U dh, my +mh))
l’éll”, P(ay,al,as,a;), Q(S,5",5"), v <= y/. € GateEvRem s sc v ce
oRest <S, (l,al,m1)> Ms <S’, <l’,a’1,m’1)>, <S, (l’,a’Q,m2>> . <S”, (l”,a’z,mé»
(S, (l,a1 Uag,my +ma)) =5 (S'VgS" (I 51", dy U dy, m) + mb))
where

® mc (Msl,...,sn)

o my,my, mag,mby in Markspee,a and [,I',1" in Loidspec,a
/ / ! N

® a,d,ay,al,as, ay in Aoidgpec A

e 5,5 5" ¢ {(CmStheSPechvM@()i}ieN where Md} € C

The similarity between the rest and noRest rules in definition [5.4.7] and the
stm rule in definition [5.4.6| is not fortuitous. We want to produce the composed
events only in the case where there are sufficient resources so that the synchro-
nization of all the parts of the composition is allowed. This is where the 2 < y/,
relation comes into play by "testing” if the ‘y’ event is possible in order to produce
the composed event. The difference between the rest and the noRest rules resides in
the fact that with the former we have a remaining gate call in the composed event,
while the later there is no remaining gate call.

Context Semantics

At this point we have all the definitions necessary to calculate the semantics of the
components of a context module (class instances and context modules) as well as
their composition. We are however missing the interaction of the semantics of the



5.4. COMPONENT SEMANTICS 99

components with the interface of the enveloping contexrt module. This interaction is
also defined by coordination formulas and implies: the synchronization of the method
ports of the enveloping context module with the method ports of the components;
the synchronization of the gate ports of the components with the gate ports of the
enveloping context module.

Iy
m(+
N,

m1
cx
~, MZ
Crz
a

[ 1
HORC,

Figure 5.6: Context Filter

We call this additional operation filtering and an intuition for its semantics
can be observed in figure 5.6 Notice that the mapping of the ports can be more
than one-to-one as is exemplified by the ‘m with m1®&m?2’ synchronization. This
example points out that the filtering operation restricts the possible events for the
components inside the enveloping context module.

Before providing the formal definition of the filter function let us introduce
the possible coordination events available for a context module.

Definition 5.4.8 Coordination events

Let Spec be a well-formed CO-OPN specification, ¥ = (S, <, F) be the global
signature of Spec and A = Sem(Pres(Spec)) be a Y-algebra. Let also x be a set
of coordination formulas over a set X of S-sorted variables. Finally let o be an
assignment of X in A. The set of coordination expressions CoordEva , x is built as
follows:

Vo, ¥(cond = coordExp) € x . A, 0 = cond = [coordExp]°® € CoordEva . x

Definition 5.4.9 Context Filter
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Let Spec be a specification, A = Sem(Pres(Spec)) and Md* = (ZX,0,C, X, x)
be a CO-OPN context module belonging to Spec. Let also S¢ = Types(Spec),
L = Ports(Md*), I = Ports(C), IO = ClassPorts(Spec), (M,G) = L and
(M',G") = TUIO. Finally let TS € TSgpecanmax be a transition system (noted
—¢) and CE € CE, ; ; ;o 1 be a set of coordination events. The context filter con-
sists of the functioﬁﬁ’iltér : CE, 11104 X TSspec,amax — TSspec,amax such that
Filter.s(T'S) (noted —¢) is the least fixed point which results from the application
of the following rules:

m withmezp € CE, s —2,_ &'

methodSync

m /
S —¢ S

m with mexp € C'E,
mexp with gexp ,

gexp = gateFop(gexp), s ——————¢ s

m with gexp’ ,
—————f S

methodGateSync

{m with mexp, m' with mexp’} CCE,
gexp” = gateFop(gexp), gexp” = gateFop(gexp'),

mexp with gexp op mexp’ with gexp’ ,
c

compOp m with gexp’’ op m' with gexp'"’ o
f
{m with mexp, m" with mexp'} C CE,
1 mezxp with gexp op mexp’ ’
gexp” = gateFop(gexp), s c
compEmptyOpl m with gexp’ op m’ ,
fS
{m with mexp, m' with me:vp’} C CFE,
1 mexp op mexp’ with gexp ’
gexp” = gateFop(gexp), s c
compEmptyOp2 m op m' with gexp” s

f

where

L mum/ € (Msl,...,sn)

o mexp, mexp’ € MethodExpra sc o and gexp, gexp’ € Gate Expra sc o

o gexp”, gexp” € GateExpry sc ¢

Let us finally introduce the semantics for a given context module. The seman-
tics is calculated as a composition of the Closure (see definition |5.4.6)), Comp (see
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definition [5.4.7)) and Filter functions (see definition [5.4.9) applied to the unified
transition system obtained from the class modules and context modules coordinated
by that context module.

Definition 5.4.10 Context Semantics

Let Spec be a specification, A = Sem(Pres(Spec)) and Md* = (=X, 0,C, X, x)
be a CO-OPN context module belonging to Spec. The semantics of Md* — noted
Semgpee,a(Md*) € TSgpee anax — is calculated as follows:

Semgpec,A(de) = Filterce(Closure(Compce(Closure(UPSSpecyA(de)))))

where ce = CoordEvy , x .

Note that the definitions of context semantics and unified partial semantics
(see definition are mutually recursive, thus allowing the calculation of the
semantics of the coordinated context modules. As we have previously stated, the
base case for the recursion consists of context modules that are either empty or only
contain class instances. Notice also that we apply the Closure function twice in the
equation in definition[5.4.10], once before and once after the application of the Comp.
The invocation before is due to the fact that the composition can only be calculated
if all the synchronized elementary behaviors already present in the transition system
— due to the fact that coordination events may involve synchronizing with composed
behaviors. The invocation after is due to the fact that the C'omp function introduces
a new set of events in the transition system which may also be synchronized by the
typical operators.

5.5 CO-OPN Specification Semantics

We can now define the semantics of a CO-OPN/q., specification. Intuitively the
semantics of such a specification consists of the semantics of the topmost context
module in the containment hierarchy. However, it is possible to define several top-
most context modules in the same specification. We thus define the semantics of
a CO-OPN /s, specification as the union of all the semantics of all the topmost
context modules in that specification.

Definition 5.5.1 Semantics of a CO-OPN /o.y Specification

Let Spec be a specification and A = Sem(Pres(Spec)). The semantics of Spec
is noted Sema(Spec) and is defined as follows:
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Sema(Spec) = J; Semgpee,a(MdY), such that MdY is the first element of the partial
order ©; C D, (1 <i<n).

In definition we use the notion of partial order in order to find the topmost
context modules. The possible partial orders are calculated on the ng(pec relation we
have introduced in section [4.4.7. The topmost context modules correspond to the

first elements of the existing partial orders in Dy,

5.6 Summary

In this chapter we have progressively defined the semantics of a well-formed CO-
OPN /.44 specification. We have started by the definition of the algebraic models
of a CO-OPN specification which consist of both the models of the ADT modules of
the specification and a particular kind of models called the object identifier algebra.
The object identifier algebra has two purposes: on the one hand it allows handling
object identifiers in a dynamic fashion; on the other hand it includes mechanisms
for casting an object to either a subtype or a supertype. We have then introduced
a number of sets of functions for manipulating object identifiers. These sets of
functions are later used in order to model the state of a CO-OPN specification.
They include the calculations of the last object identifier for a given type, the set
of alive objects for a given type and the new set of alive object after an object has
been created or destroyed. All the definitions of the algebraic models of a CO-OPN
specification and of the functions for manipulating object identifiers were directly
taken without change from [58].

We have then proceeded to the definition of the state of a CO-OPN con-
text. This definition of state is inspired from the previous definition in [58] which
concerned a dynamic network of objects. We have introduced a new notion of state
which is recursively defined in order to include the states of the coordinated contexts.
In other words, the state of each contert includes the state of a dynamic network
of objects and the states of the contexts it coordinates. We have also defined the
notion of context transition system which corresponds to a typical transition system
where the states are CO-OPN context states and the transitions are events of the
context module.

In order to define the semantics of a CO-OPN specification we have started
by defining the semantics of a context module. Our definition is inspired from the
work of Huerzeler [6] which studies the semantics of a set of component evolving
concurrently and collaborating by being synchronized. The framework introduced
by Huerzeler was too abstract to be directly applied to CO-OPN specifications as it
considered very simplified components. A large part of our work was then to adapt
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the existing approach to the hierarchical definition of CO-OPN components, which
can be both objects or contexts.

The semantics of a CO-OPN context module Ctx is calculated in a sequence
of steps:

e We first calculate the semantics of a set of CO-OPN classes involved in the
definition of C'tx by producing the transition system reflecting the elemen-
tary behaviors the classe’s instances. The set of inference rules allowing this
calculation is the same as the one presented in [58];

e We then perform a kind of ” cartesian product” between the transition system
calculated in the previous step and the transition systems representing the
semantics of each of the contexrt modules coordinated by Ctz. The operation
produces a new transition system called the unified partial semantics, the states
of which encompass the states of all the components of Ctz and the behaviors
of. which include the behaviors of all the components of Ctx;

e A closure function is then applied to the unified partial semantics of C'tx pro-
ducing a new transition system including new behaviors which are possible
synchronizations of the behaviors of C'tz’s components. The definition of the
closure operation is inspired from [58] but was extended to take into consid-
eration the state of contexrt modules. A number of particular operators were
developed for that purpose;

e The transition system calculated in the previous step is then used in con-
junction with the coordination formulas of Ctx. The purpose is to produce a
new transition system including the behaviors resulting from coordinating the
components of Ctx. The method is inspired from [6] but we were obliged to
completely review the definitions in order to adapt them to CO-OPN;

e A new closure operation is applied to the transition system defined in the
previous step. The purpose is to recalculate the behaviors resulting from
synchronizing the coordinated behaviors calculated in the previous step;

e The behaviors present in the transition system calculated in the previous step
are filtered taking into consideration the interface of C'tx.

Finally we have introduced the semantics of a well-formed CO-OPN /5.1, spec-
ification Spec as the union of the semantics of all the topmost context modules of
the specification. We define a topmost context modules of the specification as all
the first elements of the partial orders possible on the ” contains” binary relation
between the context modules of Spec.
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Chapter 6

Testing and CO-OPN State of the
Art

In this chapter we will present the testing background our approach is based on.
Previously to our work, Cécile Péraire and Stéphane Barbey have written their
Ph.D. theses [4, [5] on model-based test case generation from CO-OPN ), specifica-
tions. Their approach was based on the BGM testing theory by Bernot, Gaudel
and Marre [3]. While BGM uses as specification language algebraic specifications,
CO-OPN/; is a formalism mixing algebraic specifications, Petri Nets and concepts
of Object Orientation. This said, Péraire and Barbey had to adapt BGM in order
to keep the same theoretical framework.

We will start by presenting the original BGM theory and the way in which
it frames test selection. After this we will introduce the adaptation of BGM to
CO-OPN 5, which includes some important changes in the assumptions originally
made in BGM, in particular in terms of the test formalism. We will finalize the
chapter by pointing out some deficiencies on the work done by Péraire and Barbey
and proposing improving the state-of-the-art notably at the level of the usability of
the approach and the associated methodology.

6.1 BGM Theory

The BGM theory is a kind of Model-Based Testing which aims at producing tests
for SUT’s based on models which are algebraic specifications. In the following pre-
sentation we will not concentrate on the details of the theory concerning algebraic
specifications (which can be found in [30]), but will rather provide a generaliza-
tion of the framework which is applicable to any sufficiently formal specification

105
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language. With the term sufficiently formal we mean that a model in that specifi-
cation language should define the SUT’s expected behavior in a fashion that tests
for that SUT may be computed in an automatic (or semi-automatic) fashion. This
following presentation of the BGM theory is inspired by the work of Gaudel [41] and
Péraire [4].

The traditional view on testing which was initially stated by Myers in the book
?The Art of Software Testing” [21] is the following:

"Testing is the process of executing a program with the intent of finding errors.”

However, given that a program (or SUT) has typically an infinite amount of behav-
iors, we can also state that:

”Proving that a system does what it is intended to do by testing it is impossible.”

In fact, proving that an SUT does what it is intended to do is an activity that
pertains to the domain of techniques such as model checking or theorem proving
which we have briefly mentioned in chapter [ The BGM theory, however, sees
the testing activity as proving that the SUT behaves as the specification predicts.
This proof is accomplished by executing the SUT with a practicable test set derived
from the specification. By practicable we understand that the test set should be
executable in a finite "reasonable” amount of time. This may sound contradictory
as the necessary test set to perform such a proof is in general infinite, given the
infinite amount of behaviors present in the specification. Despite, we may claim
that the proof holds if the used test set has the following properties:

e wvalidity: if a test set accepts an SUT, then that SUT is correct; in other words,
no incorrect SUTs are accepted by the test set.

e unbiasedness: if an SUT is correct, then the test set accepts it; in other words,
no correct SUTs are rejected by the test set.

The success of the approach relies then on selecting from an SUT’s specifi-
cation a wvalid and unbiased test set — also called a pertinent test set — which is
also practicable. BGM proposes performing this selection by stating well understood
hypothesis about the behavior of the SUT — typically "1 to n” or "m to n” gen-
eralizations of certain quantifiable aspects of the behavior of the SUT. Using these
hypothesis, it is possible to reduce the initial exhaustive and possibly infinite test
set obtained from the specification. By devising a number of such generalizations
about the SUT the test engineer may reach a pertinent (valid and unbiased) and
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practicable test set — but only if the generalizations contained in those reduction
hypothesis about the SUT are true, which may not always be possible to prove.

One of the main advantages of the BGM theory is that it relies on the quality
of the reduction hypothesis made by the test engineer in order to devise a test set
that "proves” that an SUT is correct according to its specification, or in the failing
case, discovers implementation errors. The approach mimics the traditional test set
construction where, in order to build a "reasonably sized” test set, a test engineer
uses his/her experience to generalize a number of selected behaviors to the full
behavior of the SUT.

Notice that it would also be possible to state hypothesis about the behaviors
contained in the specification rather than about those contained in the SUT. How-
ever, given that the specification is normally described at a more abstract level than
the SUT and/or that the specification may be incomplete regarding the SUT, it is
more semantically meaningful for a test engineer to state the hypothesis about the
object that is being tested.

Formalization of the Approach

Let us now introduce a formalization for the BGM theory. The formalization is
useful not only to state the theory in a clear fashion, but also in order to provide a
precise notation for the subsequent development of this thesis.

In the text that follows we will use the following notations: Spec, the class of
all specifications written in the considered specification language; Prog, the class
of all SUTs written in the chosen implementation language; Test, the class of all
test sets that can be produced using the chosen test language; Hyp, the class of all
reduction hypothesis we can write in the chosen hypothesis language.

Definition 6.1.1 Pertinence (Validity and Unbiasedness)

Let P € Prog be system under test (SUT), SP € Spec be a specification
for that SUT and Tsp € Test be a set of tests derived from SP. Let also FC
(Prog x Spec) be satisfaction relation between SUTs and specifications and Fo C
(Prog x Test) be an oracle satisfaction relation between SUTs and test sets. If Tsp
1 a pertinent test set, then the following equivalence holds:

P':SP<:>P|:()TSP

Definition concentrates both the concepts of validity and unbiasedness.
As we have seen before, validity stands for the fact that 7if a test set accepts an
SUT, then that SUT is correct” or, in error detection terms, any error in an SUT
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will be detected by a valid test set. Validity corresponds to the right to left direction
of the equivalence in definition |6.1.1

PlonSp=>P':SP

On the other hand, unbiasedness stands for the fact that ”if an SUT is correct,
then the test set accepts it” or, in error detection terms, no errors will be detected in
correct SUT by an unbiased test set. Unbiasedness corresponds to the left to right
direction of the equivalence in definition [6.1.1}

P'ZSP:>P|20TSP

As was noted by Weyuker and Ostrand in [59], an obvious test set that guar-
antees both wvalidity and unbiasedness is the one that covers all the behaviors ex-
pressed in the specification. Given a specification SP, we will note Exhaustsp the
exhaustive test set that contains all the behaviors modeled by SP. Checking the
satisfaction of the Exhaustsp test set by an SUT implementing S P corresponds in
fact to a proof of correctness of the SUT with respect to SP. However, as we have
previously mentioned, a test set covering all of the specification’s behavior is usually
infinite, making it not practicable in the general case.

Hypothesis for Test Selection

In order to tackle the fact that the exhaustive test set is typically infinite, the BGM
theory proposes stating hypothesis that generalize the correct implementation of
certain behaviors of the SUT to the correct implementation of the whole SUT. By
taking those generalizations into consideration we are able to reduce the size of the
exhaustive test set needed to cover all of the specification’s behavior.

Let us consider the example of a software controller for a simplified Drink
Vending Machine (DVM) depicted in figure . Assume the machine sells five
kinds of drinks: dI and d2 costing 1CHF, d3 costing 2CHF and d4 and d5 costing
3CHF. A user wanting to buy a drink would insert a number of CHF coins in the
DVM and would select the desired drink. If the inserted money is enough, the DVM
distributes the drink and possibly some change. Otherwise the DVM alerts the user
for the fact that the inserted money is not enough.

Even in such a small system as the simplified DVM controller one may find a
very large, if not infinite, amount of behaviors. For example, one could be able to
insert a very large number of coins in the DVM before selecting the drink. While
testing the DVM, we could envisage a test engineer stating the following hypothesis
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insert coin {Coin) ——m= Drink E— not enough money
Vending
Machin

seflect drink (Drink) ———»= e —  give drink (Drink, Change)

Figure 6.1: Simplified Drink Vending Machine

about its correctness:

" If the DVM works well while buying one drink, then the DVM works well for
buying any available drink.”

This hypothesis corresponds to a 71 to n” generalization of the behavior of
the DVM, where we generalize the correction of the implementation of the choice of
one drink to the correction of the implementation of the choice of all drinks. In the
BGM theory a "1 to n” generalization is called a uniformity hypothesis and can be
formalized in the following fashion:

Definition 6.1.2 Uniformity Hypothesis

Let f € Test be a test and v be a variable of f of a type T' (of the chosen test
language), ranging over a domain D. A uniformity hypothesis on the domain D for
an SUT P € Prog is the following assumption:

Vio €D . (PE f(tg) = (Yt € D . PE f(t1))

In definition [6.1.2| we mention the existence of a variable v € D in test f. By
this slight abuse of notation we mean to indicate that f corresponds to a test set
resulting from instantiating v to all its possible values in D. Note that if we consider
the above hypothesis example about the DVM, variable ¢, corresponds to the drink
chosen to represent the whole set of available drinks.

It is relevant to mention that in the work of Gaudel [41] and Péraire [4] the
types in the testing language are algebraic types. For the sake of generality and
simplicity of the presentation, in definition we have relaxed that assumption.
We simply consider the test language includes a number of types to describe the
possible dimensions of a test case.

Another possible hypothesis about the correctness of the DVM would be:
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"If the DVM works well for sequences of coin insertions up until 10 coins, then the
DVM works well for any number of coin insertions.”

In this case the hypothesis corresponds to an ”"m to n” generalization of the
correctness of the behavior of the DVM. This kind of hypothesis in the BGM theory
is called a regularity hypothesis and can be formalized as follows:

Definition 6.1.3 Regularity Hypothesis

Let f € Test be a test and v be a variable of f of a type T of the chosen
test language, ranging over a domain D. Let also o be an interest function taking
as argument a value of a type T and returning a natural number. A regularity
hypothesis for a program P € Prog is the following assumption:

(Mtoe D . (afty) <k=PE f(ty)) = (Vtr € D . PE f(t1))

Coming back to the hypothesis about the insertion of coins, ¢y corresponds
to all the insertions of coins up until 10 — the natural £ number which results in
applying the complexity function « to ty. Normally complexity functions return
some sort of syntactically measurable quantity present in the values of the testing
language types.

As we have previously seen, in the BGM theory we are only interested in valid
and unbiased test sets. However, if we are using a series of hypothesis about the
SUT in order build up the pertinent test set, we need to review the definition of
pertinence we have provided in [6.1.1

Definition 6.1.4 Pertinence assuming Hypothesis about the SUT

Let Tsp € Test be a test set obtained by assuming a set of hypothesis H C Hyp
about a SUT P € Prog with specification SP € Spec. Let also EC (Prog x Spec)
be a satisfaction relation between SUTs and specifications and Fo C (Prog x Test)
be an oracle satisfaction relation between SUTs and test sets. Tsp is a pertinent
test set if the following implication holds:

H:>(PFZSP<:>PionSP>

We can then imagine the test selection activity as: 1) the act of devising
a number of uniformity and/or regularity hypothesis about the behavior of the
SUT; 2) given a specification SP of the SUT, applying the selected hypothesis to
the exhaustive test set EFxhaustsp in order to reduce it to a practicable size while
keeping pertinence.
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In this line of thought, it seems natural to think about any pertinent test set
for a given SUT as attached to a set of hypothesis about that same SUT. More
formally, let us introduce the notion of testing context.

Definition 6.1.5 Testing Context

Let H C Hyp be a set of hypothesis about an SUT P € Prog, SP € Spec a
specification of P and Tsp a set of test cases extracted from SP. A testing context
for P and SP is a pair (H,Tsp) where Tsp is pertinent if P satisfies hypothesis H.

Given the notion of testing context presented in [6.1.5] it becomes useful to
define a preorder relation between testing contexts.

Definition 6.1.6 Context preorder relation

Let TC = (H,T) and TC' = (H',T") be two testing contexts for a given SUT
P € Prog. We say that TC’ refines TC (noted TC < TC") if and only if the
following conditions hold:

e The hypothesis H' are stronger than the hypothesis H :
H = H
e [f the hypothesis H' about P hold, then T" detects as many errors as T':
H = (PFoT = PFoT)

o The test set T 1s contained in the test set T':

TCT
We can now state the following theorem:

Theorem 6.1.7 Preservation of Pertinence

Assume a specification SP € Spec of an SUT P € Prog and two test contexts
(H,Tsp) and (H',T{p) such that (H,Tsp) < (H',T(p). If (H,Tsp) is pertinent
then (H',T&p) is pertinent.

Proof: trivial by construction.
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We can now use the idea of refinement presented in in order to define
a methodology for selecting pertinent testing contexts for a specification SP of an
SUT P. This can be done starting with the testing context (H,n, Exhaustsp) —
where H,,;, corresponds to the empty set of hypothesis — and producing a sequence
of refinements by applying increasingly stronger hypothesis about P. The goal is
to eventually reach a pertinent test set with a reasonable size. This process can be
observed in figure [6.2] where the test selection by refinement goes as follows:

(Hppin, Bxhaustsp) < ... S(H, Tép) S (HY TLp) <0 < (H, Tsp)

N

[ T
Application of H S0 / Reduction of
Hypothesis Hi Tsp the Test Set

[ NN\

v / H \ \is/ v

Figure 6.2: Test Selection by Context Refinement

Notice that if we refine the testing context (H,,;,, Exhaustsp), the unbiased-
ness property is guaranteed by the fact that each refinement is a subset of the
exhaustive test set. Given that the exhaustive test set is unbiased by construction
(since it is derived from the specification), a subset of the exhaustive test set cannot
discover any more errors than the ones described in the specification and is thus
unbiased too. In fact, the only fashion in which it would be possible to refine an
unbiased testing context into a biased one would be to add tests covering behaviors
not present in the specification — which is by definition impossible.

On the other hand, validity is only guaranteed if the hypothesis about the SUT
which are introduced at each step of the refinement hold. Since the hypothesis are
generalizations of the correctness of the behavior of the SUT, the danger is that the
test engineer states hypothesis which are too strong. If the hypothesis do not hold
it may happen that validity is not kept because the obtained test set does not cover
all relevant behaviors as stated in the specification. It then becomes possible for an
SUT to satisfy the test set even if it does not correctly implement the specification.

Coming back to the DVM example, in order to produce a pertinent and prac-
ticable test set we would formalize the uniformity and regularity hypothesis we have
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stated above — using an appropriate hypothesis language — and would use them
to refine the exhaustive test set derived from the DVM specification. The order of
the application of the hypothesis is not relevant, as long as the SUT satisfies them.

Up until now we have only discussed hypothesis stated by the test engineer
about the SUT. However, given that the specification is expressed in a formal fashion,
it is possible to automatically explore that formal definition to complement the
human hypothesis. Imagine we have a specification of the DVM where both the
behaviors of inserting money and of selecting a drink are modeled. Clearly, in order
to model the selection of the drink it is necessary to model three distinct behaviors:

e the buyer hasn’t inserted enough coins and cannot buy the selected drink;

e the buyer has inserted just enough coins for the selected drink, gets the drink
but no change;

e the buyer has inserted too many coins for the selected drink, gets the drink
and some change.

Given that these behaviors have to be specified by some formal conditions, we
could envisage exploring the semantics of those conditions in order to find uniformity
domains for the operation selecting the drink. In particular for the select drink
operation it would be interesting to choose only one drink per behavior stated in
the items above. Imagine the user has inserted 2CHF in the machine. Then it
would be possible to test the three possible behaviors of drink selection by choosing
one drink per behavior. The possible sets of drinks to select for testing the three
domains would be {d1, d3, d5}, {d2,d3,d4}, {d1,d3,d4} or {d2,d3,d5}. Notice that
we are using the specification to discover domains where the behavior of the SUT
in similar. We can thus apply uniformity hypothesis to those domains in order to
choose one drink per behavior. It would then be possible to choose only one of the
sets of drinks above in order to test the select drink behavior after having inserted
the 2CHF.

The hypothesis discovered by using the specification are a special type of uni-
formity hypothesis and are named in BGM wuniformity hypothesis with subdomain
decomposition. They correspond to a kind of white box testing of the specification
since symbolic techniques (as we have seen in chapter [2) are used in order to expose
the subdomains.
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6.2 Adaptation of the BGM theory to CO-OPN ,

In order to apply the BGM theory to CO-OPN , in a practical fashion we have to
tackle several problems. Firstly, we have to choose a test language for CO-OPN ;.
Then, the exhaustive test set for a CO-OPN /, specification has to be built. Finally,
there needs to be some sort of mechanism with which we can express hypothesis
about the correctness of the SUT in order to reduce the exhaustive test set for a
CO-OPN; specification to a pertinent and practicable one.

In this section we will start by introducing the test formalism adopted for
CO-OPN , specifications. The original BGM theory [3] was devised having in mind
algebraic specifications. In this setting, both the specifications and the test cases are
expressed using algebraic equations where the left and the right side of the equation
are terms of the same sort. For CO-OPN j, specifications Pérarire and Barbey have
chosen to use as test formalism the HML (Hennessy-Milner Logic) [35] temporal
logic. Given the fact that CO-OPN ), specifications represent state-based SUTs
with possible hidden state changes, we need a test formalism suitable to provide an
observational equivalence relation between specifications and SUTs. As we will show
HML is a suitable formalism to provide this equivalence relation. It also proposes
an interesting syntax for the expression of test cases.

