Studies on online book-
keeping for the ATLAS
experiment

Sunderland University

Dissertation for the obtention of the M.Sc. degree in Computing

author: Levi Pedro Silva Lucio

from Portugal

Distance learning student based at CERN, Geneva

Work supervised by:
Dr. Norman Parrington, University of Sunderland, UK

Dr. Robert Jones, CERN, Switzerland

Geneva, September 2002

Abstract

ATLAS will be one of the four detectors of the LHC (Large
Hadron Collider) particle accelerator currently being built at
CERN, Geneva. The project is expected to start production in
2006 and during its lifetime (15-20 years) to generate roughly one
petabyte per year of physics data. Thisvast amount of information
will require a powerful and scalable tool to do the online
acquisition and offline management of log books about things
such as what parameters the detector used while acquiring a
certain set of data, how the physical conditions of the detector
changed during acquisition, how the data is logically and
physically organized or what errors occurred during data taking.

This document presents studies on such a tool from the
technological and design points of view. After the definition of the
problem, three implementations using three distinct DBMS
systems (Objectivity/DB, OKS and MySQL) are presented, tested,
discussed and compared.

Acknowledgements

I’d like to thank Norman Parrington and Bob Jones for the
guidance and for helping me to stay on a clear path from
beginning to end during these two year’s work.

Many thanks are also in order to Livio Mapelli, who made this
project possible and who always tried his best to provide the
necessary resources for the work to go on.

My gratitude also goes to the Lisbon ATLAS-DAQ team, with
whom | worked to develop the several OBK prototypes. Thanks to
Luis Pedro and Andre Ribeiro for their work on implementing the
MySQL and Objectivity/DB OBK prototypes. Thanks to Mario
Monteiro for his work on the OBK/MySQL web-based browser.
My appreciation goes also to Antonio Amorim for some of the
ideas that went into this dissertation.

I’d also like to thank the ATLAS Online Software team for the
warm and efficient working atmosphere. Special thanks to Mihai
Caprini for his availability and for letting me the time to work on
this project. Thanks to Monika Barczyk for the development of
the OBK/OKS web-based browser and to Igor Soloviev and
Serguei Kolos for their help on using the OKS and the IS systems.

A big hug to my friends here in Geneva who made these two years
a very special period of my life and with whom | share my sadness
and my joys. | would also like to thank my friend Vasco Amaral
for his suggestions about this work and many other things.

Thanks to Cinzia Borel-Messerli for helping me when | most
needed it.

Dedico este trabalho ao meu pai, a minha mée e ao meu irmao.

Table of contents

Table of contents

CHAPTER 1

CHAPTER 2

CHAPTER 3

Introduction 1

1.1. Overview 2
1.1.1. The physics 2
1.1.2. The machinery 3
1.1.3. Thetriggers and data acquisition system 6
1.1.4. Offline computing 8
1.2. MSc program objectives 9
1.3. Dissertation’s structure 10

1.4, Summary 11

Scope of the problem 13

2.1. High Level Requirements 14
2.2. Previous Investigation 20
221.Useof OO 20
2.2.2. Objectivity/DB experience 21
2.3. Structure of the problem 24
2.3.1. Researchinto DBMS 24
2.3.2. Software devel oping environment and process 25
2.3.3. Evaluation 26

2.4. Summary 28

Databases (in High Energy Physics) 29

3.1. Database concepts 30
3.1.1. Database principles 30
3.1.2. Database technology evolution 32
3.1.3. Current picture 36

3.2. Databases and HEP 38

3.2.1. Somehistory 38
3.2.2. Current trends 39

3.2.3. Current problems 41
3.3. Summary 43

CHAPTER 4 Physics’ metadata gathering for ATLAS’ Online
Software 45

4.1. The Online Software from the OBK’s viewpoint 46
4.1.1. Communication infrastructure 47
4.1.1.1. MRS 48
411.2.1S50
4.1.2. Configuration Databases 51

4.2. The OBK as an Online Software component 53
4.2.1. Requirements 54
4.2.1.1. Use Cases 54
4.2.1.2. Assumptions and Dependencies 55
4.2.1.3. Constraints 55
4.2.2. Conceptual view of the OBK system 56

4.3. Summary 57

CHAPTER 5 The OBK software 59

5.1. The OBK from the user’s viewpoint 60

5.1.1. Data Acquisition 60
5.1.1.1. Logical structure of the OBK database 60
5.1.1.2. Operating system environment 62
5.1.1.3. Starting and stopping the acquisition 63
5.1.1.4. Annotating book-kept data 66

5.1.2. Data browsing 69
5.1.2.1. Command line utilities 69
5.1.2.2. Web-based browser 70
5.1.2.3. C++ query library 72

5.1.3. Utilities 73

5.1.4. Available functionality per prototype 75

5.2. Implementation issues 76
5.2.1. Languages and tools 76
5.2.2. Objectivity/DB prototype 77
5.2.2.1. Web browser implementation 83
5.2.2.2. OBK/Objy Specificities 84

Table of contents

5.2.3. OKSprototype 86
5.2.3.1. Web browser implementation 92
5.2.3.2. OBK/OKS specificities 92
5.2.4. MySQL prototype 93

5.3.3.1. Web browser implementation 98
5.3.3.2. OBK/MySQL specificities 98
5.2.5. Supported platforms 100

5.3. Summary 102

CHAPTER 6 Evaluation of the practical work 103

6.1. Test and integration phase results 104
6.1.1. Functionality and error recovery tests 104
6.1.2. Performance and scalability tests 105
6.1.2.1. Test definition 105
6.1.2.2. Test results 106
6.1.2.3. Test results discussion 109
6.1.3. Connectivity to other Online Software components 112
6.2. Deployment 113
6.2.1. Large scale tests (of the Online Software) 113
6.2.2. Testbeams 113
6.3. Somemetrics 116
6.4. Lessons learnt and practical recommendations 118

6.5. Summary 122

CHAPTER 7 Evaluation of theresearch 125

7.1. DBM S technology for the OBK 126
7.1.1. Pointers from the developed work 126
7.1.2. Pointers from the database community 126
7.1.3. Recommendations 127

7.2. Related work 129
7.3. Futurework 130
7.4. Summary 131

APPENDIX A

Glossary 133
References 137

List of binaries, libraries and scripts for each
OBK prototype 145

A.1. OBK/Objy 146
A.2. OBK/OKS 148
A.3.OBK/MySQL 150

CHAPTER 1

|ntroduction

As indicated by the name, Chapter 1 provides an introduction to the
present dissertation.

In section 1.1. a brief overview of CERN, particle accelerators and
particle detectors is provided. The goal is to locate the OBK project
into the larger scope of experimental particle physics.

Section 1.2. establishes both the working and the research objectives
for the M Sc program described in this dissertation.

Finally in 1.3. the document’s structure is laid out.