6.2.1 CO-OPN , equivalence

As we have seen in chapter , a CO-OPN/, specification has a transition system
semantics. Also, as explained in [I}, the CO-OPN , equivalence corresponds to the
bisimulation relation between the transition systems denoting the semantics of CO-
OPN ), models. Bisimulation [60] is interesting in the context of testing because it
disregards state comparison and only concentrates on knowing if two systems always
allow the same events after having executed the same prefix starting from an initial
state. Given that the state of an SUT is not directly observable (remember we are
doing black-box testing), bisimulation offers an observational equivalence relation
to allow the comparison. On the other hand, the internals of an SUT are irrelevant
as long as it behaves as the specification predicts.

Definition 6.2.1 Strong bisimulation

A strong bisimulation between two transition systems T'S1, TSy is the relation
R C State(T'Sy) x State(T'Sy) such that:

o if sty Rsty and st, = st| € TS, then there is sty — sty € T'S,
such that st| R st},;
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o if sty Rsty and sty N sty € T'Sy then there is sty N sth € TS,
such that st R st};

° Stzlnlt RStZint

We say that T'S; and T'Sy are strongly bisimilar, if there exists such a non-empty
relation R, and we denote this by T'S1 < T'S,.

This said, we can now formally define for CO-OPN ; a notion of satisfaction
between a specification and an SUT we have generically introduced in section [6.1]
In the text that follows we will use the function Event(SP) which returns all the
events of a CO-OPN 5 specification SP.

Definition 6.2.2 Satisfaction relation between SUTs and CO-OPNy specifications

Let P € Prog be an SUT and SP € Spec be a CO-OPN/y specification. Let
also G(P) = (Q1, Event(P), —1,11) be a transition system denoting the semantics
of P and G(SP) = (Qa, Event(SP),—2,i2) be a transition system denoting the
semantics of SP. Assuming there is a one-to-one morphism between the signatures
of P and SP, the satisfaction relationship & C Prog x Spec is defined as follows:

PE SP < G(P) & G(SP)

In the context of BGM, the first step towards building a test set is to build an
exhaustive test set from a CO-OPN ), specification. Definition is interesting
because it provides us with a formal basis to extract that exhaustive test set. In
fact, the exhaustive test set would cover all the scenarios interesting to establish
the strong bisimulation equivalence between a specification and an SUT. As we will
show in the next section, HML is an appropriate formalism for expressing those test
sets.

Finally, notice that in definition [6.2.2) one of the conditions is that there exists
a one-to-one morphism between the signatures of P and SP. This is a necessary
condition to establish strong bisimulation as it allows comparing events occurring
in the specification and events occurring in the SUT. In the remainder of this thesis
we will assume this hypothesis is true for the systems we are testing.

6.2.2 Test Language - The HML Formalism

HML is a simple temporal logic built to express properties of processes. Let us
start by establishing the syntax of possible HML formulas for a given CO-OPN
specification.
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Definition 6.2.3 Syntaxr of HM Lgp

Let SP € Spec be a CO-OPN, specification, G(SP) = (Q, Event(SP),—,1)
a transition system denoting the semantics of SP and Event(SP) the set of all
events of SP. The syntax of the HML formulas for SP — noted HM Lgp — 1is built
as follows:

e T € HMLgp
o f€HMLgp = (~f) € HMLgp
e f.g€ HMLgp = (f Ng) € HM Lgp

o fe HMLsp = ({e)f) € HM Lgp where e € FEvent(SP)

Notice that the syntax of HM Lgp includes any possible formula involving the
events of the specification SP. The semantics of HM Lgp is defined in terms of
the satisfaction of the formulas of HM Lgp by the transition system denoting the
semantics of specification SP.

Definition 6.2.4 Semantics of HM Lsp

Let SP € Spec be a CO-OPN/y specification and G(SP) = (Q, Event(SP), —
;i) € T' a transition system denoting the semantics of SP and a state ¢ € Q, the
satisfaction relation Fgyrng, C 1T X Q X HM Lgp is defined as:

o G,qFmumrgy T
e G.qFumrsy (0f) © G qFumrgy f
o G.qFumrsy (FAN9)© G aFumLge [ and G,qFEumrgy 9

o G.qFunmrs, (e{f)) & Je € BEventgp such that ¢ — ¢ €— and G,q' Fuyrs,

f

In definition we have introduced the syntax of HML formulas for a CO-
OPN ), specification SP having a given set of events. In definition we gave
those HML formulas a semantics by establishing the notion of satisfaction of an
HML formula by a transition system representing the semantics of SP. Notice
that by introducing this notion of satisfiability we are able to distinguish HML
formulas which correspond to acceptable behaviors of S P from HML formulas which
correspond to unacceptable behaviors (those formulas that are not satisfied by the
transition system). We can now define the notion of a test case as an HML formula
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with an associated logic value stating whether or not the formula corresponds to an
acceptable behavior. We can also extrapolate the notion of test case to the notion
of test set for a CO-OPN 5 specification.

Definition 6.2.5 Test Set for a CO-OPN,y Specification
Let SP € Spec be a CO-OPN/y specification and G(SP) = (Q, Event(SP), —

,1) a transition system representing the semantics of SP. Given a set of formulas
F C HM Lgp, the test set generated from F is defined as follows:

Testsp(F) = {(f, Result) € F' x {true, false} |
(G(SP),i Egmrgy [ and Result = true) or
(G(SP),i Fumrsp | and Result = false)}

Typically in model based testing only tests covering valid behaviors are cho-
sen. Tests covering invalid behaviors are also relevant as they can uncover errors
of comission, rather than errors of omission. These kinds of tests can be seen as
robustness testing.

6.2.3 Exhaustive Test Set for a CO-OPN , Specification

Having formally stated the notion of test set for a CO-OPN j, specification in def-
inition [6.2.5] we can now more precisely introduce the oracle satisfaction we have
informally stated in [6.1] Given that both the semantics of the specification and
of the SUT are represented by transition systems, the oracle satisfaction happens
when the HML formulas that compose the test set have the same semantics in both
transition systems.

Definition 6.2.6 Oracle satisfaction

Let P € Prog be a program and SP € Spec be a CO-OPN/, specification. Let
also G(P) = (Q, Event(P),—,1) be a transition system representing the semantics
of P. Assuming there is a one-to-one morphism between the signatures of P and
SP, the satisfaction relation EoC Prog x Test is defined as follows for a given test
set Tsp for specification SP:

(P Eo Tsp) & (V(Formula, Result) € Tsp
(G(P),i Eunmrgy Formula and Result = true) or
(G(P),i Bunmrsp Formula and Result = false)}
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A pertinent test set (see definition[6.1.1]) to establish bisimulation observational
equivalence for a specification SP corresponds to all HM Lgp formulas and their
corresponding semantics in the transition system denoting the semantics of SP.

Definition 6.2.7 Ezhaustive Test Set for a CO-OPN,y Specification

Let SP € Spec be a CO-OPN )y specification. The exhaustive test set Exhaustgp
is defined as follows:

Ea:haustgp = Testsp(HMLSp)

Note that in definition [6.2.7] of the exhaustive test set we include not only
possible behaviors of the specification, but also behaviors that should not happen.
Negative behaviors are introduced by the semantics of the ‘=> HML operator. In
fact, both positive and negative formulas are necessary to establish the bisimulation
equivalence between two transition systems by using the HML equivalence. The
equivalence (also called full agreement) between bisimulation equivalence and HML
equivalence was proved by Hennessy and Milner in [35], but for image finite transition
systems. This means that for a given state of the transition system, only a finite
number of transitions is possible. We will keep this — not too restrictive assumption
— throughout this thesis.

From the full agreement between the bisimulation equivalence and HML equiv-
alence we can extract the following result applied to model based testing from CO-
OPN 5 specifications. This result rejoins the initial definition of pertinent test
set and proves that we can use HML to build the exhaustive test set for a CO-OPN
specification.

Theorem 6.2.8 Full agreement between CO-OPN,y equivalence and Oracle satis-
faction

Let P € Prog be an object-oriented system under test, SP € Spec its specifi-
cation and Exhaustsp an erhaustive test set obtained from SP. We have:

(PE SP) < (PFo Exhaustgp)

Proof: can be found in []).

6.3 Practical Test Selection

In practice the test selection mechanism proposed by Péraire and Buffo consists of a
sequential application of constraint predicates to the variables of an HML formula.
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shape(f) = <insertCoin ¢7> <insertCoin ¢2> g

( <insertCoin c¢1> <insertCoinc2>g T )

|
nbEvents(g) = 1

<insertCoin ¢71> <insertCoin ¢2>
<selectDrink @> T

uniformity(c)
uniformity(c2)
subUniformity(d)

<insertCoin 1CHF> <insertCoin 1CHF> <selectDrink d1> T, true
<insertCoin 1CHF> <insertCoin 1CHF> <selectDrink d3> T, true
<insertCoin 1CHF> <insertCoin 1CHF> <selectDrink d5> T, true

Figure 6.3: Test Selection example using Peraire and Buffo’s Contraint Language

Figure describes an example of test selection using the technique of Péraire
and Buffo. In order to select test cases for the DVM SUT we have presented in
figure [6.1] we start by declaring a variable ‘f’ which can be instantiated to any
HML formula over the operations of the specification. At this moment we have the
exhaustive test set.

The first reduction step (at the top of the figure) applies a ‘shape’ predicate
to variable ‘f’, thus forcing the prefix of any test set to start by two ‘insertCoin’
operations. Notice that the parameters of the insertCoin’ operations are variables
of type money (in bold font), and ‘g’ is a variable of type HML.

The second reduction step applies a ‘nbEvents’ predicate to the ‘g’ variable,
reducing the available test cases to those having three events. A possible formula
resulting from the application of this predicate in the one presented on the inferior
left side of figure [6.3] Many other formulas would be possible and they would
correspond to other test cases having three events.

The last reduction step consists of performing uniformity and subUniformity
hypothesis about the remaining variables. Notice that the subUniformity predicate
chooses three behaviors for the ‘selectDrink’ operation — when two coins were in-
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troduced in the DVM — as we have informally specified in section [6.1} choosing a
drink which cost is inferior to 2CHF at distributing the drink and change; choosing
a drink which cost is 2CHF and distributing the drink with no change; choosing a
drink which cost is superior to 2CHF and issuing a ”not enough money” message.

Several other predicates other than the ones presented in figure [6.3| were de-
veloped and are described in [4].

In terms of formalization of the approach Péraire and Barbey have presented
in [4, 5] an abstract syntax and a semantics for their approach. The semantics of
the dynamic part of the test case calculation — the one involving the subUnifor-
maty predicate which selects among the possible behaviors of a CO-OPN j, method
at a given state — is stated operationally in Prolog. This operational semantics is
based on the unfolding method proposed by Marre in [30]. Briefly, the decomposi-
tion consists of finding several possible calls of the CO-OPN j, method chosen for
unfolding by analyzing the conditions that allow it to fire. All these conditions are
built using operations expressed as positive conditional axioms which means they
can be translated into Prolog. One instantiation of the variables for each of the
positive conditional axiom is then enough to expose sub-domains of that operation.
If the positive conditional axioms are defined by additional conditions, those con-
ditions can also be unfolded increasing the precision of the behaviors found for the
CO-OPN /3 method being unfolded.

6.4 Criticism of the current BGM /CO-OPN test-
ing approach

In this section we will provide the motivation for developing the test language SATEL
we introduce in this thesis. SATEL is a natural evolution of the previous work on
test generation from CO-OPN; specifications we have introduced in the present
chapter. The main goal while developing SATEL was to provide a fashion of stating
hypothesis about an SUT which goes in the direction of test construction, rather
than test selection. By test construction we mean that the test engineer builds tests
to cover certain understood sub-behaviors of the SUT, rather than selecting them
from the ‘pool’ of all available behaviors. While the holistic test selection approach
proposed by Péraire and Barbey works for SUTs with a small amount of behaviors
which are easily understood and generalizable (see the industrial production cell case
study [4]), the ‘divide and conquer’ approach is more reasonable while testing SUTs
exhibiting complex behavior.

Nonetheless, we wish to keep the walidity and unbiasedness of the test set
constrained using SATEL. This can be achieved under certain assumptions and
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allows us to stay in the same BGM theoretical framework we have introduced in
section [G.11

In the text that follows we will introduce some additional and more detailed
reasons for introducing SATEL.

6.4.1 Observability issues

In [4] Péraire describes the Co-opnTest tool developed to implement the test selec-
tion activity based on the constraint language we have described in section [6.3] In
the case study it is clear that the observation of the SUT during the testing activity
causes a major problem. The work of Péraire is based on CO-OPN /5, where a spec-
ification event corresponds to a method call. The technique is thus not adapted to
testing systems that produce output messages during computation as these messages
are difficult to model at the level of the specification. The same problem is present
in the test selection for the DVM we have presented in section [6.3] where the events
include no outputs (drink and change distribution, not enough money). In these
situation the only observation that can be performed after issuing each method call
in the test is the blocking or non-blocking of the SUT. In order to cope with the
difficulty of effectively observing the state of the SUT two possibilities arise:

e Extending the specification (and consequently the SUT) with observer meth-
ods that allow checking that the SUT is in a given state. These kind of methods
cannot change the state of the SUT. This is a moderately interesting solution
as it implies building models and SUTs with more functionalities than strictly
required, which not only places a burden on the analysis and development
phases as it can also induce additional errors;

e If the SUT produces output messages (which is the general case), delegate to
the test driver the task of associating those output messages to the correspond-
ing method calls. This was done in the industrial production cell case study
in [4], but under the assumption that there is a determinism between input
and output messages of the SUT. This is a very restrictive assumption, as most
of the times an SUT reacts to an input message in several ways, depending on
its internal state. In particular, if an SUT cannot execute a required command
and issues an error output message, the decision if an error was uncovered or
not by the test can be better taken if the error message is observed — rather
than just relying on a subsequent blockage of the SUT.

As we have explained in section , CO-OPN /¢4 includes the notion of gate.
A gate can be seen as either a required service by a CO-OPN component, or, in
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case the service is required from the environment, as an ouput. Given that in the
CO-OPN jyc4 version events may synchronize a method with a gate call, it becomes
then natural to consider a ‘required with provided’ event (see definition
as an input/output pair. In this way we can directly model with CO-OPN j5.
the observations available in the SUT, partially avoiding the problems we have
mentioned in the items above. We say partially because the SUTs may be active
rather than reactive, and observer methods may still be required.

6.4.2 Expressivity and usability of the Constraint language

In their thesis, Péraire and Barbey define the theoretical context and a practical
framework for selecting test sets from CO-OPN j; specifications by successively ap-
plying constrains on the exhaustive test set — the possible set of HML formulas
where the predicates are the available method calls from the specification. As we
have explained in section [6.3] the constraints correspond to predicates that select
formulas having certain syntactic properties at the HML or at the method name
levels. There is however a syntactic layer of the HML formulas involving data val-
ues and object references, which corresponds to the parameters of the method calls.
In their work, Péraire and Barbey constrain method parameters either by stating
uniformity hypothesis or uniformity hypothesis with subdomain decomposition} In
the former case the coverage of the behaviors expressed in the specification is very
low due to the fact that only one of the values of the domain is chosen; in the latter
case the coverage is good, as one value is chosen per possible behavior stated in
the CO-OPN , specification. It is however not possible to state regularity hypoth-
esis about data values. We feel this is a missing feature as the test engineer may
have additional information about the SUT that is either not specified, or cannot
be deduced from the specification using the operational methods to uncover the
equivalence subdomains.

Another shortcoming we find in the previously proposed language is tied to the
fact that, in the practical world, when testing SUTs exhibiting complex behavior,
test cases are built, rather than obtained by reducing the exhaustive test set. Also,
operationally it is in general not possible to reduce the exhaustive test set as it
typically involves an infinite number of HML formulas. In this sense the constraint
language proposed by Péraire and Buffo is awkward to use from a methodological
point of view. This is due to the fact that, in order to test multiple behaviors, the
only possibility is to build a very large conjunction of HML formulas and applying

'Due to the fact that the operational mechanism for uncovering equivalence domains is specific
to algebraic specifications, Péraire and Barbey did not study its application to object references.
We also leave this study undone in this thesis and assume the test engineer can only state uniformity
hypothesis about method parameters which are object references.
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constraints to its variables — replicating the test selection by context refinement
in figure Although adapted to algebraic specifications where each behavior of
the SUT is specified by a set of equations, this methodology is not suitable for
model-based testing from CO-OPN specifications.

This problem is made clear by the industrial production cell case study pre-
sented in [4] where, in order to produce a test set for a given component, several
intermediate sets of hypothesis are expressed. Each set of hypothesis is aimed at
testing a particular behavior of the component and the final test set corresponds to
the union of all intermediate test sets.

While building test cases seems to contradict the reduction principle of the
BGM theory that allows maintaining validity, under certain decomposition hypothe-
sis validity can be kept. Taking the idea of building test sets further, it would also
be profitable to a test engineer to introduce mechanisms allowing composition, reuse
and possibly parameterization of test sets.

6.4.3 Unit / Integration / System Testing

The work on test generation developed by Péraire and Barbey was based on CO-
OPN 5 which allows the specification of object networks where the objects com-
municate by means of synchronizations. Accordingly, the notion of the limits of
the specification in this context is somewhat vague, as any method available in any
object can be called. Péraire and Barbey have dealt with this issue by introducing
the notion of the focus of the test, which limits the region of interest of the speci-
fication that models the SUT. The focus can then be an object or a set of objects.
Within the selected object(s), the set of available methods can also be selected. The
remaining parts of the system not covered by the focus can either be replaced by
tested implementations of the components, or stubs.

As can be seen by the industrial production cell case study, this kind of method-
ology can be successfully applied to the testing of small distributed and concurrent
systems. However, we question the usability of such methodology while testing
application software [61] (as opposed to system software), which is normally built
modularly and in a hierarchical fashion. We feel that in this case the testing frame-
work can largely benefit from the context modules that have been introduced with
CO-OPN g, (see section [1.4.6). Context modules may serve as clear interfaces to
encapsulate the functionality under test. In that same line of thought, they can
be used to ease the definition of unit, integration and system testing in our frame-
work by clearly defining borders between components at the same and at different
hierarchical layers.
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6.4.4 Formalization of the Approach

A formalization of the semantics of the approach by Péraire and Barbey was pre-
sented in [4,[5]. In our view this formalization is incomplete, as it is only addressed at
the static part of test selection, leaving the dynamic part to the operational Prolog
mechanism performing the unfolding. The Prolog mechanism allows the symbolic
exploration of CO-OPN , specifications by encoding both CO-OPN ), semantics and
the unfolding mechanism in the same program. Unfolding as explained in section
can then be performed on both the operators stating the conditions that enable Petri
Net transitions and the conditions of the specification itself.

Although operationally interesting, this pragmatic view on the semantics of
sub-domain decomposition does not allow a holistic vision on test selection. We
think a study in the area involving formal mathematical techniques will provide a
deeper insight on the subject — by allowing a clearer view on the subject that the
one introduced by the Prolog program developed during the previous work.

6.5 Summary

In this chapter we have provided a state of the art of model based testing from
CO-OPN specifications. This second state of the art motivates our work and com-
plements chapter 2| which explores model based testing in general.

We have started by providing an account of the BGM (Bernot, Gaudel, Marre)
theory of testing which establishes a formal framework for test selection from any
specification formalismE]. BGM proposes reducing an initial exhaustive and possibly
infinite test set for a given specification by formulating a number of well understood
hypothesis about how to test the SUT. If the hypothesis hold, then the reduced test
set will have the property of being pertinent, which means that ‘the reduced test set
will not find errors in a correctSUT’ and ‘the reduced test set will find all errors in
an SUT". Clearly, since testing is a practical activity it becomes necessary that the
reduced test set is small enough to be applied to the SUT in a reasonable amount
of time.

We have then discussed how the BGM framework was applied in the context
of CO-OPN, specifications. We start by establishing the concept of equivalence
between CO-OPN ), specifications which is the bisimulation between the transition
systems denoting the semantics of those specifications. We then define the ezhaustive
test set for a CO-OPN specification SP. This set consists of all HML formulas built
using the possible events of SP and annotated with a true or false logic value.

2although most of the results are given in terms of algebraic specifications.
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The logic value states if a particular HML formula is a wvalid or invalid behavior
(or property) of SP. An important result ends this section, proving that HML is
sufficiently expressive to built an ezxhaustive and thus pertinent test set for CO-
OPN 5 specifications.

Practical test selection using the BGM framework and CO-OPN ; is then dis-
cussed. Péraire and Barbey have approached the problem of reducing the ezhaustive
test set by: defining a language of HML formulas with variables representing several
the dimensions of a test case; defining a constraint language for the variables in those
formulas. The purpose of the constraint language is to allow the expression of hy-
pothesis about how to test the SUT. In operational terms test selection is performed
using Prolog, using the unfolding technique introduced by Marre in [30]. This tech-
nique allows to dynamically find sub-domains for CO-OPN method calls, based on
the conditions that allow methods to fire. By using the subUniformity predicate in
the constraint language the test engineer can force this dynamic calculation of the
sub-domains — thus expressing additional hypothesis about the SUT by using the
semantics of the behavior of the SUT expressed in the specification.

Finally we motivate our work for introducing a new testing language, extending
and modifying the constraint language. Partially the motivation is due to the fact
that a new version of CO-OPN — CO-OPN 5., which we have introduced in
section [4.4] and chapter [5| — allows better modeling of outputs as well as modular
and hierarchic specifications. We have decided to profit from the new version of CO-
OPN to develop a new test language emphasizing test set construction (rather than
selection), reuse and composition. We are also interested in defining unit, integration
and system testing in the CO-OPN context. Finally, we establish the motivation
for performing a formal study on sub-domain decomposition which was empirically
approached by the previous work.
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Chapter 7

SATEL — Introduction and
Abstract Syntax

In chapter [6| we have presented previous work on model-based testing from CO-OPN
specifications. We have also shown in section that that work can be improved
in several points, among which:

e it tries to closely replicate the BGM theoretical approach, not taking into
consideration that, methodologically, it is very difficult for a test engineer to
devise a number of reduction hypothesis producing a pertinent test set —
while starting from the exhaustive test set for a CO-OPN specification (see

definition [6.2.7));

e CO-OPN/; is not ideal to model reactive systems as outputs cannot be directly
specified;

e no mechanisms exist for reusability and composition of test sets;

e the lack of structure and hierarchy in CO-OPN /5 specification makes it difficult
to isolate parts of the specification for integration testing.

In the current chapter we will present SATEL (Semi-Automatic TEsting Lan-
guage), a language designed to improve the current state of the art of model-based
testing from CO-OPN specifications. SATEL allows expressing test intentions about
CO-OPN specifications. With the notion of test intention we keep the idea of ap-
plying a set of reduction hypothesis in the previous work, but we narrow those
hypothesis to subsets of the behavior of the SUT.

Figure[7.1] depicts how test intentions relate to an SUT. The lower outer ellipse
represents the full behavior of the SUT and the interior smaller ellipses represent
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Apply Reduce
Hypothesis Test Set

Figure 7.1: Test Intentions and the SUT

parts of that behavior. Each test intention corresponds to a set of reduction hypoth-
esis for one of those parts of the behavior, as can be seen in the schema inside the
upper ellipse of figure representing the test set reduction process. If we take the
example of the Banking server presented in section we could for instance wish
to only test the login behavior part of the system. If we assume 1000 users of the
system, an exhaustive test set would imply 1000 test cases for the registered users
plus a number of test cases for unregistered ones. A uniformity hypothesis on the
user would state that testing the login behavior with only one registered and one
unregistered user is enough and would reduce the original 1000+ test cases to two.

The advantage of this approach is that our test sets deduced from a given
test intention are still pertinent while considering the sub-functionality they aim at
testing. Also, given that different test intentions can cover different functionalities
expressed in the model, we have also designed the language in a way that test
intentions can be reused and composed.
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7.1 Overview of SATEL

SATEL allows stating test intentions by constraining variables that represent mea-
surable dimensions of the part of the SUT to be tested — following the ideas previ-
ously developed by Buchs, Péraire and Barbey [4,5]. However, the new notion of test
intention and the use of CO-OPN 5., implies important differences between SA-
TEL and the previous constraint language (see section , chiefly among which:

e All the possible operations of the SUT are seen as the events allowed by a
single CO-OPN context. This allows taking advantage of the notion of context
present in CO-OPN /.4, in order to represent a clear interface between the
SUT and its environment;

e In CO-OPN/y., 4 events are extended by gates. SATEL also uses this aug-
mented notion of event which facilitates observing the SUT by pairing inputs
and outputs. In the context of testing, we will subsequently use the terms
stimulation for SUT input and observation for SUT output;

e New mechanisms are defined to allow a finer grain while defining Regularity
and Uniformity hypothesis. In particular, additional language constructs were
developed to allow constraining stimulations, observations and their respective
parameters;

e Test intention modules are introduced as legitimate CO-OPN /5.,y modules.

7.1.1 Regularity and Uniformity Hypothesis in SATEL

A test intention is written as a set of Hml formulas with variables, which in the
subsequent text we will call execution patterns. The variables correspond to three
structural dimensions of a test case, namely:

e the shape of the execution paths;
e the shape of stimulation/observation pairs inside an execution path;

e the shape of the parameters of stimulations or observations.

The domains of these variables are obtained from the signature of the CO-OPN
model of the SUT.

A test intention is thus written as a set of partially instantiated execution
patterns, where the variables present in those patterns are by default universally
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quantified. All the combined instantiations of the variables will produce a (possibly
infinite) number of test cases. If no conditions are imposed on the variables they
remain universally quantified, which means we obtain the exhaustive test sets for the
behavior covered by the test intention. By constraining the domains of the variables
present in an execution pattern by using regularity and uniformity hypothesis, the
test engineer is able to reduce the exhaustive test set per test intention.

Regularity hypothesis

As explained in the following points, for each kind of domain we have used a number
of functions and predicates that allow modeling regularity hypothesis.

e Shape of execution paths: variables representing the shape of execution
paths are constrained by using functions and predicates that discriminate the
of shape Hml formulas. We propose the following integer functions: nbFEvents
— number of events in an Hml formula; depth — length of the deepest branch
of an Hml formula; nbOccur — number of occurrences of a given method in an
Hml formula. We also propose the following boolean functions: sequence —
true if the Hml formula contains no and operators; positive — true if the Hml
formula contains no not operators; trace — true if the Hml formula contains
no and or not operators;

e Stimulations/Observations: stimulations and observations are obtained
from the signature of method and gate ports and using the typical {//, .., ®}
synchronization operators. We propose a single integer function nbSynchro
that returns the number of events in the stimulation or observation;

e Parameters of stimulations or observations: given the fact that these
variables represent values defined by the signature of CO-OPN ADT modules,
we use algebraic equations in order to constrain the elements from those sets.
If we take the example of figure [4.3] a possible algebraic constraint would be
(a = newPassword 1 2 3 4) = true, which would limit an algebraic variable
called a to the only possible value of (newPassword 1 2 3 4).