Introduction

1.1. Overview

Thework described in this dissertation was developed in the context of the ATLAS
(A Toroidal LHC ApparatuS) experiment, based at CERN (European Organization
for Nuclear Physics).

Founded in 1954, CERN is a multinational collaboration having as goal the empir-
ical study of physics, more precisely the study of matter and the forces that hold it
together. To this effect several generations of increasingly powerful machines were
built in order to probe deeper and deeper into the basic constituents of matter.
Within its lifetime, several important physics discoveries have been made at
CERN, along with revolutionary technology products such as the World Wide Web
(WWW).

At the present moment, the next generation of matter probing machines is being
built, expected to be ready for 2007. From the technology usage and complexity
points of view, these machines are amongst the most complex devices ever built.
In the severa ongoing projects at CERN one can find avery colorful interdiscipli-
nary blend in which computing has a very large role to play.

1.1.1. The physics

Although not directly in the scope of this dissertation, it is appropriate to discuss
the sort of physics on which CERN concentrates. The functioning principles of the
machines CERN builds will also be addressed.

Aswas already mentioned, CERN focuses on studying particle physics, i.e., under-
standing what are the basic components of matter, how they behave and what are
the forces that keep them together. Thisis a difficult task given the successive bar-
riers that appear while trying to understand the physics microcosm. The problem
goes as follows: CERN machines are able to look inside matter by literaly
“smashing” (in physicist jargon “colliding™) accelerated particles - electrons, pro-
tons, etc. - and looking at the snapshots of the results of those collisions. These

1.1. Overview

results are more interesting as the collision is more energetic - given Einstein’s

well-known principle E=mc? (c being the speed of light in vacuum) the higher the
energy, the more matter it can convert into. This way, the more energy one can pro-
vide a particle by accelerating it, the more matter will be produced when it col-
lides. The more matter produced, the higher the probability of making rare and
heavy particles appear.

Clearly it is not possible to provide unlimited quantities of energy to a particle, in
order to accelerate it as close as possible to the speed of light. The amount of
energy is thus one of the factors that limits the advance of particle physics and
poses major challenges to the HEP community - HEP meaning High Energy Phys-
ics, for obvious reasons.

One of the major tasks foreseen for the new generation of machines being built at
CERN is to discover a particle that, if found, will complete the fundamental stan-
dard model that explains matter. This particle is called the Higgs boson and is
expected to be produced at the energies that will be made available by the LHC. If
it exists, this boson will explain the mechanism by which matter acquires mass.

1.1.2. The machinery

In order to accelerate particles to such high energies and be able to measure the
results of the collisions, a vast amount of machinery is being built at CERN. This
machinery can be generically divided into: accelerator facilities; detector facilities.

As the name indicates, the accelerator is the piece of hardware responsible for pro-
viding energy to the particles, taking them to speeds close to that of light. This
machine, called the LHC (Large Hadron Collider), is a huge ring (see fig. 1.1.)

Introduction

measuring 28 Km in circumference. Given the fact that such a large construction
would interfere with surface life, the LHC is built underground.

FIGURE 1.1. LHC aerial view

There are two types of accelerators - linear and circular. They both use the same
principle: electric fields provide energy to accelerate the particles and magnetic
fields to keep them on a predefined track. The difference between linear and circu-
lar accelerators consists in the fact that it is possible to inject progressively more
energy in a particle circulating inside a ring, while for a linear accelerator the
length of the machine necessarily limits the obtainable accel eration.

Along the LHC accelerator ring four detectors are being put in place - one of
which is ATLAS. As large as a five story building, the ATLAS detector is being
built by an internationa collaboration of 2000 physicists from 34 countries. As
already discussed, in order to study the interior of matter it is necessary to make
small particles collide at very high energies. There are however two different types
of approaches used to provoke these collisions: fixed target or colliding beams.
While in fixed target detectors particles are made to crash into a solid body (usu-

1.1. Overview

ally wires), the detectors which use colliding beams make two bunches of particles
traveling into opposite directions meet at a certain point in space. There are obvi-
ously advantages and drawbacks for each solution: while the collision rate is much
higher in the fixed target experiments, the energy absorbed by the target itself
makes the production of new particles lower than in the case of colliding beams.
For the ATLAS experiment colliding beams are used.

After a collision happens, it becomes necessary to detect and measure the results
(the whole of the results of the collision is called an event). The newly created par-
ticles have such short lifetimes that only the decay results can be observed by the
hardware. This makes it necessary for the detector to be a very sensitive machine,
ableto react very quickly to awide range of different particles. The ATLAS detec-
tor consists of several layers (see fig. 1.2.), each of them having a specific func-
tion: the inner tracker is used for measuring the momentum of charged particles;
the calorimeter to measure particle energy; the muon spectrometer to identify
muons. A magnet system is also built-in to provide a magnetic field that will bend
charged particlesin order to measure their momentum.

Introduction

FIGURE 1.2. The ATLAS detector

magnet system

inner tracker
calorimeter

muon spectrometer

1.1.3. Thetriggers and data acquisition system

Since the physics events looked for are very rare, the experiment will have to be
repeated until statistics which validate the theory are available. The rate of particle
collisions inside the detector will thus be extremely high - around 40 million per
second; on the other side, only a small proportion is actually interesting and worth

storing®. This trend implies a very powerful filter mechanism that will select,
transport and store the few remaining events (100 per second - 200MBytes) that
contain potentially interesting information.

Also, given the complexity of the detector, it is necessary to constantly monitor its
condition. In order to be able to have correct measurements for the produced
events, the understanding of the calibration and alignment of the enormous amount

1. Infact, given the current technology, it would be impossible to store all the 40 million events per second.
The transport and storage speeds required would be orders of magnitude above what is possible today.

1.1. Overview

of detector pieces is absolutely indispensable. In parallel with the event filtering
mentioned in the previous paragraph, the data concerning the state of the detector
isalso being constantly read out and used to keep all the systemsin working condi-
tion.

To address the event selection problem, a very sophisticated trigger (filter) and
data acquisition system is being built for ATLAS (ATLAS TDAQ). This system
consists of three levels of triggering, each one elaborating on the previous one’s
decisions. At the first level (LVL1), special purpose processors make decisions
about the interest of an event in a time frame of 2 microseconds, reducing the ini-
tial 40MHz rate (2 ns between events) to 100KHz. In order to be that fast the first
selection is obviously very rough, looking only at very small parts of the full event.

The second level trigger (LVL2) inputs the 100 KHz rate remaining from the first
level analysis and reduces it to 1 KHz by evaluating larger assembled parts of the
full event (from the various sub-detector components of ATLAS).

Finally the third level trigger looks at the fully assembled events (taking into con-
sideration all the detector information) remaining from the LVL2 and, by applying
complex selection algorithms, reduces the 1KHz rate to 100Hz. Being that each
event occupies 2Mbytes in permanent storage, the final recording rate is in the
order of 200 MBytes per second.

Obviously, to keep the detector and the triggers working in an orderly fashion sev-
eral systems providing services such as, detector read-out and buffering, data
transportation, control, configuration, monitoring, or synchronization are neces-
sary. The set of systems providing these services is generically called data acquisi-

tion system? (DAQ).

The work described in this dissertation is part of a DAQ sub-system - the Online
Software, responsible for providing control, configuration and monitoring services

2. Thisisasimplified account given that thereisno clear border between the third level trigger and the DAQ.
Note that this dissertation is a snapshot of the state of development of the ATLAS experiment at a given
point of time. Further changes should be expected before the experiment is fully operational .

Introduction

to the detector and the TDAQ. More precisely the dissertation has its focus on the
Online Book-keeper (OBK), the tool deployed to store and manage log informa-
tion for both the detector and al of the TDAQ. Thislog information is varied and
encompasses Whatever the detector or TDAQ system may want to keep track of.

1.1.4. Offline computing

The systems described in the previous section have one common characteristic -
they are working online with the detector, thus real-time constrained by the need of
handling the extremely high rate of flowing physics information. However, once
the interesting events are permanently stored further analysis can be performed on
them offline, the time constraints being non-existent.

The three-level trigger system provides a first level of analysis and selection of
physics data, which is necessarily handled in an automatic fashion. Offline, the
humans trying to make sense out of the recorded data will look at the events using
methods supported by a software and hardware framework. This framework is
being built in parallel with the detector and the TDAQ system. Although the OBK
datawill be used offline to support the physics data analysis phase, the study of the
offline software is beyond the scope of the present text.

1.2. MSc program objectives

1.2. MSc program objectives

The full description of the objectives for the undertaken MSc program can be
found in appendix B, the learning contract document. Being an industrial practice
distant MSc, the practical component of the work is obviously prominent. From
CERN?’s point of view, a functional Online Book-keeper had to be implemented,
documented and deployed during the learning time.

From the research viewpoint it was necessary to study a specific discipline of com-
puting, produce valid results while applying current state-of-the-art technology in
that area and match the obtained results with existing theories. Clearly it was nec-
essary to blend the practical and the theoretical activities in a way that both were
correctly balanced and could interact in a productive way. This dissertation tries to
explore that interaction and produce practical results which make use of current
theories. Also, the presented theoretical considerations are in part deduced from
the experience and insights acquired while building the required software.

Taking into consideration the previous paragraphs, one can thus define the objec-
tives of the current dissertation as being able to, in a sustained way, recommend
adequate resources for a Book-keeper to be included in ATLAS’ Online Software
system. The OBK can be seen as a database tool, which justifies the choice of
database systems as the theoretical research topic. It is also important to mention
that the OBK waorks online with the detector, which implies some (soft) real-time
constraints.

Introduction

1.3. Dissertation’s structure

The present document is composed of seven chapters, in the following order:

Chapter 1istheintroduction. The context of the ATLAS experiment is defined
in order to lay the ground for understanding the addressed book-keeping prob-
lem and set goals for the MSc work;

In Chapter 2 the scope of the problem is enlarged and its several aspects are
laid out in order to make possible the definition of a working methodol ogy;

Chapter 3 is the dissertation’ theoretical section, exploring database systems
theory as well as the usage of database systems in High Energy Physics;

Chapter 4 starts by exploring the several Online Software components the
OBK interacts with. It then defines the high level requirements and a conceptual
model for the book-keeper tool;

In Chapter 5 the OBK software is described in-depth, both from the implemen-
tor’s and the user’s point of view;

Chapter 6 is an evaluation of the practical work developed throughout study
time. Topics such as functionality, performance or scalability are analyzed for
each of the built OBK prototypes. Some metrics concerning the used methodol-
ogy and software development process are also provided. These are comple-
mented by a relation between the proposed learning contract (appendix B) and
the objectives which were actually fulfilled. The chapter ends with a “lessons
learnt” section including recommendations for an architecture for the OBK;

Finally, Chapter 7 elaborates on the previous chapter to draw considerations
about the theoretical aspects of the work. As was defined in the dissertation’
objectives, recommendations regarding and technology to build a production
OBK system are provided.

10

1.4. Summary

1.4. Summary

CERN is a multinational collaboration having as it’s goal the study of particle
physics. For that purpose a new generation of machines is being built, among
which is the ATLAS detector. ATLAS is one of the detectors of the LHC accelera-
tor that will be used to measure the physics events that will be produced when two
opposite particle beams meet.

Since the sought after physics events which are being searched for are very rare,
the experiment is repeated at a vertiginous rate: one event every ns. Since only a
small fraction of these events are interesting, a powerful filter is necessary in order
to discard uninteresting information. This filter is composed of three levels, each
one of them elaborating on the decisions made by the previous one. In order to pro-
vide control, configuration and monitoring to this filter as well as to the detector, a
software system called Online Software is being built.

The work presented in this dissertation consists of the studies performed in order
to recommend adequate resources to implement and deploy a book-keeper for
ATLAS’ Online Software. This tool called OBK (Online Book-Keeper) will store
and manage log information for ATLAS’ systems that will require those kind of
services. The dissertation focuses on the two main aspects of the work: the imple-
mentation and deployment of the several OBK study prototypes; the research done
on the tools necessary to build the OBK, i.e., Database Management Systems, as
well as on software engineering processes and tools adequate to the project.

1

Introduction

12

CHAPTER 2

Scope of the problem

This chapter provides an abstract description of the generic problem
tackled in this dissertation - to recommend adequate resources for a
book-keeping production system for ATLAS’s Online Software.

As it involves a considerable number of variables, the proposed solu-
tion is to divide the problem into several domains of work, which
may be sequential or not, and to consistently merge the acquired
knowledge in the end.

Chapter 2 starts by putting the generic problem into perspective in 2.1
(High Level Requirements) and 2.2 (Previous Investigation). In 2.3
(Structure of the problem) it goes on to describe the proposed sub-
domains of work and how they fit together.

13

Scope of the problem

2.1. High Level Requirements

As mentioned in the introduction, the Online Book-keeper is a software compo-
nent of ATLAS’s Online Software [1], which itself is a sub-system of the Trigger-
DAQ (TDAQ) - the set of software and hardware systems responsible generically
for acquiring, filtering and moving data from the detector to mass storage, in order
to make it available for later analysis. The data dealt with are what the physicists
call “events”, which unitarily describes the interaction of two particles and the
final state products of that interaction. Since the event rate is very high and only
some of these events are actually interesting, a powerful filter is needed.