The integer functions return a value measuring certain kinds of complexity
of the structural dimensions of a test case. Predicates over integers (equals, differ-
ent, greater than, smaller than, greater or equal, smaller or equal) are then used
to constrain variables representing those dimensions. For example, the condition
nbEvents(f)<5 represents a regularity hypothesis over an Hml formula variable f,
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stating that it cannot be instantiated into an execution path which has more than
five events. Boolean functions as well as algebraic equations are directly used as

predicates in SATEL.

In fact, the kind of predicates we have presented to model regularity hypothesis
can also be used to model uniformity hypothesis, if we apply them in a way to limit
the instantiation of the variable to a single value. However, the value will be found
in a deterministic fashion.

The predicates for constraining the shape of execution paths are the same as
in [4]. The remaining ones were introduced by our work.

Uniformity Hypothesis

Uniformity and uniformity with sub-domain decomposition hypothesis are expressed
in SATEL much in the same way as they are in the previous work on test generation
from CO-OPN specifications. We use the unary predicates uniformity and subUni-
formity that have as parameter a SATEL variable of any type. While the uniformity
predicate chooses one single random value from the variable’s domain, the subUni-
formity predicate chooses values from the variable’s domain that allow testing the
possible behaviors of the CO-OPN method calls involved in the test intention.

As an example of applying a uniformity with sub-domain decomposition hy-
pothesis, consider the following execution pattern which is part of a test intention
for the Banking Server described in section

<deposit(10) with null> <(withdraw amount) with g> T

In this execution pattern, amount is a variable of the ADT integer type and
g is a variable of type observation. By applying a uniformity with sub-domain de-
composition hypothesis to variable amount, we would produce the following positive
test cases by decomposing the several behaviors of the withdraw operation:

(<deposit(10) with null> <withdraw(5) with null> T, true)
(<deposit(10) with null> <withdraw(15) with noMoneyLeft> T, true)

In fact the subuniformity predicate allows choosing two values for the amount vari-
able, one for each fire condition of the method withdraw — see in appendix |B| the
class Account where we have defined two axioms for withdraw method with the com-
plementary conditions (b >= amount) = true and (b >= amount) = false. We
choose one value satisfying each of those conditions, hence covering the two possible
behaviors of method withdraw.
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7.1.2 Declaring test intention rules

We will now briefly introduce how to declare test intentions using the concrete syntax
of SATEL. This can be done by defining test intention rules, each rule having the
form:

[ condition => ] inclusion

In the condition part of the rule (which is optional) the test engineer is able to
express conditions over variables. In the inclusion part of the rule the test engineer
can express that a given execution pattern is included in a named test intention.
Assuming given a CO-OPN context to test, consider the following rule written in
SATEL’s concrete syntax (where f is a variable over the shape of execution paths):

nbEvents(f) < 5 => f in SomeIntention;

This rule would produce all possible test cases for that context that include a number
of events inferior to 5. These test cases would become part of the test set generated
by the test intention Somelntention.

On the other hand it is possible to declare multiple rules for the same test
intention. Let us add to the previous rule the following one, where aMethod and
aGate are respectively stimulations and observations without any variables:

Hml ({aMethod with aGate} T) in SomeIntention;

The set of test cases produced by Somelntention would now become the one pro-
duced by the first rule united with the one produced by the second rule. In fact
only one test case is produced by the second rule given that there are no variables
in the execution pattern ‘Hmi<aMethod with aGate> T°.

An interesting feature of the language is that it allows reusing rules by compo-
sition, as well as recursion between rules. Consider the following set of rules where
f and g are variables over the shape of execution paths and f. ¢ in the third rule
means f concatenated to g:

Hml ({aMethod with aGate} T) in AnotherIntention
Hml ({aMethod’ with aGate’} T) in AnotherIntention
f in AnotherIntention, g in AnotherIntention => f . g in AnotherIntention

These rules would produce an infinite amount of test cases which include sequences
of the stimulation/observation pairs <aMethod with aGate> and <aMethod’ with



7.2. SATEL EXAMPLE — TESTING THE BANKING SERVER 133

aGate™> in any order and in any length. In fact, the third rule for AnotherIntention
chooses non-deterministically any two test cases generated by any rule of the test
intention and builds a new test case based on their concatenation.

7.2 SATEL example — testing the Banking Server

In figure we provide a full example of usage of our test intention language for
defining a test intention module for the Banking Server system we defined in sec-
tion 1.3l The example is written in the concrete syntax of SATEL which can be
found in appendix [E]

The test intention module TestBanking acts over the BankingServer context
(as defined in the Focus field) and defines several distinct test intentions declared
in the fields Intentions. The types for those variables are declared in the Variables

field.

Let us now describe the axioms involved in the definitions of the test intentions
present in the TestBanking test intention module of figure[7.2] This will provide the
reader with an informal notion of the semantics of SATEL.

e nWrongPins (lines 18-20) makes use of recursion in order to build (possi-
bly infinite) sequences of erroneous introductions of passwords by user ‘d’ (we
assume a user ‘d’ exists in the SUT and his password is different from ‘new-
Password 0 0 0 0’. Two axioms are used in order to define this test intention:
the one in line 18 is used to provide a base case for the recursion, stating that
the empty execution pattern — represented by ‘T’ — is part of the set of
execution patterns needed to cover the nWrongPins functionality.

The axiom in line 20 defines that any concatenation of an execution pattern
for nWrongPins with the ‘<loginUserPass(newString(d), newPin(0 0 0 0))
with badPassword>" event is also in the set of execution patterns necessary to
cover the nWrongPins functionality. These two axioms recursively build an
infinite set of execution patterns containing increasingly longer sequences of
wrong password insertion events.

A particularity of this test intention is that it is defined in the Body section of
the test intention module. Test intentions declared inside the Body section are
auxiliaries for building other test intentions and will not directly produce test
cases, as this is done only for test intentions declared in the Interface section.

e insertPasswords (line 22) uses the previously defined execution pattern nWrong-
Pins in order to build all possible test cases for behaviors of the insertPass-
word operation. Given that the system will block a user after insertion of 3
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TestIntentionSet TestBanking Focus Banking;

Interface
Intentions
insertPasswords;
withdrawMoney ;
parallelLogin;
Body
Intentions
nWrongPins;
Use
Natural;
String;
Pin;
Challenge;
Axioms

T in nWrongPins;

path in nWrongPins => path . Hml({insertPassword (d, newPin(0 0 0 0)) with
badPassword} T) in nWrongPins;

path in nWrongPins , nbEvents(path) < 4 => Hml({login(d) with askChallenge
(chal)} T) . path . Hml({insertPassword(d, convertChal(chal)) with null
} T) in insertPasswords;

subUniformity (am) | path in insertPasswords , nbEvents(path) = 3 => path
Hml({deposit (d,100) with null} {withdraw(d,am) with obs} T) in
withdrawMoney ;

sequence (path), nbEvents(path) <= 3 => Hml({login(d) // login(e) with obs}
T) . path in parallelLogin;

Variables
am : natural;
chal : string;
obs : primitiveObservation;
path : primitiveHml;

End TestBanking;

Figure 7.2: Test Intentions for the Banking Server

wrong passwords, we use a variable representing an execution pattern from
the nWrongPins while limiting it to a maximum of 3 events. We concate-
nate it on the left with a login event and on the right with an insertPassword
event. In this way we are able to test behaviors including none, one or two
password mistakes — which should reach a logged in state for user d — and
three password mistakes — which should reach a blocked state for user d.

e withdrawMoney (line 24) builds test cases for the behaviors of the withdraw
operation. Variable path of type Hml includes an execution pattern defined
in the insertPasswords test intention with three events — the last one being
the correct password insertion. After these events a deposit of value 100 can
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be executed and the following withdraw event includes a variable am over
which there is a uniformity with sub-domain decomposition hypothesis. This
hypothesis will find two values for variable am: one under 100 (successful
withdrawal) and another over 100 (unsuccessful withdrawal).

e parallelLogin (line 26) builds test cases for the simultaneous login of two users
(notice the usage of the // operator). It is provided in the text as a way of
demonstrating that SATEL allows the testing of concurrency. The event where
the two users are logged in is followed by an Hml variable path representing
an execution path limited to a maximum of three events in sequence (meaning
no and operators are allowed in the Hml formulas path will be instantiated
into).

7.3 Abstract Syntax of SATEL

The abstract syntax of SATEL will be described in three steps — in the first step we
will formalize the syntax of execution patterns as Hml temporal logic formulas. As
previously explained, these formulas will contain variables representing the various
dimensions of an SUT’s behavior.

In the second step we will formalize the abstract syntax of test intention ax-
toms. This language allows expressing conjunctions of constraints over the variables
present in execution patterns.

In the third step we will formalize the abstract syntax of test intention modules
which is integrated with the abstract syntax of the CO-OPN /5., language we have
described in section (4.4l

Let us remind the reader that we consider the universes I, M and G corre-
sponding to the set of test intention, method and gate names.

7.3.1 Abstract Syntax of Execution Patterns

We will build the abstract syntax of execution patterns in a bottom-up fashion. As
previously explained in the text, execution patterns correspond to Hml formulas
with variables. Given a CO-OPN context module, we will successively build the
set of event argument terms, the set of event terms (divided in stimulation and
observation terms) and the set of Hml formula terms.

Definition 7.3.1 Event argument terms
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Let ¥ = (S, <, F) be a global signature and X be an S-sorted set of variables.
The set of event argument terms over X with sort s € S is the set (T x), with
sefs.

Note that S includes both the sort names of the algebraic part of SP and the types
of the classes of SP. In this way we build terms that may include data, object
identifiers, or both.

Example 7.3.2 Assume the Banking Server ezample from section[{.3 has a global
signature ¥ = (S, <, F). Assume also an S-sorted set X of variables. In line 20 of
ﬁgure the arguments d and ‘newPin(0 0 0 0)” of the ‘insertPassword ’ method are
algebraic terms of type (Tx x),,., and (TEvX)pm respectively. In line 24 of the same

figure am s a variable belonging to X,aturar which is also a term of <T27X)natural'

We will now build the set of event terms for a given CO-OPN context. We
do this in two parts — in the first part we define the syntax of stimulation terms
and in the second the syntax of observation terms. While stimulation terms are
method synchronizations composed using the simultaneous (‘//’) synchronization
operator, observation terms are method synchronizations composed using all the
synchronization operators . A stimulation/observation pair corresponds to an event
in the context for which the test intentions are written.

Definition 7.3.3 Stimulation terms

Let ¥ = (S, <, F) be a global signature and M = (M), cq. an S*-sorted set of
method names of M. Let also X be the union of the disjoint Xs,, and the S-sorted
Xg sets of variables. The terms of Stimy y x are built as follows:

o x € Stims ax for all x € X,

o m(ty,...,t,) € Stimsg p x for all ms, 5. € M and for all t; € (Tx x,)
(1<i<mn)

Sq

o stm [/ stm’ € Stims p x for all stm, stm’ € Stims pr x

The second item of definition defines all possible method calls of a given
context. The arguments of those method calls may be either algebraic terms or
variables. The third item defines synchronizations of method calls using the usual
operators.
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Example 7.3.4 Assume the Banking Server context module in figure [{.7 has an
interface = = (M, G) and is part of a CO-OPN specification having a global signature
Y= (S, <, F). Assume also a set X of S-sorted and stimulation variables. In line 24
of figure the ‘withdraw(d,am)’ expression is a stimulation term of Stims s x.

Also in line 26 of figure[7.4 the ‘login(d) // login(e) " expression is a stimulation
term which consists of a synchronization of method calls.

Definition 7.3.5 Observation terms

Let ¥ = (S, <, F) be a global signature and G = (G),,cq- an S*-sorted set of
gate names of G. Let also X be the union of the disjoint Xops and the (S-sorted)
Xg sets of variables. The terms of Obsrvs, ¢ x are built as follows:

o x € Obsrvs, g x for all x € Xops

o g(t1,...,ty) € Obsrvs, g x for all gs, . s, € G and for all t; € (Tx x)

(1<i<mn)

----- Sq

e 0bs op obs' € Obsrvs, g x for all obs,o0bs’ € Obsrvs, ¢ x and for all

oped{//,..,®}

Example 7.3.6 Assume the Banking Server context module in figure [{.7 has an
interface = = (M, G) and is part of a CO-OPN specification having a global signature
Y = (5, <,F). Assume also a set X of S-sorted and stimulation variables. In
line 22 of figure the ‘askChallenge(chal)’ ezpression is an observation term of
Obsrvs, ¢, x where askChallengeche, € G and chal is a variable of X haitengeTable-

Finally we will define the syntax of the execution patterns, which are the set of
Hml formula terms for a given CO-OPN context module. Besides including variables
over algebraic, stimulation and observation terms, execution patterns also include
variables over Hml formulas (execution paths) and the concatenation operator (’.”),
which will be used to "glue” Hml formulas together. We will do this in two steps
— first definition of Hml formulas and only then the execution patterns.

Definition 7.3.7 Hml formulas with variables

Let ¥ = (S, <, F) be a global signature, M = (M), cq- an S*-sorted set of
method names of M and G = (Gy),,cq- an S*-sorted set of gate names of G. Let
also X be the union of the disjoint Xgmi, Xsim, Xovs and the (S-sorted) Xg sets of
variables. The Hml formulas with variables Hmls, prc, x are defined as follows:

o v € Hmls pra x for all x € X
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e T c Hmle’G’X

L] (_'f) S Hml27M7G7X fOT’ all f € Hml;;,M,GJ(

(f A g) € Hmlg,M,QX fOT all f,g € Hmle’G’X

((s) f) € Hmls m.qx for all s € Stimy ar x

o ((s,0) f) € Hmlsg p ¢ x for all s € Stims, p x and for all o € Obsrvy ¢ x

Definition 7.3.8 Ezecution patterns

Let ¥ = (S, <, F) be a global signature, M = (M), cq- an S*-sorted set of
method names of M and G = (Gy),cq- @ S*-sorted set of gate names of G. Let
also X be the union of the disjoint X gmi, Xsim, Xows and the (S-sorted) Xg sets of
variables. The execution patterns Pats yrq x are defined as follows:

e th € PCLtZ,M,GJ( fO’f’ all th € Hml27M7G7X

o th.th' € Path’G,X f07’ all th, th' € Hmlg,M@X

Example 7.3.9 Assume the Banking Server context module in figure [4.7 has an
interface = = (M, G) and is part of a CO-OPN specification having a global signature
Y = (S, <,F). Assume also a set Xy of variables. In line 20 of figure the
‘path . Hml(insertPassword(d, newPin(0 0 0 0)) with badPassword T)’ expression
corresponds to the execution pattern ‘p ath . Hml(<insertPassword(d, newPin(0 0 0
0)) with badPassword> T)’ of Pats ¢, x where f is a variable belonging to X pm,.

7.3.2 Abstract Syntax of Test Intention Axioms

We will now define the abstract syntax of test intention axioms. As was already
explained in section a test intention axiom is composed of a condition and an
incluston part. The inclusion part holds an execution pattern — more precisely
an Hml formula term (see definition [7.3.8) — and a test intention name. The
condition part includes a conjunction of predicates that allow stating test hypothesis
by constraining the variables present in the execution pattern in the inclusion part.

The abstract syntax of test intention axioms will be presented in a bottom-up
fashion. We will start by defining the arithmetic and boolean terms of the language
which were briefly introduced in section [7.1.1]
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Arithmetic and Boolean terms

Besides manipulating algebraic data types (ADT), stimulations, observations and
Hml formulas, SATEL includes two other data types which are the integers and the
booleans. In order to provide the abstract syntax for the arithmetic and boolean
terms of SATEL we assume defined the following syntactic sets:

e Bool = {true, false}

e Num=1{...,-3,-2,-1,0,1,2,3,...}

Definition 7.3.10 Arithmetic terms

Let ¥ = (S, <, F) be a global signature, M = (M), cq- an S*-sorted set of
method names of M and G = (Gy) e« an S*-sorted set of gate names of G. Let also
X be the union of the Xgmi, Xsim, Xovs, Xs and X yum disjoint sets of variables
where Xg is S-sorted. The arithmetic terms ATerms y . x are defined as follows:

o n € ATerms p.¢ x for alln € Num
o v € ATermy pa x for all x € Xyum
o depth(pat) € ATerms p ¢ x

e nbEvents(pat) € ATerms, yc.x

e nbOccur(ms, s, ,pat) € ATerms py ax for allmg, . s € M

77777

e nbSynchro(stm) € ATerms ar.a.x

o tnopnumtn’ € ATermy yra.x for all tn,tn’ € ATerms yrc.x, where opyym €

{+? - % /}
where pat € Pats, p ¢ x, stm € Stims, yr,x and obs € Obsrvs, ¢ x

Example 7.3.11 Assume the Banking Server context module in figure [{.7 has an
interface = = (M, G) and is part of a CO-OPN specification having a global signature
Y = (S, <,F). Assume also a set X of variables. In line 20 of figure the
‘nbEvents(f) " and ‘4’ expressions are both arithmetic terms of ATerms ¢ x where
‘t7is a variable belonging to X .
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Definition 7.3.12 Boolean terms

Let ¥ = (S, <, F) be a global signature, M = (My),cq- an S*-sorted set of
method names of M and G = (Gy),,cq- an S*-sorted set of gate names of G. Let
also X be the union of the Xgmi, Xstm, Xows, Xs and X oo disjoint sets of variables
where Xg is S-sorted. The boolean terms BTerms v x are defined as follows:

e bc BTerms max for all b€ Bool
o x € BTerms yax for all v € Xpoo
o sequence(pat) € BT erms, p ¢ x

e positive(pat) € BTerms v x

trace(pat) € BT erms ar.a.x
where pat € Pats, v g x, stm € Stims, ar x and obs € Obsrvs, ¢ x

Example 7.3.13 Assume the Banking Server context module in figure [{.7 has an
interface = = (M, G) and is part of a CO-OPN specification having a global signature
Y = (S, <, F). Assume also a set X of variables. In line 26 of figure the
‘sequence(f) ” expression is a boolean term of BT erms yr.c x where ‘t7is a variable
belonging to X .

Test Intention Axioms

Let us now define the abstract syntax for test intention axioms. We will start by
defining atomic conditions which form the condition part of a test intention axiom.

Definition 7.3.14 Inclusion Conditions, Variable Quantifier Conditions, Variable
Constraint Conditions and Atomic Conditions

Let ¥ = (S, < F) be a global signature, M = (My)wes+ an S*-sorted set of
method names of M and G = (Gy)wes~ an S*-sorted set of gate names of G. Let
also Xgmi, Xsim, Xovs, Xs, XBool and X num be six disjoint sets of variables where
Xg is S-sorted. Finally let I be a set of test intention names of |.

The Inclusion Conditions Ins a ¢ x,1 are:

o tink € Ins amax1 forallt € Xgp, kel
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The Variable Quantifier Conditions Qts ar.¢ x,1 are:

o subunif(z) € Qtsm e xr for al v € X U Xom U Xg

° umf(a:) € QtE,M,G,X,I fOT all x € XHml U XStm U XS

The Variable Constraint Conditions Conss, ar,¢,x,1 are:

® tn opNum tn', € Consy apr.q x.1 for all tn,tn’ € ATermy, pra x
where opNum € {==, <>, <, >, <=,>=}

o th boppen th' € Conss, pcx for all tb,tb' € BTerms v ¢ x
where boppee € {and,or}

® UOPBo th € Consy ara.x for all tb € BT erms yr.c.x, where uoppen € {not}
o th=1th', € Conss y. x,1 for allth,th' € Pats v x

o ts=1ts', € Consy y.ax.1 for all ts,ts’ € Stms . x

o to=1td, € Consy,m . x,1 for all to,to’ € Obsy, ¢ x

o tn=tn', € Consyp g x,1 for all tn,tn' € ATerms v x

o tb=1tb € Consy pcx1 for allth,tt' € BTerms y.c x

t=1t ¢ COHSEM’G,X’[, ds € S such that t,t/ S (TE)S U (XS)S

Finally, the Atomic Conditions ACy, y,¢ x,1 are:

Ins avrax,r UQts max,r UConss aa x,1

Notice that the last six items of the definition of Variable Constraint Conditions
(see definition [7.3.14]) are equalities between terms of the same kind. The equalities
allow defining additional constraints on variables.

Example 7.3.15 Assume the Banking context module in figure[4.7 has an interface
= = (M,G) and is part of a CO-OPN specification having a global signature ¥ =
(S, <, F). Assume also a set X of variables and a set I of test intention names. In
line 24 of figure the ‘subUnif(am)’, ‘f in insertPasswords’ and ‘nbEvents(f) =
37 expressions are atomic conditions of ACx, p . x.1 where ‘am’” and ‘t” are variables
belonging to X.
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Definition 7.3.16 Axiom condition

Let ¥ = (S, < F) be a global signature, M = (M), cq- an S*-sorted set of
method names of M and G = (Gy) e an S*-sorted set of gate names of G. Let also
Xami, Xstm, Xovs, Xs, XBoot and X yum be six disjoint sets of variables where Xg is
S-sorted. Given a a set I C | of test intention names, the conditions Conds ar.c x,1
are defined by the powerset of atomic conditions ACs yr.c.x,1 as follows:

Condy prax1 = P(ACs mc.x.1)

Example 7.3.17 Assume the Banking context module in figure[{.7 has an interface
= = (M,G) and is part of a CO-OPN specification having a global signature ¥ =
(S, <, F). Assume also a set X of variables and a set I of test intention names.
In line 22 of figure the ‘f in nWrongPins , nbEvents(f) < 4’ expression is an
axiom condition in SATEL’s concrete syntax. In the abstract syntax presented in
definition this axziom condition corresponds to the set {f in nWrongPins |,
nbEvents(f) < 4} of Conds p.c x.1 where f is a variable belonging to X .

We now have the elements to define the abstract syntax of complete test in-
tention axioms, which we have informally introduced in section [7.1.2]

Definition 7.3.18 Test intention axiom

Let ¥ = (5,< F) be a global signature, M = (M), cq @ S*-sorted set of
method names of M and G = (G),,cq- @ S*-sorted set of gate names of G. Let also
Xami, Xsim, Xovs, X5, XBool and X num be siz disjoint sets of variables where Xg
is S-sorted. Given a a set | of test intention names, the axioms Axioms v x,1 are
defined as the following cartesian product:

AQTZ'OmE,M7G7X7] = COﬂdE7M7G,X7[ X Pat27M7G7X x I

Example 7.3.19 Assume the Banking context module in figure[{.7 has an interface
= = (M,Q) and is part of a CO-OPN specification having a global signature ¥ =
(S,<,F). Assume also a set X of variables and a set I of test intention names.
Consider the following test intention axiom in line 20 of figure[7.9:

f in nWrongPins =>f . Hml({insertPassword(d, newPin(0 0 0 0)) with
badPassword} T) in nWrongPins;

In the abstract syntax presented in definition this expression corresponds to
following triplet, where f is a variable belonging to X :

{{f in nWrongPins}, f . <insertPassword(d, newPin(0 0 0 0)) with
badPassword T>, nWrongPins} € Azioms v, x.1
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7.3.3 Test Intention Modules

Let us define the notion of test intention module. These modules are orthogonal to
the remaining CO-OPN modules in the sense that ADT, class or contert modules
are used to model a system, while test intention modules are used to wverify it.
Nonetheless, these two dimensions of the construction of the model of a system are
intertwined because the signature and behavioral part of the model — described by
the ADT, class and context modules — is used as a way of syntactically building
test intentions and also as a means of producing an oracle for the Hml formulas
produced from those test intentions.

As happens with ADT, class and context modules, test intention modules also
include the notion of interface where the services provided to the exterior of the
module are listed. In order to allow inter-module test intention compositionality, it
becomes necessary to expose to other test intention modules the set of test intentions
declared in a particular test intention module.

Definition 7.3.20 Test intention module interface

A test intention module interface I" is a set of test intention names I C 1 .

Example 7.3.21 The interface I'restanking for the TestBanking context module in
ﬁgure is the set {insert Passwords, withdrawM oney, parallel Login, nWrongPins}.

A test intention module is then composed of an interface, but also includes:
the interface of the context module over which the test intentions are stated; a set
of axioms declaring test intentions.

Definition 7.3.22 Test Intention Module

Let ¥ be a set of ADT module signatures and €2 be a set of class module
interfaces such that the global signature ¥y g = (S, <, F) is complete. Let also = be
a set of context module interfaces and I a set of test intention module interfaces. A
test intention module is a sextuplet Mdy o = =(T', Focus, A, X) where:

o [' is a test intention module interface;

e Focus € = (where Focus = (M,G)) is the interface of the context module
under test,

o A C Azioms acx,1 15 a set of test intention axioms, where I = TUJ;,., I
(Fz € r), o
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o X s the union of the disjoint X gmi, Xsim, Xobs, XNum> XBool aNd Xg sets
of variables where Xg is S-sorted.

Notice that while building A in definition we use a set I of test intention
names which includes the test intention names of the interface of the module itself
(I") and the test intention names imported from other modules ().

Example 7.3.23 Let & be a set of ADT module signatures and €2 be a set of class
module interfaces used in the Banking Server specification. Let also ZEganking be

a context module interface and = = {Epanking}. The TestBanking test intention
module in figure corresponds to the abstract syntax (Md;Q’a@)Testhkmg =

<FTestBankin97 S Banking ATestBankinga XTestBanking) ’ where:

® ['restBanking 15 defined in example|7.5.21)
® ArcstBanking 05 partially defined in example |7.3.17;

o XTestBanking = XHmlUXObSUXS; where XH?TLl = {f}’ XObS = {ObS}, (XS)string -
{chal} and (XS)natural = {a’m};

Relation Between the Abstract and Concrete Syntax of a Test Intention
Module

Figure presents a partial version of the TestBanking test intention module (see
figure in order to clarify the relation between the abstract and the concrete
syntax of a test intention module. A particularity of the concrete syntax is that all
the ADT, Class and Test Intention imported modules — represented by the ¥, Q
and [ module interfaces in definition — are collapsed in the Use section.
Also, the context module over which the test intention module acts — represented
by the test intention module interface = in definition — is declared following
the Focus keyword.

The full concrete syntax of Test Intention Modules is defined in BNF syntax
in appendix [E]

7.3.4 CO-OPN and SATEL Specification

We can now extend the notion of CO-OPN specification we have presented in defini-
tion to the notion of CO-OPN and SATEL specification. In order to do that
we add to the previous definition of CO-OPN specification a set of test intention
modules.
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TestIntentionSet TestBanking ’ Focus Banking; | F'ocus
Interface

Intentions
insertPasswords;
withdrawMoney;
parallelLogin;

Body

Intentions
nWrongPins;

Use
Natural;
Pin;
String;
Challenge;

Y, QX T

Axioms
T in nWrongPins;
f in nWrongPins => f . Hml({insertPassword(d,
newPin(0 0 0 0)) with badPassword} T) in nWrongPins;
f in nWrongPins , nbEvents(f) < 4 => Hml({login(d) with
askChallenge(chal)} T) . f . Hml({insertPassword(d,
convertChal(chal)) with null} T) in insertPasswords;

Variables
chal : string;
obs : primitiveObservation;
f : primitiveHml;

End TestBanking;
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MdT

Figure 7.3: Relation Between the Abstract and Concrete Syntax of a Test Module

Definition 7.3.24 CO-OPN and SATEL Specification

Let ¥ be a set of ADT module signatures and €2 be a set of class module
interfaces such that the global signature Yy q is complete. Let also = be a set of
context module signatures and I be a set of test intention module signatures. A CO-

OPN and SATEL specification consists of a set of ADT, Class, Context and Test

Intention modules such that:

Specs azr = {(Mde)i 11<i< n} U {(Md%,ﬂ)j <)< m} U

{(Mdtgz), 11 <k <opu{(Mdlo=p) 11 <1<p}

where Specs o= is a well formed CO-OPN s specification (see definition )
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The specification definition in allows us to reuse entirely the structural
and behavioral model of a CO-OPN specification, while defining a new orthogonal
SATEL wverification layer that acts over contert modules. Also, given that test
intention modules make use of each other — in the form of the ' parameter in
M de,Q,EJ‘ — this definition allows compositional test specifications.

7.4 Summary

In this chapter we have introduced the test intention language SATEL and its ab-
stract syntax. We start by describing how to write test intentions, using SATEL’s
concrete syntax. SATEL is inspired by the previous work on test selection from
CO-OPN specifications, but allows explicitly covering sub-behaviors of the SUT by
means of test intentions. A test intention expresses a set of constraints over vari-
ables present in an execution pattern — which is a concatenation of Hml formulas
including variables of testing types. A test intention can use other test intentions
in its definition. It is also possible to define a test intention recursively.

We have introduced a number of constraints for each type of variable in SATEL,
i.e. the shape of the execution paths, the shape of stimulation or observation pairs
and the shape of the parameters of stimulations or observations. The constraints for
the shape of stimulation or observation pairs were taken from the previous work on
test generation from CO-OPN specifications, while the constraints for the remaining
types were defined by our work. Another type of constraints are wuniformity or
subUniformity predicates which can be applied to any type of variable of SATEL.

We have also introduced a formal abstract syntax for SATEL. The abstract
syntax of the language was defined in the following steps:

e we start by successively building the possible terms of the language, in the
following order: stimulation and observation parameters, stimulations and
observations, Hml formulas with variables, execution patterns. The order is
necessary as the terms of each type use the terms of the previous type in their
construction;

e we then build an accessory set of arithmetic and boolean terms which we are
necessary in order to build a set of atomic conditions over the variables present
in execution patterns;

e test intention axioms are built by using atomic conditions, execution patterns
and test intention names;

e we finally introduce the notion of test intention module interface and test
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intention module, following the same abstract syntax style as was used for the

CO-OPN 5.+ ADT, Class and Context modules (see section ;

In order to have syntactic coherence and to facilitate the building of a semantics
for SATEL we have introduced a new kind of CO-OPN specification, called the CO-
OPN and SATEL specification. A CO-OPN and SATEL specification consists of a
well-formed CO-OPN /.4 specification extended with test intention modules.



148 CHAPTER 7. SATEL — INTRODUCTION AND ABSTRACT SYNTAX



Chapter 8

SATEL — Semantics

8.1 Algebraic models for a CO-OPN and SATEL
Specification

Let us introduce the notion of global SATEL signature. This concept closely resem-
bles the global signature in definition [4.4.4) given that we extend it with the new sorts
induced by SATEL: Ezecution patterns, Hml formulas, Stimulations, Observations,
Integer and Boolean. This definition will allow us to have an algebraic approach
to SATEL, integrating it in this way with previous definitions for the syntax and
semantics of CO-OPN.

Definition 8.1.1 Global SATEL Signature

Let ¥ be a set of ADT module signatures, £ be a set of class module interfaces
such that the global signature Yy q = (S, <, F) is complete. Let also = = J,<,.,, =i
be a set of context module interfaces such that =; = (M;, G;). The global SATEL
signature over ¥, Q and = (noted $§% =) is the triplet (S', <, F') where:

o 5" = SUU i, Patz, U, cic,, Hmlz, U U, i, Stimz, U U, <<, Obsrvz, U
{Num,Bool}

o <'= <Uicic,(Patz, Patz,) U U, e, (Hmls,, Hmlz,) U U, .o, (Stimz,, Stimz,) U

Ui<i<n (Obsrovz,, Obsros,) U {(Num, Num), (Bool, Bool) }

o« F'=F U Ulgign FPatEi U Ulgign FHmlgz. U Ulgign FStimEZ. U Ulgign FObsr”UEZ. U
FNum U FBool

where:

149
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— Fpas, = {_: Hmlz, — Palz,, .: Hmls,, Patz, — Patz, }

= Frmis, = {T — Hmlz,, < _> _: Stimz,, Hmlz, — Hmlz,,
< _,_.> _:Stimg,, Obsrvs,, Hmlz, — Hmlz,,
not : Hmlz, — Hmlz,, and : Hmls,, Hmlz, — Hmlgi}

7 )
- FStszz - {msl Sn<817 ctty Sn) — St2m327

.....

.....

- FObsrvgi = {981 Sn (817 s 7877,) — ObST”UEi,

// : Obsrvz,, O’I;!;rvgi — Obsrvg,, ..: Obsrvs,, Obsrvs, — Obsrvsz,,
— Fyum = {0 :— Num, succ: Num — Num,

+ : Num, Num — Num, — : Num, Num — Num,

x : Num, Num — Num, / : Num, Num — Num,

nbEvents : Hmlz, — Num, depth : Hmlz, — Num,

nbOccur : (Mj, Hmlgj) — Num,

nbSynchro : Stimz, — Num |1 < j <nAE; € E}
— Fpool = {{true, false} :— Bool, not : Bool — Bool,

and : Bool, Bool — Bool, or : Bool, Bool — Bool

sequence : Hml=, — Bool, positive : Hml=, — Bool,
trace : Hmlz, — Bool |1 < j <nAE; € E}

Notice that in definition we only provide the signatures for the sorts
induced by SATEL and we do not establish equations. The following sections de-
scribe particular algebras for the sorts introduced in definition of a global
SATEL signature. These algebras provide the semantics of the several functions we
use to constrain SATEL variables. We build the algebras separately for each family
of terms, namely Fzxecution Patterns, Hml, Stimulations, Observations, Arithmetic
and Boolean.

8.1.1 Algebras for Stimulation, Observation and Hml terms

Definition 8.1.2 Algebras for Stimulation, Observation and Hml terms

Let ¥ = (S, <, F) be a complete global signature and = a context module in-
terface such that = = (M, G). Let also A be a ¥-algebra.

Let us define Sigsum(3,Z) = (S, </, F') as the signature obtained by extending
> as follows:

o §'=SU{Stimz}
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-----

.....

Let ¥ = Sigsum (%, Z). The model for X' corresponds to the Termsy stims, (A) alge-
bra and is noted Sem 4 (Sigsiim (%, Z)).

We define the Sigopsr (2, Z) signature and its respective model Sem 4(Sigopsr (2, Z))
analogously.

Let us define X" = Sigym(E,2) = (8", <" F") as the signature obtained by
extending ¥’ = Sigsm (2, Z) = (8", <", F') and X" = Sigopsr (2, Z) = (8", <", F")
as follows:

o S =98"US"U {Hmlg}
o <"=<'U<"U {(HmlE,HmlE)}
o F"" = F'UF"U {T — Hml=, < _> _: Stim=, Hmlz — Hmlz,

< _,_> _: Stimz, Obsrv=, Hml= — Hmlz,
not : Hmlz — Hml=, and : Hmlz, Hmlz — Hml;}

=

The model for the X" signature is the Termsm mmi= (SemA(E’)USemA(E”)) algebra
— noted Sems(Siggm (X, Z)).

8.1.2 Algebra for Execution Pattern terms

Definition 8.1.3 Algebra for FExecution Pattern terms

Let ¥ be a complete global signature and = a context module interface such
that = = (M, G). Let also A be a X-algebra.

Let us define X' = Sigpq (2, Z) = (S, <', F') as the signature obtained by extending
Y = Sigum(S,E) = (S, <, F) (see definition[8.1.3) as follows:

o §'=SU{Pat=}
o <'=<U{(Patz, Patz)}

o ['"=FU {, : Hmlz — Pat=, .: Hml=, Pat= — PatE}
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Let (A", FA") = Sema(X"). The algebra for ¥ is the S'-sorted set A'U Apq,. where

. . / AP(L,:- AP =
Apatz = Atz and the family of functions F4 U{,Hmlf;PatE, .Hﬁgpatapatg} where:

" Apatg /
Definition 8.1.4 3 "= o, Atz — Aparz

o Aratz TAHmIz — TAPaig

o Az (of) = ~(Aro f)
o A (f A g) = (Ar= f) A (Ao g

o _Araz ((stm,obs)f) = (stm, obs)(_"Pa= f)

fO’/’ all f, g c A,Hmlga stm € A/Stimga obs € A,Obsrvg

LR APat:- /
Definition 8.1.5 - Hmls Patz Pats - A gmiz X Apatz= — Apat=

) TAPatE _APatE p — p
° (_|f) .APatE p — _|(f .APatE p)
° (f A g> .APatE p= (f 'APatE p) A (g .APatE p)

e ({stm,obs)f) Apatg p = (stm, obs)(f APatz D)

forall f,g € A ymiz, P € Apai=, Stm € Al siimz, 0bs € A opgros

8.1.3 Algebra for Arithmetic terms

When we defined the arithmetic terms for SATEL in section [7.3.2] we have also im-
plicitly defined a signature Xy, = ({Num}, <yum, Fnum), which we have included
in definition [8.1.1] of the signature induced by a test intention module. Let us now
define a model for X j,,. This model is in fact the typical integer algebra, which
consists of an Ay, carrier set (which is in fact the well-known set Z), the typical
arithmetic operations {Vum —Num  Num /Numl and a set of functions we define
in the context of SATEL.

Definition 8.1.6 Algebra for arithmetic terms

Let 3 be a complete global signature and = = (J,,.,, =i be a set of context
module interfaces such that =; = (M;, G;). Let also A be a X-algebra.
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Let us define Signum(2,2;) = (5", <", F') as the signature obtained by extending

the signatures Sigpa(2,E;) = (Sz,,<g,, Fz,) (1 <i < n) (see deﬁm’tion as
follows:

o 5" =z Sz, U{Num}
o <'=Jz, <z, U{(Num, Num)}

o I = {0 :— Num, succ: Num — Num,
+ : Num, Num — Num, — : Num, Num — Num,
x : Num, Num — Num, /: Num, Num — Num,
nbEvents : Hmlz, — Num, depth : Hmlz, — Num,
nbOccur : (Mj,HmlE].) — Num,
nbSynchro : Stimz, — Num |1 <j<nAE; € E}

Let (A’Ei,FA/Ei) = SemA(EpatEi) be the model of the Ypat=, signature. The alge-
bra for Xnum is the S’-sorted set U Az U Anum and the family of functions FA'U

ANum ANum Nu'm. Num ANum
{Oe Num> SUCC Nym ,Num> nbEvents ml= . ,Num’ depthHml Num’ nbOccuer Hmlg].,Num’
Num = . 1 N N
anynchrosmm__ Num |11 <j<nAE; e _} where the functions having Num as

their co-domain’s sort are defined as follows:
Definition 8.1.7 nbEventsi~Num A/Hmlsi — ANum

e nbEventsAnum (T mE) = 0ANum

e nbEventsNum(=f) = nbEventsNun ( f)

o nbEvents*¥um(f A g) = nbEvents~um (f) +A¥um nbEvents(g)
(

e nbEventsNun((stm, obs) f) = nbSynchro®vun (stm) +ANum nbEventsANun ( f)

for all stm € A'syimz_, 0bs € A'ovsrvs , [,9 € Az, (1 <i<n)

The nbEventsN"™ function returns the total number of events present in an
ezecution pattern.

Definition 8.1.8 depthN"™ : A fmiz, = ANum

! Although we do not describe the functions associated to the {+,—,*,/} functors, they are
implicitly present in the set of functions of the algebra for arithmetic terms.
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o depthNum TAHmI, ) = 0ANum
—f) = depthANuwm( f)

g) = max (depthANum (f), depthAnum (g))
o depthven({stm, obs) f) = 14¥en 4 ANen depthAven f)

o depth?nNuwm
o depthAnum

(
(
(f A
(

where:
o stm € A'siimz, and obs € A'opsrvs , [,9 € Az, (1 <0< n)

e max : Anum X ANum — ANum 15 a function returning the largest of two integer
numbers.

The depth~wm function returns the length of the longest branch of an execution
pattern.

Definition 8.1.9 nbOccur®~um : (M; x A'Hngi) — Anum

e nbOccurdvem (my, AH””Ei) = QANum
o nbOccur®™Nem(my, o —f) = nbOccur~wm(f)
o nbOccur®™em(my, o f A g) = nbOccur®uwm( f) + nbOccur?vun (g)

[ ] nbOCCU?"ANum (m31...3n7 <Stm7 0b3>f) = 1ANum +ANum nbOCCUTANum (f)
iof stm is based on myg, s,

o nbOccur™em(my, o (stm, obs) f) = nbOccur~Nwm(f)
if stm is not based on mg, s,

where stm € A/StimEi; obs € A’Obsmgi and mg, s, € M;, f,g € A,Hmlsi (1<i<n)

The nbOccurNwm function measures how many times a given method shows
up in an execution pattern.

Definition 8.1.10 nbSynchro®~wm : A’Stimgi — ANum
o nbSynchro(stm) = 148uwn for all stm =my, (...
e nbSynchro(stm // stm') = nbSynchro(stm) +4~«m nbSynchro(stm')

where stm, stm’ € A/Stimgi (1<i<mn)

The nbSynchro®Nwn function measures the number of simultaneous synchro-
nizations in a stimulation term.
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8.1.4 Algebra for Boolean terms

As happens for arithmetic terms, we have also implicitly defined in section [7.3.2] a
signature X p,o = ({Bool}, <pool, FBoor) for boolean terms for a given test intention
module with its focus on a context module Z. Also as for arithmetic terms, this
signature is included in definition of the signature induced by a test intention
module. As ¥ g, -algebra we will use the well known boolean algebra which we will
call Apyor. Apoe includes the carrier set {true?°?, falseP°°'}, the typical boolean
functions {and?°, orBo° notBo°'} and a set of functions we define in the context of

SATEL.

Definition 8.1.11 Algebra for boolean terms

Let ¥ be a complete global signature and = = J, ci<n Zi be a set of context
module interfaces such that =; = (M;, G;). Let also A be a X-algebra.

Let us define Sigpon(2,Z;) = (5", <', F') as the signature obtained by extend-
ing the signatures Sigpa (S, Z;) = (Ss,, <s,, Fz,;) (1 <i < n) (see definition[8.1.5)
as follows:

o 5" =z, Sz, U{Bool}
o <'=s, <z, U{(Bool, Bool)}

o F' =Jg, F5, U{{true, false} :— Bool, not : Bool — Bool,
and : Bool, Bool — Bool, or : Bool, Bool — Bool
sequence : Hmlz; — Bool, positive : Hmlz; — Bool,
trace : Hmlz, — Bool |1 <j<nAZ; € E}

Let (Az,, FA,EZ_) = SemA(EpatEi) be the model of the ¥py. signature. The al-
gebra for ¥y, is the S’-sorted set UE Alzi U Anum and the family of functions F Al
{true éggﬁl» f alsefggoolb sequence gfr(;logl.,Bool? positive gﬁfigﬂ.,Boozv nbOccur ﬁ??mlg].,Num’

trace f;;;g Num | 1 <7 <nAE; € =} where where the functions having Bool as its

co-domain’s sort are defined as follows:

Definition 8.1.12 sequence?5eet : A/Hmlai — ABool

AH"LlEi )

o sequence’tBoot (T = trueBeol

2As for the arithmetic terms, although we do not describe the functions associated to the
{not,and, or} functors they are implicitly present in the set of functions of the algebra for boolean
terms.
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° SequenceAval(—‘f) = SequenceABool(f)
o sequence’Bol(f A g) = falseBoot

o sequence”Bool((stm, obs) f) = sequence?Boot( f)
where stm € A’Stimgi, obs € A’Obsmgi, f.g€ A/Hmlai (1<i<mn)

Bool

The sequence®° function returns the true°? value when an execution pattern

does not include the and Hml operator.
Definition 8.1.13 positivedsoo : A’Hmlgi — ABool

i A
o positivetBoo (TH™=1) = truenoot

(

e positiveBeol (- f) = false?Boo

o positivetBeol (f A g) = positiveBool(f) andABoo positiveBoot (g)
(

e positiveBeot ({stm, obs) f) = positivetBoot (f)

where stm € A'syimz_, 0bs € A'ovsro, [,9 € Algmiz, (1 <i<n)

The positiveBoet function returns the trueBee value when an execution pat-
tern does not include the not Hml operator.

Definition 8.1.14 trace”Beo : A’Hmlgi — ABoo 18 defined as follows:

trace Bl (f) = positive ool (f) and?*Bo sequence®ol (f) where f € Az, (1 <i<n)

8.1.5 Algebra for the global SATEL signature of a CO-OPN
Specification (SATEL Algebra)

Definition 8.1.15 SATEL Algebra

Let ¥ be a complete global signature and = = (J,,.,, =i be a set of context
module interfaces such that Z; = (M;, G;). Let also A be a X-algebra. The model
of the X8% = global SATEL signature is the algebra (A", FAYY which we define as
follows:

(A,, FA’) _ (ANum U ABOOZ, FANum U FABool)

where (ANum FANun) = Sem 4 (Signum (3, Z)) and (AB!, FABoot) = Sem 4(Sigpen (3, =)).
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SATEL's Type System

Signature
{Pat, Hml,
Stim, Obsrv,
Num, Bool}

Apat Atime:
AStim’AObsr'
ANum’ ABooI)

Implementation
dependent

Fixed model

Figure 8.1: SATEL’s Type System

Notice that in definition the algebras composing the model are fixed for
the types Hmls, Hmlz,, Stimz,, Obsrvs,, Num and Bool and not fixed for any
type s € S. This is so because the types s € S are type specifications of CO-OPN
requiring a real implementation — which can be done in a different amount of ways
— while the remaining types are particular to SATEL. Figure depicts SATEL’s
type system which consists of the types induced by the ADT and Class modules
(on the left of the figure) and the types induced by a test intention module (on
the right of the figure). Notice that the {Patz,, Hmlz,, Stimz,, Obsruz,} types are
particular to a given Z; context module and their terms describe execution patterns,
stimulations and observations of the SUT modeled by that context module.

8.2 Substitutions

Definition 8.2.1 SATEL Substitution

Let 5 = (S, < F) be a global CO-OPN and SATEL signature, M = (M), .-
an S*-sorted set of method names of M, G = (Gy), e« an S*-sorted set of gate
names of G, (Xy),cq an S-sorted set of variables and I € | a set of test intention
names. A SATEL substitution /%% replaces values in the conditions Condysat pr.c.x.1
and is defined as follows:

i (tn OPNum tn/)[v/Satx] = (tn[v/x} OPNum tn’[v/x])
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o (tb boppoo t)[v/>"x] = (tb[v/z] boppoa tV'[v/x])
o (th uoppen th)[v/5z] = (uoppex thlv/z])

o (tp=tp)[v/"a] = (tp[v/z] = tp'[v/z])

o (ts =ts)[v/>"a] = (ts[v/a] = ts'[v/2])

o (to=td)[v/5"z] = (to[v/z] = to'[v/z])

o (tn =tn')[v/%%x] = (tnfv/z] = tn'[v/z])

o (tb = t)[v/5z] = (thv/z] = t¥'[v/x])

o (t="1)[v/>"z] = (tlo/a] =t[v/z])

We extend the SATEL substitution /5% to sets of conditions Condysat pr.: x.1
as follows:

o Dv/Setz] =0

e (cond U {c})[v/5"z] = cond[v/"z] U {c[v/"z]}
where:

® OpNum € {==,<>,<,>,<=,>=}, boppes € {and,or} and uopp.e, € {not}

b tn7tn/ € ANum; tb, ty € ABooly tp; tp/ € APatEi; tS,tS, € AStimEZJ tO; to €
AObsrvgi and t,t/ S As (1 <1 < n)

o cond € P(Condssat py . x.1) and ¢ € Condssat pr. x 1
Example 8.2.2 Consider {sequence(f),nbEvents(f) <= 3} which is the set of

conditions for the test intention aziom defined in line 26 of figure[7.3. The SATEL
substitution:

{sequence(f),nbEvents(f) <= 3} [(login(d))T /5" f]

)

replaces all instances of f in the set of conditions by the Hml formula (login(d))T",
producing the new set of conditions:

{sequence((login(d))T), nbEvents({login(d))T) <= 3}
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Definition 8.2.3 Satisfaction of Variable Constraint Conditions

Let $97 = (S, < F) be a global CO-OPN and SATEL signature, M = (My),,cq-
an S*-sorted set of method names of M, G = (Gy),eq- an S*-sorted set of gate
names of G, (Xy),cq an S-sorted set of variables and I € | a set of test intention
names. Let also A be a finitely genemteaﬁ YU _SATEL algebra. Given an S-sorted
substitution 0, the satisfaction relation F.C A x Subsg(X) x Condssat prc x.1 15
gien by:

o A 0Fctnopyumtn’ < ([0%(tn)] yum [ [0% (t1)] juum) = true?o’

o A,0Fc thboppon th < ([0% (t0)] pou Loopsen 107 (t0)] 5or) = true?

OPNum

o 4,0 0Pt (Tuopg [0 (80)] o) = rue?™
o Abkctp=t & [0%(tD)] pure, = 0% ()] pass,

o A ts=ts & ﬂﬁ#(ts)]]sﬁmai = [[9#@8')]]5“”151,

o AfOF.to=td & [[6#(150)]]%5%51_ = ﬂe#(tO')ﬂObsrUEi

o A 0E.tn=1tn" < [07(tn)]xum = 107 ()] yum

o A OFcth =t & [67(th)] poor = [07 (V)] ooy

e A0k t=1t < [07(1)], = [67 ()],

o« A,0Fcunif(t) for allt € (Tusug),

o A0 FcsubUnif(t) for allt € (Tgserg), g

We extend the satisfaction relation F. to sets of Variable Constraint Conditions
(FcC A x Subsg(X) x P(Condssa pr ¢ x.1)) in the following way:

A,0F.cond < Ve € cond . A0 F.c

where:

® OpNum € {==,<>,<,>,<=,>=}, boppea € {and,or} and uoppe. € {not}

® Lopnums Lboppon and Lyop,.., correspond to the interpretation of predicate names
into their algebraic counterparts. For example I—— corresponds to the equal-
ity predicate in Anxuym € Az (integer algebra), while 1,,q corresponds to the
conjunction predicate in Apoo € Az (boolean algebra)

3We require the algebra to be finitely generated in order to guarantee that we can produce tests
for all values in the implementation.
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[ ] tn,tn/ c ANum; tb,tb/ c ABOOZ; tp7tp/ c AHmlg.; tS,tS, c AStimE.; tO,tO, c
AObsrvg. and t,t/ S As (1 < < n)

o cond € P(Condgsat pr.c x 1) and ¢ € Condssat ¢ x.1

8.3 Exhaustive Test Set for a Test Intention

Let us now provide the inference rules that allow calculating the unfolding of test
intentions. These rules are inspired from the well known cut rule in the general
resolution. Note that in the text that follows in the present chapter we will use the
Var(pat) notation to denote the set of variables present in an execution pattern.

Definition 8.3.1 Full Ezpanded Execution Pattern Set, Expanded Ezrecution Pat-
tern Set

Let Spec be a CO-OPN and SATEL test specification having a SATEL global
signature 5% = (S, <, F). Let also Md" = (T, Focus, A\, X) € Spec be a test
intention module, i € T' be a test intention and Focus = (M,G). The full ex-
panded axiom set AllPatgpe.(i) C Condssat pr . x.r X (TZS“‘vX)PatFocus is the least set
satisfying the following rules:

(cond, pat,i) € A
(cond, pat) € AllPatgpe.(1)

Local

(cond U{tind',unif(t)},pat) € AllPatgpec(),
(cond', pat’)y € AllPatgpe. (i)

RemUn : :
(cond[pat’ /5] U cond' U (Umevw(pat,) unif(x)), patlpat’ /t]) € AllPatgpe.(i)
(cond U{tind', subunif(t)}, pat) € AllPatgpe. (i),
RemSubll (cond', pat’) € AllPatgpe.(i")
et (cond[pat’ /59tt] U cond' U (Uzevlﬁ(mt,) subunif(z)), pat[pat' /t]) € AllPatgyec (i)
(cond U {tini'}, pat) € AllPatsye.(i),unif(t) ¢ cond,
Includ subunif(t) ¢ cond, (cond', pat’) € AllPatgpe.(i")
nclude

(cond[pat' /Sett]) U cond', pat[pat’ [t]) € AllPatgpec(i)

where i,i" € I', cond, cond' € P(Condssat p ¢ xr) and pat,pat’ € (Txsar x)

PatFocus
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When a pattern from an azxiom is included in an existing pattern we require
that all variables in the included pattern are renamed to avoid naming conflicts.