Generically speaking, the Online Software® is the system keeping all the other
components of the Trigger-DAQ working in a coordinated fashion, by providing
configuration, control and monitoring services to a range of other systems. These
systems are:

 Level 1 Trigger (LVL1): First level of triggering. Informs the following levels
of the system that a certain set of signalsis potentially interesting;

= Detector: The interesting data is extracted out of the detector by means of
RODs (Read Out Drivers). These are specialized boards connected directly to
the detector;

- DataFlow: Responsible for moving the event data from the detector readout
links to the final mass storage;

« DCS (Detector Control System): Doesn’t deal with physics data directly, but
ensures a standard and secure hardware environment for the safe acquisition of
physics data;

1. Intheframework of the DAQ/EF-1 prototype project the Online Software was called Back-End DAQ Sys-
tem. The DAQ/EF-1 was a previous project aimed at implementing a “full vertical slice of the functional
DAQ and EF architecture”. The goal was to provide a test-bed for technological and architectural testing
and refining.

14

2.1. High Level Requirements

- Level 2 Trigger (LVL2): First part of the High Level Trigger (HLT) system.
Analyses previoudy selected data by LV L1 and provides another level of filter-
ing of data;

- EventFilter: Second part of the HLT system. Restricts even more the selection
done by the LVL?2 trigger. Is aso used as a monitoring and calibration tool for
the detector, asit is able to provide samples of acquired data for quality checks.

The following diagram shows the interaction between the Online Software and
other systems:

FIGURE 2.1. Online Software and other Trigger-DAQ systems

Online Software

F Suparvisaon

15

Scope of the problem

In order to better understand the role of the Online Software, it is useful to describe
in a very abstract fashion how the data taking process is distributed by the above
mentioned components:

- |f the LVL1 trigger decides that a piece of data is interesting, this data is
retrieved from the RODs and made available by the DataFlow on special buff-
ers,

= The DataFlow then provides the data to the LVL2 trigger for the next round of
selection?;

« |f the LVL2 decides that there are chances that the data is interesting, the rest of
it isread from the RODs into the DataFlow;

= Since the detector (RODs) only provides fragments of events, the DataFlow
also provides a reconstruction service that assembles the previously collected
event piecesin full events;

= Finally the full events are sent to the EventFilter for final selection. If decided
that the event is good, it is sent to mass storage.

All the previously mentioned systems need however to synchronize and communi-
cate in order to cooperate correctly. Another important point is the fact the trigger-
DAQ is designed to be a highly configurable system, being that there is aso the
need for parameterization of the various hardware and software components.

More specifically now, the Online Software is the framework providing special-
ized control, configuration and monitoring to the sub-systems mentioned before,
but, as addressed in the technical proposal for high-level triggers, DAQ and DCS
[2], it “excludes the processing and transportation of physics data”. Another inter-
esting feature of the Online Software is the ability to divide the data acquisition in
partitions. As described in ATLAS DAQ Prototype -1 Technical Note 60 [3], “par-

2. ltisalso possible to do data acquisition for special purposes using only LVL1 trigger, without the High
Level Trigger, although this discussion surpasses the objectives of this document.

16

2.1. High Level Requirements

titioning is defined as the logical and/or physical separation of the experiment into
mutually exclusive sub-sets (partitions)”. In other words, the Online Software
allows for the separate operation of different hardware subsets of the detector con-
currently, by enforcing the exclusivity of it’s use and deploying the necessary soft-
ware.

The Online Software package itself is divided into component groups (or super-
components), as can be seen in figure 2.

FIGURE 2.2. Online Software’s internal structure

Legend :

Each super-component tackles one of the groups of functionality that the Online
Software provides, namely Run® Control, Messaging, Databases, Monitoring and
Ancillary. It is to be noted also that the individual components that form these
groups are themselves based on other packages, which are used as software build-

3. Arunisacontinuous period in time of data taking using a given hardware and software configuration and
adefined set of run parameters. It isidentified by a unique run number.

17

Scope of the problem

ing blocks. These may be homegrown or outsourced. These packages provide
functionality such as inter-process communication tools, persistency, graphical
APIs, etc.

Addressing now the functionality of the super-components, the Run Control is
generically responsible for assigning commands to the systems under the Online
Software’s responsibility. Returning to figure 1, one can see that the Online Soft-
ware communicates with other systems by means of interfaces, called Local Con-
trollers. These Local Controllers are specialized pieces of software able to translate
the commands coming from an hierarchically superior controller into meaningful
operations in the particular system’s context. This is how the framework is able to
control an heterogeneous group of hardware and software components.

The Messaging super-component manages all the communication infrastructure
made available. This functionality is particularly relevant in the framework of this
dissertation, so it will be useful to describe the purpose of some of the participating
components:

= As defined in the Online Software’s home page [1], the goal of the MRS (Mes-
sage Reporting System) “is to provide a facility which allows all software com-
ponents in the ATLAS DAQ system and related processes to report error
messages to other components of the distributed DAQ system”;

< Ontheother hand, the | S (Information System) “provides a mean of inter-appli-
cation information exchange in the distributed environment”.

The concepts of 1S and MRS will be refined further ahead in this document.

Continuing the description of the super-components, the Monitoring is responsi-
ble for physics and detector data sampling and displaying - for quality check and
calibration purposes - and the Ancillary provides less critical services, such as a
graphic control panel for run supervision, diagnostic services, etc.

Finally, the Databases super-component is, at the moment of the writing of this
document, split into: Configuration (ConfigDB) component, which holds persis-

18

2.1. High Level Requirements

tently and gives access to configuration sets for different data acquisition modes
(i.e. parameterization of software and hardware DAQ components); Online Book-

keeper.

The OBK is described in the technical proposal as the component which “archives
information about the data recorded to permanent storage by the DAQ system. It
records the information to be later used during data analysis on a per-run basis
and provides a number of interfaces for retrieving and updating the information.”

It can be seen as the tool that records DAQ events (i.e. DAQ metadata) in a tempo-
rally ordered fashion for the Online Software. This data is important not only to
maintain the coherency of the Online Software, but also to provide input on data
acquisition conditions during physical data analysis time.

19

Scope of the problem

2.2. Previous I nvestigation

The gtarting point for this dissertation was not zero, as some work had aready
been developed in the previous three years. Namely, a first OBK prototype using
C++ and Objectivity/DB for persistency (OBK/Objy) was built and deployed suc-
cessfuly. The study and enhancement of this prototype in the scope of the current
MSc framework was an important step into understanding the problem in genera
and on how to proceed. The points mentioned in the paragraphs that follow
describe what were the premises from which the current work started.

2.2.1. Use of OO

The first prototypes of possible solutions to the Book-keeping problem relied
heavily on Object Oriented databases. At the time of the start of the project (1996),
CERN’s IT/database group was recommending the experiments OO databases for
solving the problem of HEP data persistency both at the level of the complexity of
the data models and the challenge of storage scaling. Inside the Online Software
group this general suggestion was followed and both the components that provide
database functionality (the OBK and ConfDB) use OO persistency tools.