The expanded execution pattern set ExpPatsye.(i) C AllPatgpec(i) corre-
sponds to the expanded patterns which do not contain a ‘t in k’ condition, i.e. those
that cannot be further expanded. It is defined as follows:

ExpPatsp.(i) = {(cond, pat) € AllPatgp..(i) | Bt k.tink € cond}

where i,k € T', cond € P(Condssat py . xr) and pat,t € (Tgsat x)

PatFocus

T in repeatAction;

uniformity (c) | f in repeatAction =>
f . Hml({actionl(c)} T) in repeatAction;

f in repeatAction, nbEvents(f) < 3 =
f . Hml({action2(c)} T) in useRepeatAction;

Variables
f : primitiveHml;
c : someUserType

Figure 8.2: Fictitious Test Intentions

Example 8.3.2 Consider the ‘repeatAction’ and the ‘use Repeat Action’ test inten-
tions defined in figure [8.3. Let us start by exemplifying the construction of the full
expanded execution pattern set for the ‘repeatAction’ test intention.

by a double application of the Local rule we initially obtain:

AllPat gpec(repeat Action) D
{<@ T> <{umf ¢), finrepeat Action}, f.{actionl(c) T>}

then, by applying two times the RemUn rule we can obtain for example the following
sets:

AllPat gpec(repeat Action) D
{<®,T>, ({unif(c), finrepeatAction}, f.(actionl(c))T),
({unif(c)}, T-(actionl(c) T>}
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All Pat gpec(repeat Action) D
{(0.7), ({unif(c), f inrepeat Action}, f {action](c))T),
({unif(¢)}, T.(action1(c))T),
({unif (f'), unif(c),unif ('), f"inrepeatAction}, f'(actionl(c'))T. (actionl(c))T>}

The expanded execution pattern set for the ‘useRepeatAction’ test intention
is formed by using the full expanded axiom set All Patgye.(repeatAction). Note that
ExpPatgpe.(repeat Action) contains only the execution patterns of AllPatgp..(repeatAction)
which cannot be further expanded.

Finally, the expanded execution pattern set for the ‘useRepeatAction’ test
intention 1s built using the expanded execution pattern set for the ‘repeatAction’
test intention. The incomplete ExpPatgye.(useRepeatAction) set is as follows:

ExpPatgp..(useRepeat Action) = {<{depth(T) < 3}, T.{action2(c))T),

({unif ('), depth(T {actionl(c))T) < 3}, T .{actionl(c'))T (action2(c))T), ... }

In definition we start from the set of (condition, execution pattern) pairs
describing the test intention we wish to expand (Local inference rule). By applying
the Include inference rule we then build (condition, execution pattern) pairs where
all the inclusion atomic conditions are removed from the conditions in those pairs. In
order to do this the Include inference rule ”chooses” all possible pattern replacements
for an Hml variable belonging to an inclusion condition and replaces that variable
in both the condition and the pattern part of the treated pair. The conditions of the
included pair are added to the list of conditions of the pair being treated — which
means new inclusion conditions may be introduced and the rule may be reapplied.
Rules RemUn and RemSubUn are similar to rule inclusion, except that they remove
the uniform and subuniform predicates since the variables they quantify are replaced
by the imported patterns. All variables in an imported pattern are marked with
either the ‘unif’ or ‘subUnif’ predicate if the variable they replace is marked with
the same predicate.

Notice also that in definition [8.3.1] we may create an infinite amount of possibly
arbitrarily lengthy test patterns, depending on the way the axioms in a test intention
module are defined. We allow this to happen in our semantics as the evaluation of
the term complexity measurement functions in the expanded axiom set may cut it
down to a finite size.

Definition 8.3.3 FEzecution Pattern Validation
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Let Spec be a CO-OPN and SATEL specification having a global annotated
SATEL signature ¥5% = (S, <, F) and A be a finitely generated annotated ¥5%-
SATEL algebra. Let also Md* € Spec be a context module with signature = and
SP = (Q,Ev,Tr,q) be the transition system semantics of Md*. The execution
pattern validation is the Fpyu-C SP X Q X Apy. satisfaction relation defined as
follows:

o SPaq':PatET
* SPaq':PatE (ﬁf) ¢>>CTy7q}iPat5 f

L4 SP7q':Pat5 (f/\g) <:>C;’7q’:PatE f A Gaqi:PatE g

o SP,qFEpu. ((stmwithobs)f) < 3¢ €Q .q Stm with obs, qgeTr N
SP7q':Pat5 f

%Patgg SP x Q X APatE

o Squ#PatE (_'f)<:>SP7q|:Pat5 f

i SP7q%Pat5 (f/\g)<:>SP7q#Pat5 f \ Spaq#]:’atgg

stm with obs

o SP,qFpu. ((stmwithobs)f) < 3¢ €Q . q
SPaq#PatE f

qgeTr A

i SP7q%PatE (<Stmw’tth0bs>f) = ﬂq/ - Q .q M q/ c Tr

where stm € (Tgsat ) and obs € (Txsatg)

Stimz Obsrvz *

Notice that in order to simplify the definition we have omitted events without obser-
vation, although they are naturally included in the satisfaction relation.

Definition 8.3.4 FEzhaustive Positive and Negative Substitution Sets for a Test In-
tention, Exhaustive Test Set for a Test Intention

Let Spec be a CO-OPN and SATEL specification having a global SATEL
signature 5% = (S, < F) and A be any finitely generated ¥9-SATEL algebra.
Let also Md" = (T, Focus, A, X) € Spec be a test intention module and SP =

(Q, Ev,Tr,q0) = Semgpeca(Md*) (see definition |5.4.10) be the semantics of con-

text module Mdy,.,, € Spec. The exhaustive positive substitution set for a test

intention ¢ € I' is defined as follows:
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ExhaustSubs,, (i) = {(0, pat) € GroundSubss(Var(pat)) x (Tssar x)
(cond, pat) € ExpPatgpe.(i) N
SP. o Fratroe.. 07 (pat)] pey,.,,,., }

PatFacus

The exhaustive negative substitution set for a test intention ¢ € I' is defined as
follows:

EzhaustSubsg,(i) = {(0, pat) € GroundSubss(Var(pat)) x (Txsat x)
(cond, pat) € ExpPatgpe.(i) N
SP’ do #PatFocus [[6# (pa’t)]]Patpocus}

Patpocus |

The exhaustive test set for a test intention ¢ € I' is defined as follows:

Exhaustgpec(t) =
{07 (pat) true) € (Tosw x) py, .,
{0 (pat). false) € (Tysu x)

x {true, false} | (0, pat) € E:BhaustSubsgpec(i)}
x{true, false} | (8, pat) € E:vhaustSubsgpec(i)}

PatFocus

We can now state an important result regarding the expressiveness of SATEL
to build exhaustive test sets.

Theorem 8.3.5 Completeness of the Test Intention Language SATEL

Given a CO-OPN e,y specification Spec, it is possible to write in SATEL a
test intention that establishes the correctness of an SUT regarding a model given as
a context module C'txMod € Spec.

Proof. By construction:

TestIntentionSet Example Focus CtxMod;
Interface

2 Intentions

EzxhaustiveTestSet;

o

Body
6 Azioms
f in EzxzhaustiveTestSet;
8
Variables
10 f : primitive HML ;

12| End Example;
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By definition the ‘ExhaustiveTestSet’ test intention produces the set
test cases corresponding to all HML formulas built using events formed from the sig-
nature of the context module CtxMod. The definition of HML equivalence tells us
that two transition systems are HML equivalent if, for all HML formulas built using
the set of events of those transition system, both transition systems are models of
those formulas. On the other hand, there is a full agreement between between HML
equivalence and bisimulation equivalence — as stated in [35]. This means that HML
equivalence implies bisimulation equivalence. In definition the correctness of
an SUT regarding a specification has been defined as the existence of a bisimulation
relation between the transition systems denoting the semantics of the SUT and the
specification. Given that by definition context module CtxMod has a tran-
sition system semantics, the ‘ExhaustiveTestSet’ test intention produces a test set
capable of establishing the correctness of an SUT specified by CtxMod.

Corollary 8.3.6 Production of a pertinent test set using SATEL

Given a CO-OPN g specification Spec, it is possible to produce using SA-
TEL a pertinent — valid and unbiased — test set for a context module CtxMod €
Spec.

8.4 Reduced Test Set for a Test Intention

Definition 8.4.1 Annotation

Let Spec be a CO-OPN and SATEL specification having a global SATEL sig-
nature ©5% = (S, <, F) and A be a finitely generated X5-SATEL algebra. Let also
Mdf = <Q$,R,[l,XZ,W]> S Spec (1 S 7 S TL) and Mdz( = <E§(70ja0jan7Xj> S
Spec (1 < j < m) be a set of class and context modules. The set of annotations
for specification Spec is noted Anngpec 4 and is defined as follows:

Anngpec,a = P((Aacc X A\) U Axx)

where

o Azt = Ulgz‘gn U, and Az* = U1§i§n X; are respectively sets containing all
the class behavioral formulas and the context coordination formulas present in
specification Spec;

e ACA corresponds to the object identifier algebra for specification Spec.

The notion of annotation provides us with the tools to ”instrument” the tran-
sition system corresponding to the semantics of context module we have introduced
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in definition We are interested in marking each event of the transition sys-
tem with a set of structural conditions which leads to the fact that the event is
part of a context module’s semantics. An annotation as defined in [8.4.1] is a set
including possibly a set of (behavioral formula, object identifier) pairs and a set of
coordination formulas — enough to identify each event with all the components of
the specification involved in its existence.

c1: withdraw(d,101) with giveMoney(101)
c1: withdraw(d,100) with giveMoney(100)

¢2: withdraw(d,99) with notEnoughMoney

c2: withdraw(d,98) with notEnoughMoney

Figure 8.3: Sample Annotation of the Banking Server’s Semantics

Definition 8.4.2 Annotated Transition System Semantics of a Context Module

Let Spec be a CO-OPN and SATEL specification and A be a finitely generated
Y54 _SATEL algebra. Let also Md* € Spec be a context module. The annotated
transition system semantics of Md* corresponds to the context module semantics
Semgpee a(Md®) (see deﬁmtion where each event of the transition system is
augmented by an annotation reflecting all the coordination formulas and behavioral
formulas that lead to the event’s ewistence. Also, each behavioral formula in an
annotation is extended by the class instance it belongs to, i.e. the object identifier.

Let us introduce the following notation: given Semgpe. a(Md*) = {(Q, Ev, Tr, 1)
the transition system representing the semantics of MdX, the annotated transition
system semantics of Md* is a transition system (Q, Ev, Tr' i) where Tr' is formed
as follows:

S deTr=q¢q<5 ¢ eTr
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such that ¢ € Anngpec, 4 15 the least set of annotations reflecting the firing of e.

The Annotated Transition System Semantics of a Context Module is obtained by

augmenting the inference rules we propose in definitions through with
the appropriate constructs. We do not present the rules in this thesis as they would

amount to a repetition of the inference rules in definitions through with

minor changes.

Example 8.4.3 Consider the Banking Server example we have introduced in sec-
tion [4.5 In figure we present the annotation of a sample of the semantics of
the Banking Server context module in figure[{.7. Figure describes a sample of a
transition system where the nodes correspond to states of the Banking Server context
module and the edges to labeled transitions denoting state change. In the leftmost
state a user ‘d’is logged in having 100CHF in his/her account. Four events in the
transition system then correspond to the withdrawal by user ‘d’ of different amounts
of money.

Two different kinds of ‘withdraw’ events can be observed in figure [8.3. The
events where the withdrawal is possible are annotated with ‘cl’, while the ones where
the withdrawal is not possible are annotated with ‘c2’. Annotation ‘cl’ corresponds
to the set which is the union of the following coordination formulas and (behavioral
formula, object identifier) pairs:

1. ‘withdraw usr am with ImObj.isLoggedusr |/ accV ar.withdraw am;’ )

: (‘isLogged usr :: loggedusr — loggedusr;, lmObj)
3. (‘(b>=am) = true =>
withdraw am with this.give Money am ::
balance b — balance b — am;’, accObjl)
4. accVar.giveMoney am with give Money am;

Going back to the graphical representation of the Banking Server context
module in figure (full specification in appendix , axioms 1 and 4 in the ‘c1’
annotation correspond to the connections of the objects involved in the event with
the borders of the context. Axiom 2 corresponds to checking if user ‘d’ is logged —
in the ‘/mObj’ which is also part of the annotation — and axiom 3 corresponds to
the actual withdrawal of the money in the ‘accObj1’ object (assuming the account
the user ‘d’ is managed by the ‘accObj1’ object).

Finally, the ‘€2’ annotation is similar to ‘c1’ except for the condition ‘(b >=
am) = true’ in axiom 3 allowing the withdrawal of money, which is changed to
‘(b >=am) = false’.
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Definition 8.4.4 Annotated SATEL Terms, Annotated SATEL Algebra

Let Spec be a CO-OPN and SATEL specification having a global SATEL sig-
nature 254 = (S, <, F) where = = |J,.,,, Zi- Let also A be a finitely generated
254t _SATEL algebra. The annotated SATEL terms of sort s € S are noted (Tg‘gﬁm)s
and are obtained by augmenting the terms of (Txsarg), as follows:

e c:it € (ngt:} 0)5 for all ¢ € Anngpeca, t € (Tysarg), and s € S\ (Stimz, U
Obsrvs, U Hmlz,)

e c:te (Tg‘;@’}@ _ forall c € Anngpec,a, t € (Txsarg)g,, _ ,Stims, € S

)Stim

e c:te (Tg‘s’ﬁl’}@ ~ forall c € Anngpec.a, t € (Txsa p) Obsrvs, € S

>Obsrv

Obsrvg,’

o C:te (ngz’},@ _ Jor all C € P(Anngpec,a), t € (Txsatg) . - Hmlz, € S

)Hml

In definition we have slightly abused the notion of algebraic specification
as we have mixed the object identifier algebra used in the definition of annotation
(see definition with the SATEL signature. This slight abuse allows us to avoid
redefining annotations using signature object identifier operations which would be
trivial and would not add to the understanding of the subsequent text.

In the text that follows we will us the notation A4™ to denote the set of Hml
formulas built — for a given context module with signaturg = — from both annotated
and non annotated subterms. As an example, assume a specification having as events
{a with b,d(2)} and a couple of annotations {cl, c2}. The following would be terms
of Agdrn .

) (a with b) (d(2)) T
(cl:a with by (d(c2:2)) T

{c1, 2} ({cl:a with b) (d(c2:2))) T

Given a SATEL signature X9 = (S, <, F') and an S-Sorted set X of variables
we will also extend the set of substitutions GroundSubsg(X) (see definition [3.2.2))
by the GroundAnnSubss(X) set of annotated substitutions which is a family of

functions with signature 6, : X5 — (T g‘s’fﬁ 0))5 where s € S.

In the subsequent text we will also use the function stripped which, given an
annotated term returns its non-annotated counterpart. For example:

stripped({cl, c2}({cl:a with b) (d(c2:2))) T) = (a with b) (d(2)) T

The stripped function is also extended to substitutions GroundAnnSubss(X),
by converting a substitution 6 € GroundAnnSubss(X) into a substitution 6’ €
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GroundSubss(X). The conversion is achieved by stripping all the annotated terms
replacing variables of X by their non annotated counterparts. For example:

stripped(f) = 0 where 6 = {[d(c2:2)/z] and 0’ = {[d(2)/z]}

Definition 8.4.5 Annotated Execution Pattern Validation

Let Spec be a CO-OPN and SATEL specification having a global annotated
SATEL signature 5% = (S, < F) and A be a finitely generated annotated 5% -
SATEL algebra. Let also Md* € Spec be a context module with signature = and
SPuwn = (Q, Ev, Tr,qo) be the annotated transition system semantics of Md*. The

Ann Ann

annotated execution pattern validation is the FEh C S Pan, X Q X AL satisfaction
relation defined as follows:

© SPaun,qFpip T

SPAnna q ':égg; (_'f) <~ SPArma q#éggla

SPan,q Fpit (= C: f) < SPapp, q Epr C: f

SPoann, @ F (f A G) & SPann, ¢ FAEL f A SPapn,q FA2 g

SPAnn’q 'ZIADZ?E C(f/\g) < SPAnnaq ':éZ?E C/Zf A
SPann, q FAIL C"g A C'UC" =C A C'AC" =1

SPann, q Epat= (stm with obs) f <
3¢ € Q. q Y, e Tr A SPapn, q Fpae

SPann, q Fpat= {c}: ((stm’ with obs') f) &

¢ € Q . q st with obs, ¢ € Tr N SPaw,q Epa= [ N stripped(stm') =
stm A stripped(obs’) = obs and all the annotated subterms of stm’ and obs'
are annotated with c

SPann,q Fpat= {c}UC: ((stm’ with obs') f) &

¢ €Q . q st withobs, ¢ €Tr N SPam,qFpa. C:f N stripped(stm’) =
stm A stripped(obs’) = obs and all the annotated subterms of stm’ and obs'
are annotated with c

Jrfﬁ:;;; C SPypn X Q % Aj_-‘,g[;

° SPAnnanﬁé’Z?g (_'f) < SPAnnaq ':Iégglg f

© SPann, QR (fFAg) & SPqEMT [N SPapn, q B3N g
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® SPaun, @ ¥par- (stm with obs) [ <
A7 €Q . q Mq' €Tr N SPapn, q Epu.

® SPaun, ¢ ¥par= {c}: (<stm’ with obs') f) &

¢ € Q . q st with obs, qd € Tr N SPapm,q #éﬁfg f A stripped(stm’) =
stm A stripped(obs’) = obs and all the annotated subterms of stm’ and obs'
are annotated with c

® SPaun, @ Fpa- {ctUC: ((stm’ with obs') f) &

A €Q .q Cstm with obs, qgeTr A SPAm,qJ{fﬁzg C:f N stripped(stm') =
stm A stripped(obs’) = obs and all the annotated subterms of stm’ and obs'
are annotated with c

® SPunn,q #ffé’;;; ((stm/ withobs') f) < fq € Q . ¢ c:stmwith obs J e Tr A
stripped(stm’) = stm A stripped(obs’) = obs

where:

* f € <T§§Z£,@)Pat5’ Stm/ = (ngmﬂ)StimE’ ObSI = (ngﬂﬂ)ObsrvE

e stm € (TESat’@)StimE7 obs € (TES”,@)Obsrvg

o c € Anngpec.a and C,C',C" € P(Anngpec,a)

Notice that in order to simplify the definition we have omitted events without
observation, although they are naturally included in the satisfaction relation.

Definition 8.4.6 Ezhaustive Annotated Positive and Negative Substitution Sets

Let Spec be a CO-OPN and SATEL specification having a global SATEL
signature 5% = (S, < F) and A be any finitely generated ¥9-SATEL algebra.
Let also Md" = (', Focus, A, X) € Spec be a test intention module and SP =

(Q, Ev,Tr,qo0) = Semgpeca(Md*) (see definition |5.4.10) be the semantics of con-

text module Mdy.,.,. € Spec. The exhaustive positive substitution set for a test

intention ¢ € I' is defined as follows:

Ezhaust AnnSubsg,..(i) = {(0, pat) € GroundAnnSubss(Var(pat)) x (Tysat x)
(cond, pat) € ExpPatgpe.(i) A
SP, 60 Fratpen, 107 (008)] payy.,.,. }

Patpocus |
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The exhaustive negative substitution set for a test intention ¢ € I' is defined as
follows:

EzxhaustAnnSubsg,,.(i) = {(0,pat) € GroundAnnSubss(Var(pat)) x (Tsse x)
(cond, pat) € ExpPatgpe.(i) A
SP, 4o ¥putr,,.,. 107 (0at)] pay,.... }

Patpocus

Definition 8.4.7 Ezhaustive Positive and Negative Annotated Substitution Set for
an Ezxpanded Pattern, Reduced Positive and Negative Annotated Substitution Set for
an Fxrpanded Pattern

Let Spec be a CO-OPN and SATEL specification having a global SATEL
signature 5% = (S, < F) and A be any finitely generated ¥9-SATEL algebra.
Let also Md" = (', Focus, A, X) € Spec be a test intention module and SP =
(Q, Ev,Tr, q0) = Semgpeca(Mdy,p.,s) be the semantics of context module Mdy.,.,., €

Focus Focus
Spec. The positive exhaustive substitution set for an expanded pattern (cond,pat) €

ExpPatgpe.(i) of a test intention i € I' is defined as follows:

EzhaustSubsPat},,, ({cond, pat)) =

{6 € GroundAnnSubss(Var(pat)) | (6, pat) € ExhaustAnnSubsgpec(i)}

Finally, the negative exhaustive substitution set for an expanded pattern (cond, pat) €
ExpPatsp..(i) of a test intention i € I' is defined as follows:

EzhaustSubsPatg,..((cond, pat)) =
{6 € GroundAnnSubss(Var(pat)) | (6, pat) € ExhaustAnnSubsgpec(i)}

The reduced positive substitution set for an expanded pattern is defined as follows:

RedSubsPat§,,, ({cond, pat)) =
{6 € P(GroundAnnSubss(Var(pat))) | © C ExhaustSubs Patg,,.(pat) A
(‘V’Q € O . A, stripped(0) E. cond) A
(‘v’x € Var(pat),v0,0' € © .
unif(z) € cond = (Vc:v/x] €0, [¢:v/z] € .v=1")V
subunif(z) € cond = (¥ [c:v/z] €0, [c: v /z] € ' .v=1"))}
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The reduced negative substitution set for an expanded pattern is defined as follows:

RedSubsPatg,,({cond,pat)) =
{© € P(GroundAnnSubss(Var(pat))) | © C EzhaustSubsPatg,, . (pat) N
(V0 € © . A, stripped(0) Ec cond) A
(‘v’m € Var(pat),v0,6' € © .
unif(z) € cond = (Vc:v/z] €0, [¢ v /z] €0 .v=1")V
subunif(z) € cond = (VY [c:v/z] €0, [c:v'/z] €0 .v=1))}

Definition 8.4.8 Reduced Test Set for a Test Intention

Let Spec be a CO-OPN and SATEL specification having a global SATEL
signature 5% = (S, < F) and A be any finitely generated ¥9-SATEL algebra.
Let also Md" = (T, Focus, A, X) € Spec be a test intention module and SP =
(Q, Ev,Tr,qp) = Semspech(MdX ) be the semantics of context module Mdy.,,,, €

Focus Focus

Spec. Finally let i € T be a test intention, @, = RedSubsPatgpec((condk,patk))

and @, = RedSubsPatgpeC«condk,patk>) be the positive and negative reduced sub-
stitution sets for (condy, paty) € ExpPatspec(i) (1 < k < mn). The reduced test set
for a test intention v is defined as follows:

Reducedgpe.(i) U ( U 0# (paty), true) U ( U patk false))

1<k<n 1<j<n 1<k<n 1<i<n

where 8; = stripped(0}), 0 € OF, 6, = stripped(d)), 6, € ©; and O} and O, are
sets of substitutions chosen from the sets of substitutions available in @} and O
respectively.

uniformity (wam) | ( dam > 0) = true, (dam <= 3) = true =>
Hml({deposit (d,dam) with null} {withdraw(d,wam) with obs} T)
in unWithdraw ;

subUniformity (wam) | ( dam > 0) = true, (dam <= 3 ) = true =>
Hml({deposit (d,dam) with null} {withdraw(d,wam) with obs} T)
in subUnWithdraw ;

Variables
dam,wam : natural;
obs : primitiveObservation;

Figure 8.4: Partial Test Intention for the Banking Server

Example 8.4.9 Consider the ‘unifTestAccount’ and ‘subUnifTestAccount’ test in-
tentions defined in figure[8.4 and having as focus the Banking Server context module
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in figure [/.7 belonging to the Banking specification. We assume a user ‘d’ already
logged in and having O0CHF in his/her account. A sample of the annotated transition
system for this context module is presented in figure[8.7. In the leftmost state we as-
sume a user ‘d’ already logged in and having 0CHF in his/her account. Annotations

‘cl’, ‘c2” and ‘c3’ correspond to different firing conditions, as previously introduced
i definition |8.4. 1.

We will build the positive reduced test set for the ‘unWithdraw * and
‘subUnWithdraw ’ test intentions. Let us start by building the expanded execution

pattern (definition set for both test intentions:

AllPat ganking(unWithdraw) =

{<{umf(wam), (dam > 0) = true, (dam <= 3) = true},

(deposit(d, dam))(withdraw(d, wam), obs)T>}

AllPat ganking(subUnWithdraw) =
{<{subUnif(wam), (dam > 0) = true, (dam <= 3) = true},

(deposit(d, dam)){withdraw(d, wam), 0b5>T>}

In order to produce the reduced test set for test intentions ‘unWithdraw’ and
‘subUnWithdraw ” it is necessary to first build the exhaustive substitution set (see
deﬁnitz’on for the expanded execution patterns. The positive exhaustive sub-
stitution set for both previously obtained expanded execution patterns is as follows:
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({{unif(wam), (dam > 0) = true, (dam <= 3) = true},

(deposit(d, dam))(withdraw(d, wam), obs)T)) =

EzxhaustS ubsPatEmkmg

({{subUni f(wam), (dam > 0) = true, (dam <= 3) = true},

(deposit(d, dam))(withdraw(d, wam), 0bs)T)) =

1/ wam], [¢2 :

giveMoney(1)/obs]},

{

{lc1 : 1/daml], [c3 : 2/wam], [c3 : not EnoughMoney/obs] },
{lc1 : 1/daml], [c3 : 3/wam], [c3 : not EnoughMoney/obs] },
{lc1 : 1/daml], [c3 : 4/wam], [¢3 : not EnoughMoney/obs] },
{lc1 : 1/daml], [c3 : 5/wam], [c3 : not EnoughMoney/obs] },
{le1 : 2/dam], [c2 : 1/wam], [c2 : giveMoney(1)/obs]},
{lc1 : 2/dam], [c2 : 2/wam], [c2 : giveMoney(2)/obs] },
{lc1 : 2/dam], [c3 : 3/wam], [c3 : not EnoughMoney/obs]},
{lc1: 2/dam], 3 : 4/wam], [¢3 : not EnoughM oney/obs]},
{lc1 : 2/dam], 3 : 5/wam], [¢3 : not EnoughM oney/obs]},
{lc1 : 3/dam],[c2 : 1/wam],[c2 : giveMoney(1)/obs]},
{lc1 : 3/dam],[c2 : 2/wam],[c2 : giveMoney(2)/obs]},
{lc1 : 3/dam],[c2 : 3/wam],[c2 : giveMoney(3)/obs]},
{lc1 : 3/dam],[c3 : 4/wam], [c3 : not EnoughMoney/obs]},
{lc1 : 3/dam],[c3 : 5/wam], [c3 : not EnoughMoney/obs]},
{lcl: 4/dam], [c2 : 1/wam], [c2 : giveMoney(1)/obs]},

{lc1 : 4/dam], [c2 :

: giveMoney(2)/obs]}, ... }

Notice that the positive exhaustive substitution set consists of all the substi-
tutions of variables ‘dam’, ‘wam’ and ‘obs’ which yield ground Hml formulas which
are satisfied (see deﬁm'tion by the transition system in ﬁgure denoting the
semantics of the BankingServer context module. The presented positive exhaustive
substitution set is partial given that the full set would include all combinations of
values for deposit and withdraw operations for user ‘d’.

The reduced substitution set (see definition for the single expanded
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execution pattern for the ‘unWithdraw ’ test intention is as follows:

RedSubsPatJjgankmg(<{unif(wam), (dam > 0) = true, (dam <= 3) = true},

(deposit(d, dam)) (withdraw(d, wam), obs)T')) =
{{{[cl 2 1/dam], [c2 : 1/waml], [c2 : giveMoney(1)/obs|},

{[el : 2/dam], [c2 : 1/wam],[c2 : giveMoney(1)/obs]},
{[c1 : 3/dam], [c2 : 1/wam)], [c2 : giveMoney(1)/obs]}},

{{le1 : 1/dam], [¢3 : 2/wam], [¢3 : not EnoughMoney/obs|},
{[c1l : 2/dam], [¢2 : 2/wam],[c2 : giveMoney(2)/obs]},
{[c1 : 3/dam], [c2 : 2/wam], [c2 : giveMoney(2)/obs|}},

{{[e1 : 1/dam], [c3 : 3/wam], [c3 : not EnoughMoney/obs|},
{lel : 2/dam], [¢3 : 3/wam], [c3 : not EnoughM oney/obs|},

{[el : 3/dam], [¢2 : 3/waml],[c2 : giveMoney(3)/obs]}}}

The reduced substitution set includes the substitutions from the positive ex-
haustive substitution set obeying the constraints imposed by the algebraic conditions
on the ‘dam’ variables and the uniform condition on the ‘wam’ variable — as stated
in definition [8.4.7. The reduced substitution set is in fact a set of sets of substitu-
tions, with each of the subsets encapsulating a possibility for the uniformity hypoth-
esis. The possibilities for the uniform condition on the ‘wam’ variable are either
having the value of 17, 27 or 37, with the values of ‘dam’ oscillating between the
{1,2,3} values allowed by the conditions of the ‘unWithdraw’ test intention.

HML( {deposit(d,1) with null} {withdraw(d,3), notEnoughMoney} T), True
HML( {deposit(d,2) with null} {withdraw(d,3), notEnoughMoney} T), True
HML( {deposit(d,2) with null} {withdraw(d,3), giveMoney(3)} T), True

Figure 8.5: Reducedganking (unWithdraw)

We present in figure the reduced test set (see definition for the

‘unWithdraw ’ test intention. The test set is obtained by randomly choosing one
substitution set from reduced substitution sets we have previously calculated.

Finally, the reduced substitution set for the single expanded execution pattern
for the ‘subUnWithdraw ’ test intention is as follows:
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(({subUni f(wam), (dam > 0) = true, (dam <= 3) = true},

(deposit(d, dam)) (withdraw(d, wam), obs)T')) =

1/dam], [¢2 :

:2/dam], [¢2 :
: 3/dam)], [¢2 :
: 1/dam)], [¢3 :

:2/dam], [¢2 :
:3/dam)], [¢2 :
:1/dam)], [¢3 :

:2/dam], [c2 :

: 3/dam], [c2 :
: 1/dam], [¢3 :

: 3/dam)], [¢2 :

1/wam)], [c2 :
1/wam], [c2 :
1/wam)], [c2 :
2/wam], [¢3 :

2/wam], [c2 :
2/wam], [c2 :
2/wam], [¢3 :

3/waml, [c2 :
2/wam], [c3 :

3/waml], [¢2 :
: not EnoughM oney [obs|},

: not EnoughMoney /obs]} } }

giveMoney(1)/obs|},
giveMoney(1)/obs|},
giveMoney(1)/obs|},
not EnoughMoney /obs] } } ;

: giveMoney(1)/obs]},

: giveMoney(1)/obs]},

: giveMoney(1)/obs]},

: not EnoughMoney /obs] },

: not EnoughMoney/obs|} },

giveMoney(2)/obs|},
giveMoney(2)/obs|},
not EnoughMoney /obs] } } ;

: giveMoney(2)/obs]},

: giveMoney(2)/obs]},

: not EnoughMoney /obs] },

: not EnoughMoney/obs|} },

giveMoney(3)/obs|},
notEnoughMoney/obs]}},

giveMoney(3)/obs|},

The subUniform condition implies the condition that, per chosen substitution
set, the values for the variables affected by the predicate must have the same value
if they are similarly annotated. In practice this means that we choose one value per
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behavior of the ‘withdraw’ operation. As for the ‘subUnWithdraw’ test intention,
we present in figure a possible reduced test set for the ‘subUnWithdraw’ test
intention, obtained by randomly choosing one substitution set from the previously
calculated reduced substitution set.

HML( {deposit(d,2) with null} {withdraw
HML( {deposit(d,3) with null} {withdraw
HML( { with null} {withdraw

with null} {withdraw

, giveMoney (2)} T), True
, giveMoney (2)} T), True
, notEnoughMoney} T), True
, notEnoughMoney} T), True

deposit(d,1
deposit(d,2

—— — —
PRy

d,2)
d,2)
d,3)
d,3)

Figure 8.6: Reducedpanking (subUnWithdraw)

c1:deposit(d,4)

c1: deposit(d,3)

¢3: withdraw(d,3) with notEnoughMoney

A

c2: withdraw(d,2) with giveMoney(2)

c1: deposit(d,2)

c1: deposit(d, 1) c2: withdraw(d, 1) with giveMoney(1)

Figure 8.7: Sample Annotation of the Banking Server’s Semantics

8.5 Test Set for a CO-OPN and SATEL Specifi-
cation

We can now define the test set for a CO-OPN and SATEL specification. This
corresponds to the union of all test sets generated for all test intentions in that
specification.

Definition 8.5.1 Test Set for a CO-OPN and SATEL Specification

Let Spec be a CO-OPN and SATEL specification having a global SATEL sig-
nature Y9 = (S, <, F) and A be any finitely generated X5*-SATEL algebra. Let
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also MdL = (T'y, Focusg, Ay, Xi) € Spec (1 < k < n) be a set of test intention
modules. The test set for Spec is calculated as follows:

TestSet(Spec) = U Reducedgpe.(i)

il

where I =, Ty, is the set of all test intentions of Spec.

8.6 Summary

In this chapter we have described the full semantics of the SATEL language. We have
started by introducing the global SATEL signature which extends the previously
defined global signature (see definition . The global SATEL signature includes
not only the sorts defined by the ADT modules and induced by Class modules,
but also the Pat, Hml, Stim, Obsrv, Bool and Num sorts which are the names of
respectively the execution pattern, Hml formulas, Stimulation, Observation, Boolean
and Numeric types introduced by the SATEL language. In particular since each
context module specifies an SUT, the Pat, Hml, Stim and Obsrv types are context
module specific.

We then define the notion of SATEL Algebra for a global SATEL signature.
A SATEL Algebra is formed from the union of all the individual algebras for the
sorts described in the global SATEL signature. The algebras for the Pat, Hml, Stim,
Obsrv, Bool and Num sorts are models explicitly defined by us. In what concerns the
algebras for sorts defined by the ADT modules and induced by Class modules, many
models may exist, as long as they respect the equations in the algebraic specification
of those types. The SATEL Algebra has then a fixed part corresponding to the
SATEL types and a dynamic part corresponding to the remaining types.

In order to define the semantics of SATEL we start by building the ezxhaus-
tive test set for a test intention. This construction is done in two steps: firstly we
build the ezpanded execution pattern set for a given test intention. This set includes
all execution patterns which may be generated from either the inclusion of a test
intention within another test intention or by a test intention being recursively de-
fined. In a second step we produce the ezhaustive test set by uniting the positive
and negative exhaustive test sets. Both positive and negative exhaustive test sets
result from replacing the variables in the expanded execution pattern set by ground
terms. The positive exhaustive test set is the set of execution patterns resulting from
those substitutions whose interpretations in a given SATEL algebra are satisfied by
the semantics of the focus context module of the considered test intention. Equally,
the negative exhaustive test set is the set of execution patterns resulting from those
substitutions whose interpretations in the same SATEL algebra are not satisfied by
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the semantics of the considered context module. Note that the exhaustive test set
for a test intention does not take into consideration the conditions for the substi-
tutions reflecting the hypothesis about the SUT — which means we produce a test
set covering all the behavior expressed by the test intention without any reduction
hypothesis. Finally we present an important completeness result which states that
SATEL is sufficiently expressive to build the exhaustive test set for proving or dis-
proving bisimilarity between the transition system semantics of a context module
specification and an SUT.

We then proceed to define the reduced test set for a test intention. The reduced
test set is a subset of the exhaustive test set where the substitutions for the variables
in the expanded execution pattern set are constrained by the hypothesis expressed
by the conditions associated to each expanded execution pattern. The reduction
is performed at the level of the substitutions for each expanded execution pattern.
In particular only the terms satisfying the conditions for the considered ezpanded
execution pattern are kept.

The wuniform and subUniform predicates are a particular kind of condition
which require specialized treatment. The uniform predicate chooses one single sub-
stitution for a variable, while the subUniform predicate chooses one value per be-
havior of the operation(s) associated to that substitution. Both the uniform and
the subUniform predicate can be applied to Hml, Stimulation, Observation or opera-
tion parameter variables. Enforcing a subUniformity constraint on an Hml variable
means that the sequences of events resulting from the instantiation of that vari-
able will cover all combinations of behaviors of the operation(s) involved in those
sequences.

To produce substitution for variables on which a uniformity or subUniformity
hypothesis is stated, we assume the transition system semantics of the focus context
module for the considered test intention is annotated in such a way that each event
(transition) is marked with all the coordination and behavioral formulas leading
to its firing. Using a modified notion of satisfaction between Hml formulas and
annotated transition systems we are able to retrieve a set of annotated substitutions
which we use to perform the reductions imposed by the uniform and subUniform
predicates. The reductions are achieved by collecting all possible substitutions for a
given variable in an expanded execution pattern and then limiting the terms that can
replace it to either one single value — in the case of a uniformity hypothesis — or
several terms, one per possible behavior implied by that selection — in the case of a
subUniformity hypothesis. The annotations in the terms used for the substitutions
allow us to identify the substitutions that imply the same behavior. Finally, both the
uniformity and the subUniformity predicates imply several possible reductions, one
per choice for the value which represents the reduced domain. We solve this problem
by randomly choosing one substitution inside the considered domain — given any
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of those substitution has the same error finding power regarding the hypothesis.

We finalize the chapter by defining the test set for a CO-OPN and SATEL
specification. This test set corresponds to the union of all reduced test sets for all
test intentions declared in test intention modules of that specification.



Chapter 9

Case Study

In this chapter we will describe the usage of SATEL in the context of testing a
real-world system. The case study was performed in the context of an interregional
(France-Switzerland) INTERREG III project having as participants the Univer-
sity of Geneva, the Laboratoire d’Informatique de L’Université de Franche-Compté,
LEIRIOS Technologies and the Centre des Technologies de I’Information (CTI) of
the state of Geneva. The project — named VALID — was developed throughout
the year of 2006 and had as goal to address to quality of software by proposing
innovative techniques for functional testing. A full report with the obtained results
can be found in [62].

The presentation of the case study is divided in several steps. Firstly we
will describe the SUT and its existing model in the UML. We will then describe
the test specification we have produced in CO-OPN 5., starting from the UML
specification. We then proceed to defining test intentions for the test specification,
while basing ourselves in the original UML model. We finish by a discussion of the
obtained results.

9.1 The RTaxPM SUT and its Specification

Some years ago the state of Geneva has ordered the reconstruction of all the soft-
ware dealing with the cantonal taxation. The example we will use as our case study
consists of a subset of that software, namely the project dealing with the reimple-
mentation of the software for taxzing moral persons — called RTaxPM.

In order to tackle the problem of producing test cases for the already existing
RTaxPM software we started by analyzing the existing specification, written in the
UML. The model was well described, including data types, UML modeling conven-
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correct

r-—-—-———————+ at work
check
controlled

validate

[stamp necessary and
taxer cannot stamp]
[no stamp necessary or

taxer can stamp] stamp oppose
to notify / stamp to correct
notify

notified

Taxation

supress

cancelled

®

Figure 9.1: The life cycle of a Taxation

tions and conventions specific to the RTaxPM project itself. Although the software
implements several functions which require separate testing, we concentrated our
efforts on testing the life cycle of a taxation. This subset is sufficiently significant
to enable our case study as it involves a central critical aspect of taxation process.

Figure [9.1| presents the activity diagram model of the life cycle of a taxation.
The model represents the several states a dossier holding the information about a
moral person goes through until the tazation activity finishes. Note that all state
transitions are manually performed by a human taxer using a graphical interface.
The taxation function works as follows:

o firstly the at work state indicates that a dossier has entered processing;
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e a basic checkﬂ is then performed on the dossier which, if successful makes it
enter a controlled state;

e validation is then required to enter the to notify state. This validation can
be done either by simple taxer user in case no stamp is necessary, or by a taxer
who can stamp in case stamping is necessary. In case stamping is necessary
but the taxer handling the dossier does not have sufficient privilege to perform
the operation, the dossier enters an intermediate state to stamp. A taxer
with sufficient privileges can then either perform the stamping, which allows
the dossier to enter the to motify state or oppose the previous walidation
which makes the dossier enter a to correct state. From the to correct state
it is still possible to rejoin the normal flow if the required stamping is done.
Otherwise the only possibility is to correct the dossier which means returning
to the at work state;

e it is then necessary to notify the moral person being taxed, which makes the
dossier enter the notified state;

e after notification it is still possible to cancel the taxation.

Note that from the Tazation superstate it is possible to either correct or supress
the taxation at any moment.

9.2 The CO-OPN Test Specification

In order to produce test cases for the life cycle of a taxation we started by producing
a CO-OPN /5., specification reflecting the UML specification. While performing
this activity we encountered the problem that the system as described in section [9.1
is under-specified. In particular:

e the notions of dossier and stamp are not described in the statechart of fig-
ure 0.1} In particular a stamp is required to perform a taxation if the dossier
obeys certain criteria. These criteria are business rules informally or semi-
formally described elsewhere in the RTaxPM UML specification;

e the UML specification states that some taxers can stamp a dossier and others
cannot. However, no particular information about user types is given;

e the conditions describing the guards of the transitions are described in natural
language.

I'The models abstracts from the actual conditions checked.
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We were then obliged to find the correct abstractions in order to be able to
build the CO-OPN model. This was achieved by discussing with the development
team and by observing the already existing SUT. We have decided to describe the
problem of a dossier needing a stamp by coding it directly as a boolean in the data
type describing a dossier. We took a similar approach to define the tazer types: a
taxer can either stamp or not, also described by a boolean. The definition of the
data types tazer and dossier are shown in figures and respectively. The full
CO-OPN specification for the RTaxPM SUT can be found in appendix [C|

ADT TaxerPM ;
Interface
Use
Char;

Booleans;

Sort
taxer;

Generator

newTaxer _ allowedToStamp _ :

End TaxerPM;

char boolean —> taxer;

Figure 9.2: The TaxerPM ADT

ADT Dossier;
Interface
Use
Char;

Booleans;

Sort
dossier;

Generator

newDossier _ stampNeeded _ :

End Dossier;

char boolean —> dossier;

Figure 9.3: The Dossier ADT

In order to model the activity described by the statechart itself we resorted
to the usage of a Petri Net where places represent statechart states. Statechart

transitions are naturally represented by Petri Net transitions.

In particular we

have chosen to specify the statechart for the lifecycle of a taxation as a CO-OPN
class where each place of the classe’s petri net can hold one or more dossiers under
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treatment. The fact that several dossiers can be held in the statechart is not strictly
necessary, but we keep it to illustrate the capability of CO-OPN to serve as model
in a more complex test generation scenario where a tazer can be simultaneously
handling several dossiers.

The specification for the TazationEngine class is partially shown in figure (9.4}
Note that to address the problem of the guards being defined in natural language we
have coded them in boolean algebra. The conditions be observed in lines 37 and 41
of figure and are simple given that we have included in the specification the
abstractions that both the need for a dossier to be stamped and the capacity for a
taxer to stamp can be expressed as booleans. Note also that two axioms are used to
specify the createDossier axiom which starts the process by transitioning from the
startState to the atWork state. The only difference between the axioms is that one
includes a ‘dossierClearance = true’ condition while the other includes a ‘dossier-
Clearance = false’ condition. Although the behavior is more verbose than necessary,
we will see during the present chapter that this over-specification is relevant for test
generation using SATEL.

Due to the fact that an implementation of the lifecycle of a taxation was
already existing when we started the collaboration with the CTI, we were obliged
to take into consideration some operational issues while generating test cases. In
particular, the test driver could only act as client for the database server managing
the dossier information. The client consists of an API (Application Programming
Interface) which is also used by a graphical interface in the tazer’s local machine.
This API has the restriction that only one tazer can be logged in at a time from a
given machine. Given that we were only granted access to one machine at a time
to launch our test cases we were forced to model the logging mechanism in our
specification.

Figure [9.5] partially presents the CO-OPN textual specification of the Login-
Manager class. The class includes two places ‘loggedUsers’ and ‘unLoggedUsers’
which some taxers, some of which having the privilege to stamp and others not
having it. A couple of auxiliary places ‘taxerLogged’ and ‘noTazerLogged’ allow
preventing having more than one user logged in at a time. Finally, notice that, as
for the ‘TazationEngine’ Class, the ‘loginTaxer’ method is over-specified. It also
includes a behavior dealing with the login when a tazer is already logged in. In
this case the ‘alreadyLogged’ gate is activated thus issuing an error message to the
outside of the object.

In order to integrate both the TaxationEngine and the LoginManager classes
we used a context module which is represented in its graphical syntax in figure [9.6]
Notice that the context holds two objects, one belonging to each class. The objects
communicate by synchronizing the ‘isLogged’ gate of the taxationEngine object with
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Gate
isLogged - : taxer;
Methods
createDossier _ : dossier;
check;
validate;
Body
Places
startState _ : blackToken;
atWork _ : dossier;
controlled _ : dossier;
toStamp - : dossier;
toCorrect _ : dossier;
toNotify - : dossier;
notified - : dossier;
canceled _ : dossier;
endState _ : blackToken;
Initial
startState Q;
Axioms
dossierClearance = true =>
createDossier newDossier aDossierN stampNeeded dossierClearance
With isLogged aTaxer::
startState @ —> atWork aDossier;
dossierClearance = false =>
createDossier newDossier aDossierN stampNeeded dossierClearance
With isLogged aTaxer::
startState @ —> atWork aDossier;
check With isLogged aTaxer::
atWork aDossier —> controlled aDossier;
((userClearance = false) and (dossierClearance = true)) = true =>
validate With isLogged newTaxer aTaxerN allowedToStamp
userClearance ::
controlled newDossier aDossierN stampNeeded dossierClearance —>
toStamp newDossier aDossierN stampNeeded dossierClearance;
((userClearance = true) or (dossierClearance = false)) = true =>
validate With isLogged newTaxer aTaxerN allowedToStamp
userClearance ::
controlled newDossier aDossierN stampNeeded dossierClearance —>
toNotify newDossier aDossierN stampNeeded dossierClearance;
‘Where
aTaxerN, aDossierN : char;
aTaxer taxer;
aDossier : dossier;
userClearance, dossierClearance : boolean;

Figure 9.4: The TazationEngine Class (partial view)
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Gate
alreadyLogged;

Methods
loginTaxer _ : char;
logoutTaxer;
isLogged _ : taxer;

Body

Places
taxerLogged _ : blackToken;
noTaxerLogged _ : blackToken;
loggedUsers _ : taxer;
unLoggedUsers _ : taxer;

Initial

unLoggedUsers newTaxer a allowedToStamp false, unLoggedUsers newTaxer b
allowedToStamp false , unLoggedUsers newTaxer 1 allowedToStamp true,
unLoggedUsers newTaxer m allowedToStamp true, noTaxerLogged Q;

Axioms
userClearance = true =>
loginTaxer aTaxerN ::
unLoggedUsers newTaxer aTaxerN allowedToStamp userClearance,
noTaxerLogged @ —> loggedUsers newTaxer aTaxerN allowedToStamp
userClearance, taxerLogged @;
userClearance = false =>

loginTaxer aTaxerN::

unLoggedUsers newTaxer aTaxerN allowedToStamp userClearance,
noTaxerLogged @ —> loggedUsers newTaxer aTaxerN allowedToStamp
userClearance , taxerLogged @;

loginTaxer aTaxerN With alreadyLogged ::
unLoggedUsers newTaxer aTaxerN allowedToStamp userClearance ,
taxerLogged @ —> unLoggedUsers newTaxer aTaxerN allowedToStamp
userClearance , taxerLogged @;

logoutTaxer ::
loggedUsers newTaxer aTaxerN allowedToStamp userClearance, taxerLogged
@ —> unLoggedUsers newTaxer aTaxerN allowedToStamp userClearance ,
noTaxerLogged Q;

isLogged aTaxer::
loggedUsers aTaxer —> loggedUsers aTaxer;

‘Where
aTaxerN : char;
aTaxer : taxer;
userClearance : boolean;

Figure 9.5: The LoginManager Class (partial view)

the ‘isLogged’ method of the loginMgr object — thus allowing the tazationEngine
object to "ask” the loginMgr object if a taxer is logged in. Note also that ‘al-
readyLogged’ gate of the LoginManager class is connected to the outside of the
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Figure 9.6: The TaxationInterface Context

specification allowing the propagation of the error message to the environment.

9.3 Test Intentions and Generated Test Cases

In this section we will present SATEL from a test engineer point of view, by stating
test intentions in order to generate test cases for the RTaxPM SUT. We will split the
test generation activity in two phases: in the first phase we will generate test cases
for unit testing of the LoginManager class; in the second phase we will generate test
cases for integration testing of the whole system. We will also introduce some test
sets generated from the test intentions. Note that, for clarity reasons, the test sets
we present in the examples of this chapter will only include positive test cases — i.e.
those that correspond to valid behaviors of the context module which is the focus
of the test intention.

9.3.1 Unit Testing

The SATEL formalism, as defined in chapters[7] and [§] allows writing test intention
modules having as target (or focus) a particular context module — it is however
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not possible to write test intentions having as focus a CO-OPN class. In order to
overcome this issue we have written a LoginMgrinterface context module (see ap-
pendix |C|) which encapsulates an instance of the LoginManager class. The methods
and gates of the instance of the LoginManager class are synchronized with methods
and gates of the same name of the LoginMgrinterface context module.

TestIntentionSet UnitTesting Focus LoginMgrinterface;
Interface

Intentions
loginLogout ;
onlyOneUserLogged ;

Body

Intentions
repeatLoginLogout;

Uses
TaxerPM;
Dossier;

Axioms
HML ( T ) in repeatLoginLogout;

uniformity (t) | f in repeatLoginLogout =>
HML ( { loginTaxer (t) with null }
{ logoutTaxer with null } T ) . f in repeatLoginLogout;

| f in repeatLoginLogout, ( nbEvent(f) / 2 ) <= 3, nbEvent(f) > 0 => f in

loginLogout ;
uniformity (t), uniformity (u) | = HML ( { loginTaxer (t) with null }
{ loginTaxer (u) with alreadyLogged } T ) in onlyOneUserLogged;
Variables
t,u : taxer;
d : dossier;

f : primitiveHML;

End UnitTesting;

Figure 9.7: The LoginManager Class

In figure |9.7| we present the test intention module ‘ UnitTesting’ that generates
test cases for the unit testing of the LoginManager class. Note that the focus of the
test intention module is the LoginMgrinterface context module that encapsulates an
instance of the LoginManager class.

The test intention module in figure [9.7] defines three test intentions: the ‘re-
peatLoginLogout’ test intention is an auxiliaryﬂ test intention defining a sequence of

2 Auxiliary test intentions are defined in the body of the test intention module and do not directly
produce test cases — they are used as building blocks for other test intentions.
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login/logout operations. It is not practicable to directly use ‘repeatLoginLogout’ as
this test intention is recursively defined (in lines 18-22 of figure [9.7) and produces
an infinite amount of test cases with any number of login/logout pairs.

The ‘loginLogout’ test intention defined in line 24 of figure uses the ‘repeat-
LoginLogout’ test intention to generate three sequences of login/logout pairs. Note
that the ‘(nbEvent(f)/2) <= 3, nbEvent(f) > 0’ conditions forces the number of
events of the generated test cases to be pair, inferior to 6 and larger than 0 — in
this fashion we stating we want at most 3 login/logout pairs, but not the emptyﬁ
test case. Another interesting fact about the ‘loginLogout’ test intention is that each
instantiation of the ‘¢’ variable in the ‘loginTaxer ()’ method involves a uniformity
hypothesis on the possible instantiations of ‘¢’. That means each renaming of vari-
able ‘t’ for a ‘loginTazer (1)’ method inside the same expanded execution pattern set
(see definition for test intention ‘loginLogout’ can be instantiated only once
while generating test cases. An example of a possible test set generated by the
‘loginLogout’ test intention is shown in figure 9.8

o/HML( { loginTaxer (a) with null } { logoutTaxer with null } T ), true

HML( { loginTaxer (b) with null } { logoutTaxer with null } { loginTaxer (1) with

null } { logoutTaxer with null } T ), true

2|HML( { loginTaxer (m) with null } { logoutTaxer with null } { loginTaxer (a) with
null } { logoutTaxer with null } { loginTaxer (a) with null } { logoutTaxer
with null } T ), true

Figure 9.8: Possible test set generated by the ‘loginLogout’ test intention

Finally, the ‘onlyOneUserLogged’ test intention in line 26 of figure 0.7 produces
a test set for making sure the alreadyLogged gate call is performed when a taxer is
already logged in and another tazer tries logging. Again, the uniformity hypothesis
on variables ‘t” and ‘u’ allows restricting the instantiations of these variables to a
single taxer name. An possible test set for the ‘onlyOneUserLogged’ test intention
— holding one single test case — is presented in figure [9.9]

o/HML( { loginTaxer (a) with null } { loginTaxer (b) with alreadyLogged } T ), true

Figure 9.9: Possible test set generated by the ‘loginLogout’ test intention

9.3.2 Integration Testing

Let us now present a set of test intentions for generating test cases that allow
integration testing of the RTaxPM SUT. We will use as focus the TazationInterface

SHML ( T)
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context module we have presented in figure (the textual syntax can be found
in appendix . The TaxationInterface context module allows producing test cases
for integration testing as in fact it coordinates the activities of an object of type
TaxationEngine and an object of type TazationEngine. By chance it happens that
the TaxationInterface context module is also the topmost context in this CO-OPN
specification, which means we are also generating test cases for system testing.

We will proceed in several steps to illustrate the multiple features of SATEL.
Let us start by writing an Awziliary test intention module containing a library of
test intention building blocks — which will be later used to define complete test
intentions.