In this context it is useful to mention the RD45 project at CERN [4], which was
responsible for the investigation and proposal of solutions to the problem of stor-
ing and managing HEP data, expected to go to level of hundreds of petabytes when
all the LHC experiments are in production.

The basic problem faced by the RD45 project was the fact that traditionally the
persistency problem (and a lot of other computing problems) were tackled with
homegrown solutions, coded usually in FORTRAN. Although this was the trend
for a long time, these solutions are simply not adequate to the scale of modern

20

2.2. Previous Investigation

HEP. Also, the pure relational data model was reaching its limits in terms of
describing modern physics data.

It seems important to mention at this point that the focus of the research of RD45

was on commercial industry standard solutions - at this time already more or less*
powerful enough to be applied.

After three years investigation, the recommendations of RD45 could be summed
up as follows: OO persistency tools ODMG (Object Data Management Group)
compliant are the better option to store HEP data, mainly because of the low
impedance between the transient and persistent object models, the capability of
replication, schema evolution and object versioning, and in general offer more
flexibility and functionality than previous approaches. The possibility of interfac-
ing an OODBMS coupled to a tertiary Mass Storage System (MSS) for high vol-
umes of data makes this solution even more interesting - today’s HEP data for
some of the most significative experiments (e.g. Atlas, BaBar) are being stored
using Objectivity/DB and HPSS or CASTOR as the tertiary repository.

As mentioned before, the Online Software followed these guidelines and adopted
Obijectivity/DB as it’s long-term data management and backup system. Another
light-weight persistent object manager called OKS (Object Kernel Support) [5]
was selected to address the real-time requirements of the project. This latter persis-
tency tool is an inhouse solution.

2.2.2. Objectivity/DB experience

The first implementation of the Book-keeper for the Online Software was devel-
oped from 1996 to 2001 and, as explained in the above discussion, used Objectiv-
ity/DB. Although the present work was only started in 2001, much from this
previous work must be taken into consideration while discussing a sound proposal
for a production Book-keeping system. Further ahead in this document technical
data on this first OBK prototype will be presented in order to sustain a coherent

4. For instancein BaBar a series of hacksto the kernel of Objectivity/DB were needed. They actually gave a
serious boost to Objectivity to improve it’s product scalability.

21

Scope of the problem

technology comparison with other approaches to the problem. For the time being a
brief description of what was aready known/supposed on Objectivity/DB use is
valuable in understanding the starting point of this work and subsequent options.

Objectivity/DB is a pure object-oriented DBMS, commercial package. As such it
provided a good test-bed for learning the technology, as well as a laboratory for
testing possible architectural configurations for the OBK. This first prototype was
implemented in Lisbon by Prof. Antonio Amorim and Andre Ribeiro.

The introductory work for this dissertation consisted on becoming familiar with
the existing software by implementing a web-based retrieval mechanism for the
already existing Objectivity/DB databases acquired during test-beam® activity, as
well as fixing a number of bugs in the OBK/Objy prototype. These activities went
on for anumber of months, and some of the acquired knowledge and experienceis
described in the following (unordered) points:

= The schema definition mechanism (ODMG compliant) is very powerful and
reduces the gap between transient and persistent objects. This provides a high
degree of flexibility and enables the programmer to set a mind frame on a high
level language paradigm - OO - throughout all of the devel opment process;

- The Objectivity/DB databases at ATLAS are served by a reduced number
(around 3) of machines, some with MSS connections and running AMS
(Advanced Multithreaded Server) for remote requests. The previous book-keep-
ing test-beam activities were stored and accessed using these machines,

- Being acommercial tool, Objectivity/DB provides the user a significative num-
ber of powerful features, including graphical browsing utilities, transaction and
recovery management. It has however the disadvantage of requiring a licence,
which raised problemsin an Open Source devel opment environment such asthe
Online Software;

5. A test-beam consists of a period of time where a part of the detector (sub-detector) is put to test. Clearly to
test one must get the output of the detector. The DAQ metadata can be stored in the OBK.

22

2.2. Previous Investigation

= Objectivity/DB adds another step to the development - it is necessary to define
the persistent objectsin DDL (Data Definition Language) and pre-compile them
to generate the schema: in the OBK case the coding is done in C++, so the gen-
erated schemafiles are C++ that is compiled and linked with the user code.

23

Scope of the problem

2.3. Sructure of the problem

As aready mentioned, the pragmatic goal of the present dissertation isto, in asus-
tained way, be able to recommend adequate resources for a Book-keeper in the
context of ATLAS’ Online Software. The practical approach that was used con-
sisted in building iteratively several increasingly sophisticated prototypes in order
to study architectural and technological solutions, as well as respond to new or
updated old requirements for the system.

As for all problems of a certain degree of complexity, the best way to deal with the
work is to split it into several areas of activity. There were certainly several fields
that had to be exploited in parallel in order to sustain the research. They can be for-
malized as follows:

= Research into the DBM S area of knowledge: a considerable amount of time
was spent understanding the database (VLDB) discipline, aso to be able to aca-
demically place and evaluate the work;

- Development and maintenance: the developed prototypes were actively used
as part of the Online Software in tests and test-beams. Clearly, for each proto-
type was necessary to follow a pre-defined software development process and
to maintain it as it was part of the Online Software periodic releases (approxi-
mately every 3 months);

- Evaluation of thework: avery important part of what was done was to be able
to evaluate - without that nothing would be learnt. There are several degrees of
evaluation, including functionality, efficiency, architectural and technological
worries, for each one of the implemented prototypes.

The next pointswill try to elaborate a bit more on these three topics.

2.3.1. Research into DBMS

The I T/Database group is quite active at CERN, as can be seen from the already
mentioned RD45 project. In fact HEP to some extent pushes the discipline for-

24

2.3. Structure of the problem

ward. As such, the environment couldn’t be better for the kind of work that was
done. Also the University of Sunderland provided it’s library in-site and online
(WWW) facilities in order to access books and other publication. CERN’s library
has also a good publication repository.

The research consisted then mainly of reading relevant books and papers and also
in publishing when possible the attained results. Attending conferences constituted
very positive steps into acquiring an overview vision of the subject. The articles on
the OBK presented at the CHEP [44] (Computing in High Energy Physics) and
VLDB [48] (Very Large Databases) conferences can be found in appendixes C and
D.

2.3.2. Software developing environment and process

The OBK prototypes were implemented following the software development pro-
cess and using the environment suggested by the Online Software group. The pro-
cess is quite straightforward and was very useful in preparing the material so that
valid conclusions could be extracted from the work. The basic idea is that every
component follows a cascade approach to the development, being possible to go
back from a phase to a previous one. The contemplated phases are: Requirements
- the problem is first stated and structured; Pre-design Investigation - technolo-
gies possible of being used are evaluated; High level Design - abstract view of the
system, outlined in a specification language such as UML (Universal Modelling
Language); Detailed design and I mplementation - mapping of the problem onto
a programming language; Unit testing - checking of the functionality, efficiency,
etc. against the requirements; Integration - integration and test with other compo-
nents; M aintenance.