TestIntentionSet Auxiliary Focus TaxationInterface;

Interface
Intentions
prefix;
postfix;
repeatCorrection;

Body
Uses
TaxerPM ;
Dossier;
Axioms
uniformity (t), uniformity (d) | = HML ( { loginTaxer (t) with null } {
addDossier (d) with null } T ) in prefix;
HML ( { notify with null } { cancel with null } T ) in postfix;
HML ( T ) in repeatCorrection;
| f in repeatCorrection => f . HML ( { check with null } { validate with
null } { correct with null } T ) in repeatCorrection;
Variables
t : taxer;
d : dossier;

f : primitiveHML;

End Auxiliary;

Figure 9.10: The Auwziliary Test Intention module

The Auziliary test intention module is presented in figure 9.10| and includes
the definition of three test intention: the prefiz test intention defines a prelude for
test cases including a login of a tazer and the adding of a dossier to the tazation
process; the postfiz test intention defines a couple of operations that, if reached,
indicate the end of the tazation process; the repeatCorrection test intention which
defines a sequence of any size of check, validate and correct operations.
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Model Coverage

Let us now introduce the complete test intentions that generate test cases for the
TaxationInterface context module. The test intention module IntegrationTesting is
introduced in figure and defines three test intentions: coverValidation, reachFnd
and multipleCorrections.

TestIntentionSet IntegrationTesting Focus TaxationInterface;
Interface

Intentions
coverValidation ;
finishFlow ;
multipleCorrections;

Body
Uses
TaxerPM ;
Dossier;
Auxiliary;
Axioms
subUniformity (t), subUniformity(d) | => HML ( { loginTaxer (t) with null }
{ addDossier (d) with null } { check with null } { validate with null }
T ) in coverValidation;
| f in prefix, h in postfix, nbEvent(g) < 10 = f . g . h in finishFlow;
| f in prefix , g in repeatCorrection , (nbEvent(g) / 3) <=2 = f . g in
multipleCorrections;
Variables
t : taxer;
d : dossier;

f, g, h : primitiveHML;

End IntegrationTesting;

Figure 9.11: The Auwziliary Test Intention module

The coverValidation test intention is the most relevant of the set as it allows
testing the walidation method which is the most complex behavior of the SUT —
as can be observed in its specification in figure 9.1} In order to test the validation
method we have decided to apply the subUniformity predicate on the parameters
of the ‘loginTazer (t)’ and the ‘addDossier (u)’ methods as can be seen in line 17
of figure [9.11] The subUniformity predicate will choose one single instantiation of
variables ‘¢ and ‘u’ per behavior of methods login Taxer and addDossier respectively.

As can be seen in lines 20 to 29 of figure [9.5] the loginTazer method has three
behaviors: the taxer is allowed to stamp; the taxer is not allowed to stamp; a
taxer is already logged. As we have previously explained the two first behaviors
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are somewhat artificial and were devised for the purpose of test generation. The
subUniformity predicate applied to variable ‘¢’ in the axiom defining the coverVal-
tdation test intention will then select two values for ‘¢’: one allowing the login of a
tazer that can stamp; another allowing the login of a taxer that cannot stamp.
Notice that in this case the third behavior — a taxer is already logged — is not
possible as in the initial state of an object of type LoginManager no tazer is logged
(see line 17 of figure . The same reasoning as described in this paragraph can be
applied to the addDossier method of class TazationEngine defined in lines 26 to 32
of figure 9.4l

A possible test set generated by the coverValidation test intention is presented
in figure 0.12] Notice that all combinations of a tazer allowed or not allowed to
stamp and dossier requiring or not requiring a stamp are tried out. Also, due to
the fashion in which the formal semantics of SATEL are defined (see section
the variables covered by the subUniformity — as well as by the uniformity — pred-
icate are instantiated to the same values in all test cases produced by an expanded
execution pattern (see definition . The two chosen values for variables ‘¢” and
‘d’ are thus the same in all the test cases of figure [9.12

HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded true) }
{ check with null } { validate with null } T ), true
HML( { loginTaxer (1) with null } { addDossier (newDossier e stampNeeded false) }
{ check with null } { validate with null } T ), true
HML( { loginTaxer (b) with null } { addDossier (newDossier e stampNeeded false) }
{ check with null } { validate with null } T ), true
HML( { loginTaxer (1) with null } { addDossier (newDossier d stampNeeded true) }
{ check with null } { validate with null } T ), true

Figure 9.12: Possible test set generated by the ‘coverValidation’ test intention

The finishFlow test intention defined in line 19 of figure [9.11] makes use of the
prefix and the postfix test intentions defined in the Auziliary test intention module
to generate test cases that always terminate by a ‘notify’ method call followed by
‘cancel’ method call. The ‘g’ variable can be expanded to any HML formula involving
method and gate calls of the TaxationInterface context, having a number of events
inferior to 10. This test intention would produce for example the (non-exhaustive)
test set displayed in figure 9.13]

It is interesting to note that, again due to the semantics of SATEL, the in-
stantiation of the variables ‘¢’ and ‘d’ from the imported test intention prefiz (see
figure is the same for all generated test cases. In fact, depending on the random
choice of the values for those variables by the uniformity predicate the generated
test sets may be very diverse.

Finally, the multipleCorrections test intention defined in line 21 of figure 9.11
uses the auxiliary repeatCorrection test intention defined in the Awuziliary test in-
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HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded false) }
{ check with null } { validate with null } { notify with null } { cancel with
null } T ), true

HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded false) }
{ check with null } { loginTaxer (b) with alreadyLogged } { validate with null
} { notify with null } { cancel with null } T ), true

HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded false) }
{ check with null } { correct with null } { check with null } { validate with
null } { notify with null } { cancel with null } T ), true

Figure 9.13: Possible (non-exhaustive) test set generated by the ‘finishFlow’ test
intention

tention module to perform multiple correction cycles. We have limited the number
of cycles to 2 in the multipleCorrections test intention which means a test set such
as the one displayed in figure is produced.

HML( { loginTaxer (m) with null } { addDossier (newDossier d stampNeeded false)
with null } T ), true

HML( { loginTaxer (m) with null } { addDossier (newDossier d stampNeeded false)
with null } { check with null } { validate with null } { correct with null }
T ), true

HML( { loginTaxer (m) with null } { addDossier (newDossier d stampNeeded false)
with null } { check with null } { validate with null } { correct with null }
{ check with null } { validate with null } { notify with null } { correct with
null } T ), true

Figure 9.14: Possible test set generated by the ‘multiple Corrections’ test intention

Extending the Model for Observation

Although figures 0.9, 0.12 describe adequate test sets, the lack of obser-
vations in those test sets — note that almost all the stimulations have a ‘with null’

counterpart — pose technical difficulties at the level of the test driver. While our
colleagues from LEIRIOS Technologies were building the test driver it became ap-
parent that in order to efficiently calculate verdicts for the test cases a more reactive
SUT was needed. The SUT was then instrumented to output the name of the state-
chart state name at each transition. The instrumentation was performed only at the
level of connecting the SUT’s API to the test driver as the necessary information
was already being produced by the SUT.

This instrumentation of the SUT required introducing some modifications at
the level of our CO-OPN model. In particular we have introduced new gate ports
in the TazationEngine class and the TazationInterface context which propagate a
state reached by a given statechart transition. The axioms of the TazationEngine
also needed to be extended in order to activate the newly introduced gate ports. The
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extension consists of synchronizing each method of the TaxationFEngine inducing a
state transition with the respective observation gate. An example of this extension
for the ‘check’ method of the TazationEngine class is presented in figure 0.15] In
order for the CO-OPN test specification of the RTaxPM SUT to output the obser-
vations to the environment it is also necessary to: add observation gate ports to
the TazationInterface context module; coordinate them with the tazxationEngine’s
observation gates. The full extended specification is presented in appendix [C]

Gate
reachedControlled

Body
Places
atWork _ : dossier;
controlled _ : dossier;
Axioms

check With isLogged aTaxer // reachedControlled ::
atWork aDossier —> controlled aDossier;

Figure 9.15: Extending the TazationFEngine for observation

With the extended specification it is now possible to rewrite the test intentions
for integration testing (figures and to include the observations we have
added to the CO-OPN test model. We replicate in figure the postfiz test inten-
tion we have introduced in figure and its extended version with observations in
figure [9.17]

O‘HML( { notify with null } { cancel with null } T ) in postfix;

Figure 9.16: The Postfiz Test Intention

olHML ( { notify with reachNotify } { cancel with reachCancelled } T ) in postfix;

Figure 9.17: The Postfiz Test Intention extended with observations

Robustness Testing

SATEL allows the generation of test cases for behaviors that should not be allowed
by the SUT. Given that it is possible to expressing negative behaviors in the HML
formalism, we shall use this feature to generate test cases that ensure a wrong state
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of the statechart is not reached. In order to do this we shall take advantage of
the extended CO-OPN specification of the RTaxPM SUT we have introduced in
section [9.5.2)

Axioms
uniformity (f), uniformity (stm ) |
f in reachState, nbEvent(f) < 10, nbSyncro(stm) = 1, nbSyncro(obs) =— 1 =>

f . HML ( {stm with reachedToNotify} not ( {notify with obs} T ) T ) in
robustNotify ;

Variables
f : primitiveHML ;
stm : primitiveStimulation;
obs : primitiveObservation;

Figure 9.18: Test Intentions for Robustness Testing

In figure [9.18 we present a test intention for robustness testing of the tran-
sitions leaving the toNotify state. The robustCheck test intention is composed of
three parts: the ‘f’ variable of type primitive HML is used to find a path until a
state that precedes the ‘toNotify’ state. The ‘{stm with reachedToNotify}’ event is
then used to reach the ‘toNotify’ state. Note that ‘stm’ is a primitiveStimulation
variable which will be instantiated to one method call which will have as observa-
tion the ‘reachedToNotify’ gate. Finally, the ‘not ( {notify with obs} T ) interior
negative HML formula allows making sure that the ‘obs’ variable is instantiated
to an observation that is not possible. Uniformity hypothesis are made both on
variables ‘f’” and ‘stm’ due to the fact that we are interested in testing the tran-
sition exiting the ‘toNotify’ state, rather than the path leading to it. Also, the
‘nbSyncro(stm) == 1,nbSyncro(obs) == 1’ conditions enforce that no complex
synchronizations are instantiated for variables ‘stm’ and ‘obs’. A possible (non-
exhaustive) set of test cases generated by this test intention can be found in fig-
ure [0.19

It is interesting to notice that the pattern we have defined with the robustNotify
test intention in figure [9.18| can be reused with minor changes in order to generate
test cases for robustness testing of the transitions exiting any state of the statechart

presented in figure [9.1]

9.4 Discussion

A test driver was built for RTaxPM project and a test set built by our colleagues
from LEIRIOS and the Université de Franche-Comté was applied to the SUT. As
is presented in the final report for the project [62], the testing resulted in finding
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HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded false)
with reachedAtWork} { check with reachedControlled} { validate with
reachedToNotify} not({notify with reachedAtWork} T ) T ), true

HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded false)
with reachedAtWork} { check with reachedControlled} { validate with
reachedToNotify} not({notify with reachedControlled} T ) T ), true

HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded false)
with reachedAtWork} { check with reachedControlled} { validate with
reachedToNotify} not({notify with reachedToStamp} T ) T ), true

HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded false)
with reachedAtWork} { check with reachedControlled} { validate with
reachedToNotify} not({notify with reachedToCorrect} T ) T ), true

HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded false)
with reachedAtWork} { check with reachedControlled} { validate with
reachedToNotify} not({notify with reachedToNotify} T ) T ), true

HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded false)
with reachedAtWork} { check with reachedControlled} { validate with
reachedToNotify} not({notify with reachedCancelled} T ) T ), true

HML( { loginTaxer (b) with null } { addDossier (newDossier d stampNeeded false)
with reachedAtWork} { check with reachedControlled} { validate with
reachedToNotify} not({notify with reachedEnd} T ) T ), true

Figure 9.19: Possible (non-exhaustive) test set generated by the ‘robustNotify’ test
intention

an unimplemented functionality at the level of the taxer allowed to stamp as well
as a problem at the level of the LEIRIOS test specification. No errors were found
at the level of the implementation, which can be explained by relatively simple
functionality of the system.

We validated the CO-OPN test model built for the project with the CTI
members and presented some tests generated by our test intentions — although
we did not run them using the LEIRIOS test driver. One problem we would have
nonetheless found would have been the issue of having negative oracles in our test
cases, which usage was not previewed by the test driver.

The RTaxPM project provided us with a testbed in which we have explored
some methodological issues in the usage of SATEL. We describe these issues in the
following sections.

9.4.1 Test Intentions vs Equivalence Class Testing

Although we have not discussed this subject in section|9.3] it is important to mention
that we can produce interesting test cases for any CO-OPN specification using a
very simple test intention. In fact the application of the subUniformity predicate
to an HML formula will calculate the equivalence classes for each event of each
instantiation of that HML formula. This means that a test intention such as the
one presented in figure [9.20] would be enough to cover all the paths of any given
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CO-OPN specification, while choosing only one event per equivalence class (see
definition [8.4.8|) at each moment of the formula.

Axioms

subUniformity (f) => f in equivalenceClassIntention
Variables

f : primitiveHML ;

Figure 9.20: Generic Test Intention for Equivalence Class Testing

The kind of coverage induced by the ‘equivalenceClassIntention’ test intention
we present in figure [9.20] would then correspond to a structural condition coverage
of the specification by generating sequences of events representing valid behaviors
and that, at each step, exercise all the possible combinations of axiom conditions
allowing the firing of a given event.

It then becomes legitimate to ask why building test intentions, if a simple test
intention such as the one presented in figure[9.20|is enough to cover all behaviors of
the specification. The answer is manifold:

e test intentions allow being precise in the specification of the behavior to test,
which is important in order to produce test cases rapidly understandable by
the test engineer and where the discovered errors are traceable back to the
specification;

e test intentions allow explicitly limiting repetitive behaviors which could pro-
duce arbitrarily large test cases — as was demonstrated by the ‘multiple Cor-
rections’ test intention in figure [9.11}

e due to the possibility of defining recursive test intentions, it is possible to
specify test intentions including pattern repetition, which is similar to the
Kleene closure. This can be observed in the ‘repeatCorrection’ test intention
in figure [9.10

e test intentions allow splitting the calculation of a test case in several parts,
using for example uniformity hypothesis where the functionality to test is less
important and equivalence class or reqularity hypothesis (or simple ezhaus-
tivity) where the functionality to test is more important. An example of this
kind of division can be observed in the ‘finishFlow’ test intention in figure9.11]
Another interesting aspect of splitting a test intention in several parts is the
possibility of building a postfix for test cases which would reinitialize the SUT,
in order for the test driver to apply test cases of a test set in a sequential man-
ner;
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e test intentions can serve as heuristics in order to operationally accelerate the
calculation of test cases. Although we do not propose in this thesis an op-
erational method for calculating test cases, it is clear that the exhaustive
instantiation of the variables present in a test intention is very costly — or
impossible in the case of infinite domains — and that directing the test gen-
eration algorithm by the usage of test intentions is a possibility in order to
reduce search complexity.

9.4.2 Positive and Negative Test Cases

As we have explained in chapter [§] test intentions generate both positive negative
test cases — depending on whether the transition system semantics of a CO-OPN
specification satisfies or does not satisfy (see definition the HML formulas
resulting from the instantiation of the variables present on those test intentions. In
the examples presented in section 9.3 we have only shown the positive test cases, i.e.
the HML formulas representing valid behaviors of the SUT. In fact, most of the test
intentions discussed in section [9.3| produce negative test cases resulting from the
exhaustive instantiations of the variables present in a test intention. These negative
test cases, although theoretically important to build the exhaustive test set for CO-
OPN specifications (regarding the bisimulation relation in deﬁnition, are most
of the time not interesting for the testing activity. They represent behaviors which
are not only difficult to understand by a test engineer, but also difficult to trace
back to the specification in order to find where an error occurred if one was found
by the test driver.

We have thus chosen to treat the negative cases in a positive fashion. This can
be observed in the ‘robustNotify’ test intention in figure [9.18 where we use the not
predicate of HML temporal logic in order to generate positive test cases including
a negative part — in this case the last event which should not be possible since it
leads to an impossible state. Note that this technique allows keeping control of the
positive part of the testing intention, while limiting the negative part by the not
HML predicate.

9.4.3 Test Intention Modules

In section [9.3|we have presented both Unit and Integration — or, in the present case,
also System — testing by using the same methodology: firstly we have isolated the
part of the SUT we wanted to test by surrounding it with a context module; secondly
we have connected the interesting methods and gates of the subsystem specification
to methods and gates in the surrounding context modules; thirdly we wrote test
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intentions for the surrounding contert module. In order to perform System testing
one can always use the topmost context as the focus of the test intention module.
This methodology seems practical and one could even devise an automatic fashion
of producing the surrounding context modules.

It is however to be noticed that while performing unit testing by surrounding
an instance of a CO-OPN class with a context module we do not guarantee that we
are really generating unit tests for the SUT. In order for this to happen it would
be necessary that a one-to-one mapping always exists between CO-OPN classes and
SUT (implementation) classes, which may or may not be the case.

Another issue which arose while writing the test intentions for the RTaxPM
SUT lies in the fact that it would be interesting to augment SATEL with the pos-
sibility of having parametric test intentions. For example the ‘robustNotify’ test
intention in figure [9.18| could be made more generic if we could build a ‘reach-
State(s)’ test intention that reaches any given state ‘s’ provided as parameter. We
could then use that test intention as a prefix in order to reach the state we wish to
perform the robustness testing upon.

9.5 Summary

In this chapter we have presented a realistic case study having as goal the generation
of test cases for a taxing application (RTaxPM), developed for the state of Geneva.
We have started by building a CO-OPN test specification which is sufficiently precise
to generate oracles for test intentions expressed using SATEL. In order to build
this test specification we were obliged to find the correct level of abstraction at
which we could express the concepts of the taxing application in CO-OPN. This
exercise allowed us to confirm that CO-OPN’s modeling mechanisms, notably ADT,
Class and Context modules are sufficiently expressive to generate precise and elegant
abstractions for concepts of the real world.

We have then used SATEL to write test intentions for the RTaxPM CO-OPN
test specification. This was done in several steps, starting with unit testing for a
particular class of the test specification and then proceeding to integration testing
of the whole system. Writing these test intentions allowed us to explore the many
features of SATEL, namely the: modularity and the reuse of test intentions; the
easy expression of uniformity and regularity hypothesis by using the available pred-
icates to constraint SATEL variables; the usage of the subUniformity predicate for
the calculation of tests which automatically subdivide the behaviors of operations
expressed in CO-OPN and choose one event per equivalence class of those behaviors
In particular this experience provided us with the opportunity of experimenting with
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the SATEL editor also developed in the context of this thesis [37, [38].

During this chapter we also approached some methodological issues while
building test intentions using SATEL. We have discussed the usage of context mod-
ules to encapsulate parts of the specification in order to produce test sets for unit,
integration or system testing. Robustness testing was also explored and we have
informally introduced a technique for generating positive test cases while expressing
negative behaviors at certain parts of a test intention.

Finally we have discussed the interest of using test intentions as opposed to
simply performing an exploration of the specification by automatically producing one
event per equivalence class of each operation present in the CO-OPN specification —
i.e. by applying a subUniformity predicate to a free variable of type ‘primitive HML’.
Although we have shown that test intentions allow clear and precise test generation,
it would seem that operational experimentation with larger systems is needed to
further our results.
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Chapter 10

Conclusion

In this chapter we will conclude and discuss the results of our work. We will start
by discussing in detail our contributions and establishing how we have improved the
state of the art in what concerns model based testing from CO-OPN specifications.
We will then discuss these results, establish their importance and extrapolate their
usefulness in the context of model based testing in general. Finally we will identify
issues which were not addressed with our work and propose a set of directions for
the continuation of the research.

10.1 Contributions

The contributions of this thesis can be stated at three levels: bug correction, clarifi-
cation and improvement of the syntax and semantics of the CO-OPN language; pro-
posal of the SATEL language including the new concept of test intention; complete
formalization of a sub-domain decomposition method using a structural criterion
based on CO-OPN axioms describing the behavior necessary for event firing.

10.1.1 CO-OPN

In figure we present the differences between the previous CO-OPN 5, version
and the new CO-OPN )5, 1 version introduced by our work. At the syntactic level
the main difference consists of the revision of the notion of context module which was
previously seen as a specification on its own. On the one hand we have integrated
the abstract syntax of Contert modules with that of ADT and Class modules; on
the other hand we have devised a new notion of CO-OPN specification which is
a collection of ADT, Class and Context modules obeying certain well-formedness

203
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CO-OPN . CO-OPN 9., |
Syntax e A Context module contains e A Context module is a kind
a CO-OPN , specification of CO-OPN 3.4 module
e A CO-OPN /o, specification is | @ A CO-OPN 5.1, specification is
a Context module a set of ADT, Class and
Context modules
Semantics | e By transformation e Direct Semantics
e Does not directly treat e Uses Hurzeler’s composition
context modules and gates technique [6]
e Inductive definition based
on the specification’s
hierarchical structure

Figure 10.1: Differences between CO-OPN /5. and CO-OPN /5. 4

conditions.

In what concerns the semantics we have not changed the transition system
produced at the end, but have proposed an entirely different framework for its cal-
culation. The previous proposal for CO-OPN /5. was transformational and involved
translating a CO-OPN /5. specification into a CO-OPN /, one whose semantics were
known. The transformational step was difficult to understand and did not explicitly
take into consideration CO-OPN j5.’s new features. In our CO-OPN )54 proposal
we have taken into consideration the new concepts of context modules and gates in
a primitive fashion which produced a much clearer constructive statement of the
language’s semantics.

10.1.2 SATEL

In figure we present the differences between the previous CoopnTest language
developed by Péraire and Barbey for CO-OPN ), and the new SATEL language
we have introduced for CO-OPN jo.y;. The main difference is the test selection
methodology, which in CoopnTest is directly inherited from the BGM theory and
consists of progressively narrowing the exhaustive test set by applying successive
constraints on the variables of an HML formula. In SATEL we natively propose a
constructive approach, which means expressing the behavior the test engineer wishes
to test by means of a test intention. The test intention incorporates both the
behavior to test — expressed as an HML formula with variables — and its reduction
— expressed as constraints over those variables.

In terms of types of SUT’s each language is adapted to produce test cases for,
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CoopnTest SATEL
Specifications CO-OPN /, CO-OPN /501
Test Selection Reduction of the Reduction of multiple
Methodology exhaustive test set behaviors using
test intentions
Adapted To Active systems Reactive systems

Fault Model

Test engineer hypothesis +
unfolding technique

Refined test engineer
hypothesis + axiom-based
behavior decomposition

Unit / Integration /
System Testing

By choosing classes
or objects under test

By enveloping the

part of the specification
under test with

a context module

Test Compositionality

Not Supported

Supported

Test Case Format

Couple
(HML formula, result)

Couple
(HML formula, result)

Oracle

External observation of
the program’s behavior

External observation of
the program’s behavior

Operational Techniques

Prolog SLD resolution
with control mechanisms

Not Treated

Editor

Stand Alone
Java application

Integrated with
CoopnBuilder

Figure 10.2: Feature comparison of CoopnTest and SATEL
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CoopnTest was designed to test active systems while SATEL can be used to test
both active and reactive systems. This difference comes from the existence of gate
ports in CO-OPN /9.4 specifications, allowing the native expression of observations
during test selection. Although CoopnTest can be used to test reactive systems,
observation is delegated to the test driver which is required to decide operation
success — observed as the SUT’s non-blockage.

The fault model is similar for CoopnTest and SATFEL. Both languages rely on
the hypothesis stated by the constraint language as well as on automatic sub-domain
decomposition based on the semantics expressed in the CO-OPN specification. SA-
TEL however brings a more precise fashion of constraining the behaviors under test.
This is due to the concept of test intentions, the usage of variables for stimulations
and observations and the addition of constraint predicates to the ones proposed in
CoopnTest. The new constraint predicates were defined at the level of stimulation,
observation and method or gate parameter variables.

At the level of unit / integration / system testing SATEL uses the notion of
context module in order to delimit the part of the specification modeling the part
of the SUT under test. Although we do not propose a formal methodology for
unit or integration testing, we exemplify SATEL’s possibilities in the case study of
chapter [9]

Test compositionality and reuse is primitively supported by SATEL. This fea-
ture, which is not included in CoopnTest, reflects SATEL’s constructive approach
to test case generation and allows composing test intentions thus generating test
cases for the composition of the behaviors covered by those test intentions. Com-
positional testing methodologies can be devised using this technology, such as the
ones suggested in the case study of chapter 0] We have introduced no changes in
what regards test case format and the oracle decision. In order to have complete-
ness regarding the exhaustive test set necessary to establish bisimulation between
the transition systems of the specification and of the SUT, we need both positive
and negative behaviors — expressed by the boolean result annotating each HML
formula. The decision on whether an error is uncovered or not by a test case is
achieved by comparing the oracles present in the test case — the shape of the HML
formula and the truth value annotating it — with the observation of the SUT’s
behavior. Four cases are possible:

e the sequence of events predicted in the test case is observed in the SUT and
the truth value of the test case is true — no error is discovered;

e the sequence of events predicted in the test case is not observed in the SUT
and the truth value of the test case is true — at least one error is discovered;

e the sequence of events predicted in the test case is observed in the SUT and
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CoopnTest SATEL
Strategy Unfolding technique Azxiom-based behavior
decomposition
Granularity Axiomatization of the | Combination of the axioms
algebraic operations required to fire a given event

Formalization | Operational, in Prolog | Annotated transition systems +
mathematical logics

Adapted To Algebraic specifications | Component-based,

hierarchical specifications

Figure 10.3: Comparison of sub-domain decomposition methods

the truth value of the test case is false — at least one error is discovered;

e the sequence of events predicted in the test case is not observed in the SUT
and the truth value of the test case is false — no error is discovered.

Finally, although a test intention editor exists for the SATEL language, we
have not implemented an operational semantics for the language. The editor is
included in the newest IDE for CO-OPN specifications and respects the abstract
syntax we have defined in chapter [7.3] The implemented concrete syntax is the one
described in appendix [E]

10.1.3 Semantics of SATEL

The fashion in which SATFEL’s semantics are expressed is considerably different from
the one used to express CoopnTest’s semantics. Firstly, we employ an algebraic
approach to the express the semantics of the exhaustiveness of the variables present
in HML formulas. In particular we define a new global signature for CO-OPN and
SATEL specifications including the new types induced by the testing language as well
as the signature of all the constraining predicates. The semantics of the constraint
predicates is then given in terms of functions which are part of the algebra for
the global signature for CO-OPN and SATEL specifications. This is significantly
different from the semantics of CoopnTest where no integrated treatment for the
types of the testing language was introduced.

In terms of the sub-domain decomposition technique used in CoopnTest and
SATEL, they differ both in the produced test cases and the fashion in which they
are expressed. As can be observed in figure [10.3] the employed strategy is different:
while in CoopnTest the decomposition is based on the unfolding technique which
is operational and depends on the axiomatization of operations defined in ADT



208 CHAPTER 10. CONCLUSION

modules, our technique is directly based on the axioms used in the definition of each
behavior of the specification. We introduce with our work a formal logical study on
sub-domain decomposition of CO-OPN which is independent of any implementation
technique. This differs from the previous work of Péraire and Barbey where the
sub-domain decomposition was blurred with both the axiomatization of algebraic
operations (in ADT modules) and the operational semantics of CO-OPN — given
that the unfolding mechanism was used to decompose the behavior of all conditions
in the symbolic execution of CO-OPN specifications.

Our technique using annotated transition systems is thus adapted to state-
and component-based hierarchical specifications, as opposed to the previous sub-
domain decomposition mechanism for C'oopnTest which was based on the unfolding
technique initially devised for stateless algebraic specifications.

10.2 Discussion

The work presented in this document has been developed along two main axes:
CO-OPN yc44 and SATEL. These axes may be seen as relatively independent —
the work on CO-OPN 5.4, has as objective devising a semantics for component-
based concurrent and hierarchical systems; the work on SATEL has as objective
the generation of reduced test sets from a CO-OPN /5., specification and a set of
test intentions. The two lines of work come together when we need to produce the
annotated transition system required to reduce the exhaustive test set for a given
test intention. The direct semantics we have produced for CO-OPN 5.4 provides
a clear base not only to reduce exhaustive test sets, but also to calculate oracles for
our test cases.

With our work we have made a significant step in adapting the BGM testing
theory and the previous work on test generation from CO-OPN specifications to
the pragmatic aspects of test engineering. In particular we propose a series of new
predicates allowing precision and expressiveness while defining test intentions for
test set construction. The notion of test intention has been clearly stated — both
syntactically and semantically — and fully integrated from a formal point of view
with the existing work on CO-OPN.

We have redefined the notion of exhaustive test set in the context of our test
intentions. Although we prove the completeness of SATEL regarding the possibility
of building the exhaustive test set for a specification, we do not state under which
conditions a set of test intentions produces the exhaustive test set. In fact this condi-
tion would correspond to adding a decomposition hypothesis as a minimal hypothesis
for generating a test set. The formalization of the decomposition hypothesis would
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correspond to the fact that the union of all ezhaustive test sets for all test intentions
cover the transition system denoting the semantics of the CO-OPN specification of
the SUT. Adding this decomposition hypothesis allows SATEL to remain in the same
test set reduction framework as BGM — i.e. pertinence is kept.

We have equally devised a fashion of calculating equivalence classes among test
cases which is independent from the unfolding mechanism. This work was missing
in the context of CO-OPN as it relates test selection to the domain semantics of
the model — the conditions expressed by the modeler and the model’s structure
— rather than taking into consideration the internal semantics of the modeling
language itself. It is our claim that our equivalence class calculation approach can
be employed without many changes while formalizing and implementing test case
reduction for specification languages other than CO-OPN which do not necessarily
have data types defined as algebraic specifications.

10.3 Future Work

Several issues remain open following the work we have presented. In particular:

e As we have already identified, a decomposition hypothesis needs to be com-
pletely formalized in order to keep pertinence regarding the test set obtained
from a set of test intentions;

e Experimentation with operational techniques is necessary in order to imple-
ment both the semantics of CO-OPN 5., and SATEL. We have made some
preliminary experiments with Prolog which have worked to a certain extent,
but which required modifications of the resolution mechanism that resulted
in high complexity. A new approach extending DDD and SDD [63] 64] to
algebraic specifications is currently being developed in our laboratory and we
will apply it to the implementation of SATEL. The main advantage of this
approach is that represents sets in a compact fashion and allows defining op-
erations on those sets — making it possible to directly code the semantics we
have developed in this document;

e We have presented in this thesis a case study of realistic size where we have
shown that SATEL is a very expressive test intention language accommodating
mechanisms that allow many methodological possibilities. We are currently
setting up a project with the Université de Franche-Comté and the Geneva-
based company CLIO where our concept of test intention will be further ex-
plored;
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e As we have proved, SATEL is expressive enough to build the ezhaustive
test set for any SUT. This can be done by declaring a free variable of type
PrimitiveHM L as part of a test intention. It would however be interesting
to understand how precise a test engineer can be while writing test intentions,
i.e., is it possible to explicitely write test intentions for any arbitrary behavior?

e Generalizing our formalization of the calculation of equivalence classes for sub-
domain decomposition by performing a similar study of other specification
formalisms;

e From a methodological point of view it would be interesting to extend SATEL
to include parametric test intentions. Also, developing a predefined catalog
of test intentions as a toolkit for the test engineer presents an interesting
possibility.
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Appendix A

The Drink Vending Machine
Specification

ADT Modules

ADT Drink;
Interface

Sort
drink;

Generators

IceTea
Soda
Beer
Water
End Drink;

: —> drink;

: —> drink;
: —> drink;
: —> drink;

Class Modules

Class moneyBox;

Interface

Use

Naturals;

Drink;
Type

moneybox ;

Gates

askPrice _ _

: drink

notEnoughMoney ;

Methods

natural;
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insertCoin;

consume _ : drink;
Body
Place
coinHolder _ : natural;
Initial
coinHolder 0;
Axioms
insertCoin ::
coinHolder am —> coinHolder am + 1;
(am > = p) = true =>
consume d With checkPrice d p::
coinHolder am —> coinHolder am — p;
(am < p) = true =>
consume d With checkPrice d p / / notEnoughMoney ::
coinHolder am —> coinHolder am;
‘Where
am : natural;
p : natural;
d : drink;

End moneyBox;

Class drinkShelf;
Interface
Use
Drink;
Naturals;
Type
drinkshelf;
Gates
distributeDrink _ : drink;
notEnoughDrinks;
Methods
giveDrink _ : drink;
returnPrice _ _ : drink natural;
Body
Places
availableUnits - : natural;
name - : drink;
price _ : natural;
Axioms
(units > 0) = true =>
giveDrink d::
availableUnits units, name d —> availableUnits units — 1, name d;
(units = 0) = true =>
giveDrink d With notEnoughDrinks::
availableUnits units, name d —> availableUnits units, name d;
returnPrice d p::
name d, price p —> name d, price p;
‘Where
units : natural;
p : natural;

d : drink;




36
End drinkShelf;
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Context Modules

0| Context DVM;
2| Interface
4 Use
Drink;
6 drinkShelf;
moneyBox ;
8
Gates
10 notEnoughMoney ;
notEnoughDrinks;
12 distributeDrink _ : drink;
14 Methods
insertCoin;
16 buyDrink _ : drink;
18| Body
20 Objects
beerShelf : drinkshelf;
22 waterShelf : drinkshelf;
iceTeaShelf : drinkshelf;
24 sodaShelf : drinkshelf;
mBox : moneybox;
26
Axioms
28 insertCoin With mBox . insertCoin;
mBox . checkPrice (d, p) With shelf . returnPrice (d, p);
30 buyDrink d With mBox . consume d / / shelf . giveDrink d;
shelf . distributeDrink d With distributeDrink d;
32 mBox . notEnoughMoney With notEnoughMoney ;
shelf . notEnoughDrinks With notEnoughDrinks;
34
Where
36 shelf : drinkshelf;
d : drink;
38 p : natural;
40| End DVM;
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Appendix B

The Banking Server Specification

ADT Modules

ADT User
Inherit MyChar;

Rename
char —> user;

End User;

ADT Money ;
Inherit Naturals;

Rename
natural —> money;

End Money ;

ADT Challenge;
Interface

Use
Digit;
User;
Booleans;
Sort
challenge;
Generator
newChal _ _ : user, digit —> challenge;
Operation
_ = _ : challenge, challenge —> boolean;

Body
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Axioms
((cl = ¢2) = true) & ((dl = d2) = true) =>
((newChal c1 d1) = (newChal ¢2 d2)) = true;
' (((cl = ¢2) = true) & ((dl = d2) = true)) =>
((newChal c¢1 dl1) = (newChal ¢2 d2)) = false;
‘Where
cl, c2 : user;
dl, d2 : digit;

End Challenge;

ADT Password ;

Interface
Use
Digit ;
Booleans;
Sort
password ;
Generator
newPassword - _ _ _ : digit digit digit digit —> password;
Operation
_ = _ : password password —> boolean;
Body
Axioms
(n1 = ml) = true & (n2 = m2) = true & (n3 = m3) = true & (n4d = m4) = true
=> (newPassword nl n2 n3 n4 = newPassword ml m2 m3 m4) = true;
! ((nl = ml) = true & (n2 = m2) = true & (n3 = m3) = true & (n4d = m4) = true)
=> (newPassword nl n2 n3 n4 = newPassword ml m2 m3 md4) = false;
‘Where

nl, n2, n3, n4d, ml, m2, m3, md : digit;

End Password;

Class Modules

Class LoginManager;
Interface

Use
Password ;
Challenge;
User;

Type
loginManager ;

Gates
verifyPass _ _ : user password;
askChallenge _ : challenge;

Methods
isLogged _ : user;
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login _ : wuser;
insertPassword _ _ : user password;
logout _ : wuser;
Body
Places
unLogged _ : wuser;
waitingForPass _ : user;
logged - : user;
Initial
unLogged d, unLogged e, unLogged f;
Axioms
login usr With
this . askChallenge (newChal a 1)::
unLogged usr —> waitingForPass usr;
insertPassword usr p With
this . verifyPass usr p::
waitingForPass usr —> logged usr;
logout usr::
logged usr —> unLogged wusr;
isLogged wusr::
logged usr —> logged wusr;
‘Where
usr : user;
p : password;

this : loginManager;

End LoginManager;
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Class Account;
Interface

Use
User;
Password ;
Money ;

Type
account ;

Gates
giveMoney _ : money;

notEnoughMoney ;

Methods
deposit _ : money;
withdraw _ : money;
hasPass _ _ : user password;

Body

Places
userName _ : user;
userPass _ : password;
balance _ : money;
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Axioms
deposit am::
balance b —> balance b 4 am;
(b > = am) = true =>

withdraw am With this . giveMoney am::
balance b —> balance b — am;
(b > = am) = false =>

withdraw am With this . notEnoughMoney ::
balance b —> balance b;
hasPass usr p::

userName usr, userPass p —> userName usr, userPass p;
‘Where
b : money;
am : money;
usr : user;
p : password;
this : account;

End Account;

Context Modules

Context BankingServer;
Interface
Use
User;
Money ;
Password ;
Challenge;
LoginManager;
Account;
Gates
askChallenge _ : challenge;
giveMoney _ : money;
Methods
login _ : user;
insertPassword _ _ : user password;
logout user ;
deposit - _ : user money;
withdraw _ _ : user money;
Body
Objects
ImObj : loginManager;
accObjl : account;
accObj2 : account;
Axioms
login usr With ImObj . login usr;
insertPassword usr p With ImObj . insertPassword usr p;

logout usr With ImObj . logout usr;
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deposit usr am With 1mObj
withdraw usr am With ImObj

accVar

ImODbj

ImODbj verifyPass
‘Where

accVar account ;

usr : user;

p : password;

¢ : challenge;

am : money;

End BankingServer;

isLogged usr / / accVar
isLogged usr / / accVar

giveMoney am With giveMoney am;
askChallenge ¢ With askChallenge c;
usr p With accVar

hasPass usr p;

deposit am;
withdraw am;

219
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Appendix C

The RTaxPM CO-OPN
Specification

ADT Modules

0o|ADT TaxerPM;

2| Interface

4 Use

Char;
6 Booleans;
8 Sort

taxer;
10

Generator

12 newTaxer _ allowedToStamp _ : char boolean —> taxer;

14| End TaxerPM;

0|ADT Dossier;

2| Interface

4 Use

Char;
6 Booleans;
8 Sort

dossier;
10

Generator

12 newDossier _ stampNeeded _ : char boolean —> dossier;

14| End Dossier;
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Class Modules

Class LoginManager;
Interface

Use
TaxerPM ;
BlackTokens;
MyChar ;
Booleans;

Type
loginManager;

Gate
alreadyLogged;

Methods
loginTaxer _ : char;
logoutTaxer;
isLogged _ : taxer;

Body

Places
taxerLogged _ : blackToken;
noTaxerLogged _ : blackToken;
loggedUsers _ : taxer;
unLoggedUsers _ : taxer;

Initial
unLoggedUsers newTaxer a allowedToStamp false, unLoggedUsers newTaxer b
allowedToStamp false , unLoggedUsers newTaxer 1 allowedToStamp true,
unLoggedUsers newTaxer m allowedToStamp true, noTaxerLogged Q@;

Axioms
userClearance = true =>
loginTaxer aTaxerN ::
unLoggedUsers newTaxer aTaxerN allowedToStamp userClearance,
noTaxerLogged @ —> loggedUsers newTaxer aTaxerN allowedToStamp
userClearance , taxerLogged Q;
userClearance = false =>
loginTaxer aTaxerN ::
unLoggedUsers newTaxer aTaxerN allowedToStamp userClearance,
noTaxerLogged @ —> loggedUsers newTaxer aTaxerN allowedToStamp
userClearance , taxerLogged @;
loginTaxer aTaxerN With alreadyLogged ::
unLoggedUsers newTaxer aTaxerN allowedToStamp userClearance,
taxerLogged @ —> unLoggedUsers newTaxer aTaxerN allowedToStamp
userClearance , taxerLogged Q;
logoutTaxer ::
loggedUsers newTaxer aTaxerN allowedToStamp userClearance,
taxerLogged @ —> unLoggedUsers newTaxer aTaxerN allowedToStamp
userClearance , noTaxerLogged Q;
isLogged aTaxer::

loggedUsers aTaxer —> loggedUsers aTaxer;
‘Where
aTaxerN : char;
aTaxer : taxer;
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userClearance boolean ;

End LoginManager;
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Class TaxationEngine;
Interface

Use
TaxerPM ;
Dossier;
BlackTokens;
Booleans;

Type
taxationEngine;

Gates
isLogged _ : taxer;
reachedAtWork ;
reachedControlled;
reachedToNotify ;
reachedToStamp ;
reachedToCorrect ;
reachedNotified ;
reachedCancelled;
reachedEnd ;

Methods
createDossier _
check;
correct ;
supress ;
validate;
notify;
stamp ;
oppose;
cancel;

Body

Places
startState _
atWork _ : dossier;
controlled _ dossier;
toStamp dossier;
toCorrect dossier;
toNotify _ dossier;
notified _ dossier;
canceled _ dossier;
endState blackToken ;

Initial
startState Q;

Axioms

dossier;

blackToken ;

dossierClearance = true =>

createDossier newDossier aDossierN stampNeeded dossierClearance
With isLogged aTaxer / / reachedAtWork::
startState @ —> atWork aDossier;

dossierClearance = false =>
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createDossier newDossier aDossierN stampNeeded dossierClearance
With isLogged aTaxer / / reachedAtWork::
startState @ —> atWork aDossier;
check With isLogged aTaxer / / reachedControlled ::
atWork aDossier —> controlled aDossier;
((userClearance = false) and (dossierClearance = true)) = true =>
validate With isLogged newTaxer aTaxerN allowedToStamp
userClearance / / reachedToStamp::
controlled newDossier aDossierN stampNeeded dossierClearance —>
toStamp newDossier aDossierN stampNeeded dossierClearance;
((userClearance = true) or (dossierClearance = false)) = true =>
validate With isLogged newTaxer aTaxerN allowedToStamp
userClearance / / reachedToNotify::
controlled newDossier aDossierN stampNeeded dossierClearance —>
toNotify newDossier aDossierN stampNeeded dossierClearance;
userClearance = true =>
oppose With isLogged newTaxer aTaxerN allowedToStamp userClearance
/ / reachedToCorrect ::
toStamp aDossier —> toCorrect aDossier;
userClearance = true =>
stamp With isLogged newTaxer aTaxerN allowedToStamp userClearance /
/ reachedToNotify ::
toStamp aDossier —> toNotify aDossier;
userClearance = true =>
stamp With isLogged newTaxer aTaxerN allowedToStamp userClearance /
/ reachedToNotify ::
toCorrect aDossier —> toNotify aDossier;
notify With isLogged aTaxer / / reachedNotified ::
toNotify aDossier —> notified aDossier;
correct With isLogged aTaxer / / reachedAtWork::
controlled aDossier —> atWork aDossier;
correct With isLogged aTaxer / / reachedAtWork::
toStamp aDossier —> atWork aDossier;
correct With isLogged aTaxer / / reachedAtWork::
toCorrect aDossier —> atWork aDossier;
correct With isLogged aTaxer / / reachedAtWork::
toNotify aDossier —> atWork aDossier;
supress With isLogged aTaxer / / reachedEnd::
controlled aDossier —> endState @Q;
supress With isLogged aTaxer / / reachedEnd::
toCorrect aDossier —> endState Q;
supress With isLogged aTaxer / / reachedEnd::
toNotify aDossier —> endState Q;
cancel With isLogged aTaxer / / reachedEnd::
notified aDossier —> canceled aDossier;

‘Where

aTaxerN : char;

aTaxer : taxer;

aDossierN : char;

aDossier : dossier;
userClearance : boolean;
dossierClearance : boolean;

End TaxationEngine;

Context Modules
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Context LoginMgrlnterface;
Interface

Use
LoginManager;
MyChar ;
TaxerPM;

Methods
loginTaxer _ : char;
logoutTaxer;
isLogged _ : taxer;
Body

Object
loginMgr : loginManager;

Axioms
loginTaxer aTaxerN With loginMgr . loginTaxer aTaxerN;

logoutTaxer With loginMgr . logoutTaxer;

isLogged aTaxer With loginMgr . isLogged aTaxer;
‘Where

aTaxerN : char;

aTaxer : taxer;

End LoginMgrInterface;

Context TaxationInterface;
Interface

Use
TaxerPM ;
TaxationEngine;
LoginManager;
Dossier;
Booleans;

Gates
alreadyLogged ;
reachedAtWork;

reachedControlled ;
reachedToNotify;
reachedToStamp;
reachedToCorrect ;
reachedNotified ;
reachedCancelled ;
reachedEnd ;

Methods
loginTaxer _ : char;
logoutTaxer;
createDossier _ : dossier;
check;
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validate;
oppose;
stamp ;
notify ;
correct ;
supress ;
cancel;
Body

Objects
taxEngine : taxationEngine;
loginMgr : loginManager;

Axioms
taxEngine.islogged t With loginMgr t;
loginMgr . alreadyLogged With alreadyLogged;
createDossier d With taxEngine . createDossier d;
loginTaxer tn With loginMgr . loginTaxer tn;
logoutTaxer With loginMgr . logoutTaxer;
check With taxEngine . check;
validate With taxEngine . validate;
stamp With taxEngine . stamp;
oppose With taxEngine . oppose;
notify With taxEngine . notify;
correct With taxEngine . correct;
supress With taxEngine . supress;
cancel With taxEngine . cancel;
taxEngine . reachedAtWork With reachedAtWork;
taxEngine . reachedControlled With reachedControlled;
taxEngine . reachedToStamp With reachedToStamp;
taxEngine . reachedToCorrect With reachedToCorrect;
taxEngine . reachedToNotify With reachedToNotify;
taxEngine . reachedNotified With reachedNotified;
taxEngine . reachedCancelled With reachedCancelled;
taxEngine . reachedEnd With reachedEnd;

‘Where
d : dossier;
aUserN : char;
t : taxer;

End TaxationInterface;




Appendix D

Class Normal Form

In order to use the component composition technique proposed by Hurzeler in [6]
we can only consider synchronizations linking gate to method ports of two different
components or of the same component. In the syntax for class axioms which is
proposed by CO-OPN, [1I] as well as CO-OPN /o, [2] it is possible to synchronize
two objects by linking method to method ports. In order to keep backwards compati-
bility with previous CO-OPN specifications we thus need a mechanism to transform
method-method synchronizations into gate-method synchronizations.

This problem can be avoided if we consider that all classes in a CO-OPN /9., |
specification are syntactically transformed into a kind of "normal form”, where
method-method synchronizations are transformed into gate-method synchronizations
using the method that we now describe. Assume that a CO-OPN class module
includes the following behavioral formula:

o.m(z,y) with o’.m'(x) :: cond(x,y) = pre — post

In this axiom o and o' are object identifiers, m and m’ are method ports
having as parameters variables x and y. The condition for the firing of the axiom
also depends on variables x and y.

The normalization of this behavioral formula corresponds to splitting it into
into a syntactically modified behavioral formula and a coordination formula (see
definition that we will consider while building the semantics as part of the
contextual coordination performed by an enveloping contert module. The normal-
ization of the behavioral formula defined above produces the following set of axioms:

{o.m(x,y) with o.g(x,y) :: cond(x,y) = pre — post,
cond(z,y) :: 0.9(x,y) with o'.m/(z)}
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There are several points to be understood in the behavioral formula normal-
ization: firstly we introduce a new gate port at the level of the considered class
module. Clearly this gate port has to be assigned a different name from the ones
already existing for that class module. The parameters for the gate port will be
the same as the ones for the method port m and the effective parameter values will
also be the same. Secondly, the new coordination formula synchronizes the class’s
newly introduced gate port with method m’. For the new gate port we use the same
effective parameters as the ones for m and we keep the same conditions as in the
original behavioral formula.

The method also scales to a synchronization involving complex synchronization
expressions on the right side of the event on a behavioral formula. For instance, if
we extend the previous example:

o.m(z,y) with o’.m'(x) .. o".m"(y) :: cond(x,y) = pre — post
we would obtain the following normal form:

{o.m(z,y) with o.g(z,y) :: cond(z,y) = pre — post
cond(z,y) :: 0.g9(x,y) with o' .m/(z) .. o".m"(y)}



Appendix E

SATEL’s Concrete Syntax

In this appendix we present a BNF-like definition of the concrete syntax of SATEL.
Notice that the grammar is defined bottom-down starting by the production at the
level of the test intention module.

(TestIntentionModule)— ‘TestIntentionSet’ (Word) Focus (Word)
[ (TestIntentionInterface) |
[ (TestIntentionBody) |
‘End’ (Word)™"

(7%
9

(TestIntentionlnterface)— ‘Interface’ | (TestIntentionDeclaration) |

(TestIntentionBody)— ‘Body’
| (TestIntentionDeclaration) |
[ (UseDeclaration) |
[ (AxiomDeclaration) |
[ (VariableDeclaration) |
| (ExternalDeclaration) |

(TestIntentionDeclaration)— ‘TestIntention’ ({Word) ¢;”)*
(UseDeclaration)— ‘Use’ ({Word) ¢;’)"

(AxiomDeclaration)— ‘Axioms’ ((Axiom)‘;’)"
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(VariableDeclaration)—*‘Variables’
( (Word) ¢> (Word) 3’

| (Word) ¢ ‘primitiveHML’ ¢;’

| (Word) ¢ ‘primitiveStimulation’ ¢;’
| (Word) ¢2> ‘primitiveObservation’ ;’
| (Word) ¢ ‘primitivelnteger’ ‘;’

| (Word) ¢ ‘primitiveBoolean’ ¢;’ )*

(ExternalDeclaration)— ‘External’ ({(Word) ‘in’ (Word) ;*)"
(Axiom)— [ (Condition) ‘=>" | (Inclusion)

(Inclusion)— (HMLTerm) ‘in’ (Word)
(Condition)— | DomainQuantifier | | ConditionBody

(DomainQuantifier)— ‘“uniformity’ ‘(> (NameList) ¢)’ [ ‘subuniformity’ ‘(> (NameList)
91

| ‘subuniformity’ ‘(’ (NameList) ¢)’ [ ‘uniformity’ ‘(’ (NameList) ‘)’ |
(ConditionBody)— (ConditionAtom) (‘,” (ConditionAtom))*

(ConditionAtom)— AlgebraicEquality
| (BooleanTerm)
| (ArithmeticPredicate)
| (Inclusion)

(AlgebraicEquality)— ‘{’ (AlgebraicTerm) ‘}’> ‘=" *{’ (AlgebraicTerm) ‘}’
| (HMLTerm) ‘=" (HMLTerm)
| “{° (SynchronizationTerm) ¢}’ ‘=" ¢{’ (SynchronizationTerm) ‘}’
| (BooleanTerm) ‘=" (BooleanTerm)
| (ArithmeticTerm) ‘=" (ArithmeticTerm)

(HMLTerm)— HMLFormula (*.> (HMLFormula))*
(HMLFormula)— ‘HML’ ¢(’ (HMLFormulaContent) *)’

(HMLFormulaContent)— T
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| ‘{” (HMLEvent) ‘}’ (HMLFormulaContent)
| ‘not’ *(’ (HMLFormulaContent) ¢)’
| ‘(° (HMLFormulaContent) ‘and’ (HMLFormulaContent) *)’

(HMLEvent)— (SynchronizationTerm) ‘with’ (SynchronizationTerm)

(BooleanTerm)— ¢ (* (BooleanTerm) ‘and’ (BooleanTerm) )’
| ¢’ (BooleanTerm) ‘or’ (BooleanTerm) *)’
| ‘not’ ‘(> (BooleanTerm) )’
| ‘sequence’ ‘(’ (HMLTerm) ¢)’
| ‘positive’ ‘(’ (HMLTerm) *)’
| ‘trace’ ‘(’ (HMLTerm) *)’
| ‘onlyConstructor’ ‘(’ (HMLTerm) )’
| ‘onlyMutator’ ‘(’ (HMLTerm) ¢)’
| ‘onlyObserver’ ‘(’ (HMLTerm) *)’
| ‘onlySimultaneity’ ‘(’ (SynchronizationTerm) *)’
onlySequence’ ‘(* (SynchronizationTerm) *)’
onlyAlternative’ ‘(’ (SynchronizationTerm) *)’
| (BooleanVariable)
| (Boolean)

| ¢

| 3

(ArithmeticTerm)— (ArithmeticTerm) (BiAOp) (ArithmeticTerm)
| - (ArithmeticTerm)
|’ (ArithmeticTerm) ¢)’
| ‘nbEvents’ ‘(’ (HMLTerm) ¢)’
| ‘depth’ ‘(’ (HMLTerm) *)’
| ‘nbOccurrences’ ‘(’ (HMLTerm) ¢, (Word) *)’
| ‘nbSynchro’ ‘(* SynchronizationTerm ¢)’

| (IntegerVariable)
| (Integer)
<B1Aop>ﬁ ‘_+_7 | 0 ’ ¢k | ‘/’

(ArithmeticPredicate)— (ArithmeticTerm) (BiAPred) (ArithmeticTerm)
(BiAPred)— ‘=="| ‘<> | >’ | ‘<’ | ‘>=" | ‘<=’

(NameList)— (Word) (¢, (Word))*
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(Word)— (Letter) | (Word) (Letter) | (Word) (Digit) | (Word) (Symbol)
(Letter)— [A-Z] | [a-7]

(Digit)— [0-9]

(Symbol) — ¢ | <=2
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