The attraction of this approach is that every time that a new component (or proto-
type for a component) is implemented, the same set of guidelines is followed. This
makes it very easy to track, in the case of the OBK, what are the main differences
from prototype to prototype, gains or losses in efficiency, elegance, speed, etc.
Important documents generated by the process are the URD (User Requirement

25

Scope of the problem

Document), design document, implementation note, user’s manual, test plan and
the test report.

Also it needs to be mentioned that there are a number of tools to support the devel-
opment that contribute to the automation of the process. For example, CVS is used
as the code repository, SRT and CMT (both homegrown solutions) are used for
release management, Rational Rose for high level design, Perl and Unix shells for
scripting, Insure and Logiscope for code checking and verification, Framemaker
for documentation generation, etc. This, added to the fact that several languages
are used to code the system itself, makes the software development environment
quite heterogeneous and advanced.

2.3.3. Evaluation

In order to present results, a very important part of the work was to be able to eval-
uate each one of the iterations of the adopted prototyping process. There are many
issues of the problem that required analysis, e.g. functionality, efficiency, architec-
ture, use of technology, integration with other components, speed, scalability, etc.

The software process used inside the Online Software already presupposes a test
plan document and a test plan report. These two documents can provide a basis for
some evaluation and comparison of the results of several iterations. Some of the
tests that can be included in this phase are related to functionality vs. requirements,
speed, scalability and stress.

Other very important sources of information are the scalability tests and test-
beams executed regularly as part of the Online Software schedule of activities. In
the scalability tests all of the system is put to work in a controlled environment, for
scalability, stress and speed tests. These provide a very useful test-bed, as well as
for issues concerning integration with other components. The test-beams are even
more important as the software is supposed to respond in a real world situation.
Feedback from the users during and after (use of the available data retrieval mech-

26

2.3. Structure of the problem

anisms) these tests constituted very valuable information. Some users also belong
to foreign institutes participating in the experiment and performing their own tests.

Finally the feel and feedback from the publications and attendance of specialized
conferences provided a way of matching the work done with similar research.
Again to be mentioned is the importance of reading good text books and other pub-
lications (papers) as an evaluation and comparison criteria.

27

Scope of the problem

2.4. Summary

The OBK is a software component of ATLAS’ Online Software, which on its turn
is a sub-system of the Trigger-DAQ. The Trigger-DAQ is responsible for acquir-
ing, filtering and moving the physics data from the detector to mass storage, while
the Online Software keeps the components of the Trigger-DAQ working together.
More precisely, the Online Software provides control, configuration and monitor-
ing services to the Level 1 Trigger (LVL1), the detector, the Dataflow, the detector
control system (DCS), the Level 2 Trigger (LVL2) and the EventFilter. It is com-
posed of several components grouped into five super-components: Run Control,
Messaging, Monitoring, Ancillary and Databases. The OBK is part of the Data-
bases super-component and is generically defined as the component which
“archives information about the data recorded to permanent storage by the DAQ
system”.

Investigation had been made before work on the present dissertation started: a first
OBK prototype using Objectivity/DB for persistency had already been built which
allowed a first study on architecture and technology. The results from this work
were used to perform a first approach to the problem.

After this previous investigation, the problem was structured into three main activ-
ities: research into the database area of knowledge; development and/or mainte-
nance of three OBK prototypes based on different technologies (Objectivity/DB,
OKS and MySQL); evaluation of the performed work. One of the main challenges
while developing the present MSc was to be able to interconnect these activities in
a coherent a productive fashion.

28

CHAPTER 3

Databases (in High
Energy Physics)

In chapter 3 some insight is given in the specific field of knowledge
this dissertation is focused on - databases, in particular databases in
High Energy Physics.

Section 3.1 (Database Concepts) provides the basic concepts on data-
bases, how the field of knowledge is structured and also gives some
insight on the several stages of the technology evolution until now.

Point 3.2 (Databases and HEP) shows how High Energy Physics uses
databases to suit it’s needs for mass storage of physics data. After an
historical introduction, current techniques are explored and some of
the problems faced by modern HEP database computing are laid out.

29

Databases (in High Energy Physics)

3.1. Database concepts

Database technology emerged in the 1960s, as a response to the growing need of
mechanisms for abstracting from storage details and concentrate data management
services. This need came about due to the problems encountered by programmers

when their applications started to store and/or generate large amounts of data’.
These problems were felt because of the increasing difficulty in the maintenance of
data being read/written by different applications, in different formats and from/to
different places. Dealing with data update and redundancy was becoming a big
problem.

Ever since the appearance of the first examples of database technology, the field of
knowledge has evolved rapidly, both theoretically and in terms of products offered
by vendors to the final users. Currently, the Database Management System
(DBMYS) plays a fundamental role in organizations, by providing a central reposi-
tory for data that can go up to terabytes or even petabytes, in some special cases.
From the programming point of view, modern DBM Ss offer not only central man-
agement of data, but also a significative amount of functionality that is shifted
from the application to the database system. Instead of being code centric, today’s
applications are much more data centric due to all the facilities provided by
DBMSs.

3.1.1. Database principles

Although the technology has evolved since the first databases, it is possible to
identify some characteristics that depict what is essential in a database. A very
simple definition (from “Fundamentals of Database Systems” [6]) is the following:

“A database is a collection of related data.”

1. Certainly one has to relativize the meaning of “large amounts of data” taking into consideration the expo-
nential evolution of computer hardware technology since the 1960s.

30

3.1. Database concepts

Although this statement is sufficient to exclude to some extent what is not a data-
base, it is also necessary to say that:

< A database represents a subset of the real world and to be useful should be up-
to-date with the part of the world that it represents;

- A database holds a collection of data with some meaning and is structured
according to that meaning.

Databases hold all kinds of data, ranging from simple address books to catal ogs of
products for a store, or even all the integrated information necessary for the man-
agement of a company. Modern databases also store multimedia objects, associat-
ing image with text and sound.

It is important to define also what isa DBM S. Although the concept coincides to
some extent with that of a database, the DBMS is not only the data repository but
also the set of software tools that enable users to create, change and use a database.
It may include software to create database schemas, APIsfor interfacing with user
applications, general purpose graphical browsers, statistical tools, etc. Modern
DBMS packages include a significative amount of tools that help make the life of

the programmer or the DBA?Z easier.

As will be shown in the next sections, today’s database manufacturers make avail-
able a large range of features in their DBMS products, for example towards distri-
bution, real-time transaction management, object-orientation, mobility, etc.
Despite this, there are some features which are common to all DBMSs, as they are
in fact the essential advantages of using this sort of system, as opposed to develop-
ing your own database management code. These are:

- A DBMS makes available mechanisms to store to, retrieve from and update the
database. As mentioned before, these mechanisms may come in the form of lan-

2. Database Administrator - the person who manages a deployed DBMS system for a community of users.

31

Databases (in High Energy Physics)

guage specific APIs, database interaction languages, etc. It also provides a set
of utility tools to manage the database;

A DBMS holds not only real-world data but aso the catalog of how that datais
mapped in memory, making the database an independent entity and complete on
it’s own. The fact that such metadata exists creates a level of abstraction for the
application while interacting with the database. This isolation of the application
from the database facilitates changes or the evolution in the data storage struc-
ture;

The DBMS centralizes data and makes available common procedures for read-
ing or writing information. This enables several users/applications to access the
same data in a coherent fashion while avoiding redundancy. The DBMS pro-
vides® one or more servers with such features as authentication, concurrency
management, remote access, constraint verification or backup/recovery services
to client applications that connect to it.

3.1.2. Database technology evolution

Database evolution can roughly be divided into three stages or generations. The

fol

lowing text goes through them, trying to provide an insight on how the area

evolved in terms of available technology the design methodol ogy.

As mentioned before, the first generation of DBMS was born in the 1960s, as a
response to the need for persistency mechanisms more efficient than simple flat
files completely dependent on the applications that write/read them. These systems
were based on Codasy! network models, where the datais stored in trees or graphs

3. The enumerated features may vary from one DBMS product to another.

32

3.1. Database concepts

of individual data containers. Some representatives of this generation are the
Univac DMS 1100 [7], General Electric IDS[8] or IBM IMS[9] systems.

Despite being efficient products, these first generation DBMSs were hardly pro-
grammer friendly, since the Codasyl model did not promote a clear distinction
between the logical and the physical design of a DB application and was too close
to the machine. Thislack of clarity led to not very well defined design methodolo-
gies. On the other hand, thisfirst generation introduced important innovations such
as the independence between application and database or accessing a DBMS via
the network.

The second generation of DBMS originated in the 1970s. These were based on
the relational data model by E. F. Codd [10]. A large number of DBMS packages
using this model were produced and still have the major share of the database mar-
ket (e.g. Oracle, Informix, Sybase, etc.). The relationa model is simpler to under-
stand from the human point of view than the Codasyl model - it’s success partly
comes from simplicity. The model describes the world by means of tables which
can be related or not. In these tables each column holds several instances of a field
and each line holds a register about a person or a thing. The SQL declarative data
manipulation language (ANSI and ISO standard) is tightly coupled with the rela-
tional model and proved successful because of the simplicity of it’s use - in con-
trast with previous procedural data manipulation languages.

The relational model came from mathematical research and a significative amount
of investigation effort was put into this kind of databases. Topics such as normal-
ization, indexing or query optimization were (and still are) part of the agendas of
computer scientists. The relational DBMS products that were developed offer also
a range of flavours in performance (e.g. real-time, parallel databases, etc) or in dis-
tribution (distributed databases, mobile databases, etc).

From the design methodology point of view the expressiveness of the relational
model along with the ANSI three level database architecture (independent exter-

33

Databases (in High Energy Physics)

nal, logical and internal layers) and Chen’s E/R model gave rise to a clearer data-
base design methodology, divided in three steps:

= Conceptual design isthe phase where the designer model s the part of the world
he/she is trying to describe, using the E/R conceptual language for example.
The conceptual design is independent from the database model in which the
system is going to be implemented asit isintended to be understood by the fina
user;

- Logical design consists of mapping the conceptua model to the database data
model used by the chosen DBMS;

< Inthe physical design the emphasisis put in adapting in the most efficient way
the logical model to the physical devices where the system is going to be imple-
mented.

Software tools to help the programmer through the database application develop-
ment cycle (CASE tools) also appeared in this second generation, providing fea-
tures such as graphical design interfaces to build the models or forward
engineering engines to create application skeletons. Their success was however
rather limited, due to the fact that the design languages and processes were not uni-
fied and the CASE products provided the programmer their own interpretation of
the development cycle.

In the beginning of the 1990s the Third-Generation Database System Manifesto
[11] was presented, giving birth to what is called the third generation of DBMSs.
The basic claim of the manifesto was that, despite the huge success and impact that
second generation products had in databases, these systems were too focused on
business data processing applications and not flexible enough to address less typi-
cal problems. In fact, the document went as far as saying that even business appli-
cations were not fully covered by the relational model.

The authors of the manifesto presented three tenets as the basic pillars for third
generation DBMSs: third generation DBMSs should provide support for richer

34

3.1. Database concepts

object structures and rules; third generation DBM Ss should subsume second gen-
eration DBMSs; third generation DBM Ss should be open to other subsystems.

From the first of the above tenets, one can deduct that the expressivity of the rela-
tional paradigm was not enough anymore, as richer database constructs were
needed. The response from vendors was to emphasize the pure Object-Oriented
DBMS systems (already existing from the 1980s) as the next “big thing” in the
database business. Some representatives of this class of systems are ObjectStore,
Obijectivity or Versant. The ODMG consortium was also formed to reinforce the
position of OODBMS in the market, by standardizing the interface (enhancing
portability), language bindings and a query language (OQL) for these products
(see [12]). As a result of this effort OODBMSs became a competitor to second
generation products, offering an wide range of possibilities based on OO technol-
ogy to the DB programmer.

The relational products were still however firmly implanted - in fact SQL is and
probably will be for years to come the general accepted database manipulation lan-
guage. The relational DBMS manufacturers recognized however that OODBMSs
were satisfying segments of the market - for example non-conventional applica-
tions, such as HEP - by providing more flexibility. The counter-attack was to
extend the SQL standard to incorporate OO features (SQL3, SQL/MM). The map-
ping of OO in the relational model was however not a linear task, as it involves the
merging of paradigms which are substantially different.

The result of this conflict is that at the time where this dissertation in being written
the market offers both pure OODBMSs, as well as hybrid OO/relational products,
called Object Relational Database Management Systems (ORDBMS), that resulted
from the evolution of previous second generation DBMSs.

From the design methodology point of view the OO approach to databases intro-
duced new ways of doing things, and in fact contributed to the “settling down of
the dust”. The two-tier (client/server) and three-tier (interface/middleware/data-
base) reference models clearly defined the roles of the objects involved in the data-
base pattern architectures. Moreover, applying OO to the conceptual/logical/
physical design cycle removed barriers between the several phases, speeding up

35

Databases (in High Energy Physics)

and easing the development process. The standardization of UML as the recog-
nized software object modeling language was also a boost for programmers confi-
dence in OO database design (either using pure OO or Object Relational DBM Ss).

3.1.3. Current picture

The DB landscape currently (2001/2002) is quite diversified and rich, not only in
terms of data models, but in various other dimensions. In the following lines some
of those directions are superficially described, the ones that are more directly
related with the theme of this dissertation.

In terms of performance, modern database systems are taking advantage of hard-
ware evolution in order to allow faster store and query times, using for example the
increasingly paralel systems available in the hardware market. Cheaper memory
offering greater capacity also contributes to this trend - it is now possible to have
1G of main memory, which only 10 years ago was considered a Very Large Data-
base on it’s own. This made possible the appearance of real-time constrained or
main-memory databases that alleviate the programmer from the task of coding all
the restrictions required by a high performance system of this kind.

In what concerns scalability issues, databases can store enormous amounts of data
on disk (secondary storage) and in Mass Storage Systems (MSS). As mentioned
before, for instance in the case of HEP these databases can hold up to petabytes of
information, which actually pushes DBMS manufacturers to provide systems that
scale to these orders of magnitude. The problem is not always trivial to solve, since
these applications rely heavily on distributed databases.

It’s important to mention also the growing importance of interfacing between the
Web and DBMSs. Increasingly the database client applications run on WWW
browsers connecting to database servers on remote machines. DBMSs such as
MySQL for example have been successful partly because of the ease of interfacing
with the Web, due also to scripting languages such as Perl or PHP. In the present

36

3.1. Database concepts

time aimost all DBM S vendors recognized the need to include WWW interfacesin
their packages.

The work described in this dissertation is outside the market addressed by com-
mercial DBMSs, and can be considered by some authors (e.g. Mario Piattini and
Oscar Diaz [13]) a “nontraditional application” (along side others in the field of
scientific applications, medical systems, geographical information systems, etc).
The problem with current DBMSs while dealing with these kinds of problems is
that they are monolithic, offering in one package a whole range of features at a
high price, despite the real needs of the users. For this reason HEP has been tradi-
tionally developing it’s own database management systems, although the current
amounts of data to store already justifies a more professional approach to the prob-
lem.

In the next section databases in high energy physics will be discussed, pointing out
how this specific branch of database technology interacts with the whole of the
discipline and what synergies can be drawn from those interactions.

37

Databases (in High Energy Physics)

3.2. Databases and HEP

HEP has traditionally been an intensive user of database techniques and products,
normally at quite higher scales than normal market demand. Today’s databases in
HEP is struggling in several directions simultaneously, in terms of: data models -
0O, Object-Relational, Relational; using commercial or homegrown solutions;
distribution of the massive amounts of data produced by modern HEP experiments
to regional data centers or institutes - interfacing DBMSs with the GRID is one of
the anticipated solutions.

In this section the area of databases in HEP is discussed, bringing some light to the
problem this dissertation addresses. Although the amount of physics metadata
stored by the OBK is orders of magnitude under that of physics data eventually
stored by ATLAS, much can be learnt from the problems faced in the storage of
regular physics data. If one considers the OBK as a scaled down version (in size
and complexity) of a physics database, addressing such problems as what DBMS
to use, scalability (interfacing with mass storage systems) or performance (being
able to respond to the soft real-time requirements of the full Online Software) is
simpler, as they are a subset of larger problems tackled by the ATLAS collabora-
tion or the full HEP community.

3.2.1. Some history

The history of databases in HEP is largely dominated by in-house solutions,
mainly in FORTRAN (extended by the ZEBRA library) - the preferred software
development language for the earlier generation of physicists doing computing. At
that time (before the 1980s) the regular database market was simply not mature
enough to address the needs of HEP experiments, which meant that specialized
solutions were absolutely necessary.

Later, relational DBMSs started to make their appearance in the HEP world,
although mainly to handle book-keeping metadata and not the raw or recon-

structed® physics data, which was still handled by specialized solutions. It was also
during the 1980s that the HEP community started to shift it’s attention to the OO

38

3.2. Databases and HEP

programming paradigm, which permeated to the databases layer of physics’ soft-
ware. To be said also that the employment of software engineers in HEP experi-
ments also gave a boost to the quality of produced software and linked the HEP
computing world to the “pure” computing discipline.

In the 1990s the RD45 [14] project at CERN took as one of the premises for inves-
tigation on databases for future HEP experiments the use of commercial DBMS
packages. At this time the HEP community was increasingly interested in the OO
paradigm, as it is a closer match for physics’ needs in terms of data model than
previous relational solutions. The standardization of the OO database model by
ODMG also added confidence to that choice. As mentioned in the previous chapter
Obijectivity/DB was the selected OODBMS by the LHC experiments at CERN and
also in other experiments, such as BaBar, AMS, etc.

In 2001/2002, the certainty of the choice of a OO commercial DBMS package is
again being questioned, as other players also present strong arguments as the can-
didates for solutions to physics’ data storage. As was mentioned in the previous
section, commercial Object-Relational databases propose a hybrid data model,
coupled to tens of years of experience in databases by enterprises such as Oracle,

etc. Another option can be found within the HEP community, as ROOT® develop-
ers also present solutions to the problem.

3.2.2. Current trends

Obijectivity/DB is, at the time of the writing of this dissertation, the official DBMS
for LHC long term data. As mentioned before, the first prototype for the OBK was
implemented using that same DBMS. It is well known however that the software
world changes at a very fast pace and so does the databases in HEP.

4. Physics’ raw (detector collected) data is passed through reconstructing algorithms to facilitate offline anal-
ysis.

5. Previously PAW, is the most successful framework for physics’ data analysis. The framework also encom-
passes tools for object persistency.

39

Databases (in High Energy Physics)

Given the very large sizes of modern HEP databases, computer scientists working
in the area are increasingly concerned about how to physically store al this data
and how to distribute it afterwards to the scientists in local institutes, geographi-
cally dispersed around the globe. In what concerns mass storage systems the solu-
tion is normally based on tapes, managed by some software system such as HPSS
(High Performance Storage System). CERN has developed it’s own MSS system
called CASTOR (CERN Advanced STORage system). Other interesting solutions
can be found for instance in Jefferson Lab with JASMine [15] (based on JAVA) or
Fermilab with SRM (Storage Resource Managers). Both these experiments also
interface their databases with GRID tools [16] for distributing data to interested
parties. This functionality will be increasingly important, as a significative invest-
ment is being done on GRID technology and setting up the various geographically
dispersed tiers of database by which the physics information will flow is one of the
worries of today’s HEP computer scientists.

In terms of persistency solutions, at the time of the writing of this dissertation the
“market” of databases considered by HEP offers quite a few options apart from
Objectivity/DB. In the context of CERN the LHC experiments are trying several
solutions to see which one better suits their needs. These solutions are:

- Object/Relational: Always considered before as a tool for management of
organizational or commercial data, Oracle presents with it’s 9i version a set of
features very attractive for databases in HEP. In [17] the CERN database group
provides a preliminary analysis of this sort of tool, explaining that Oracle
claims to have implemented in this version SQL:1999 (a rich OO data model
merged with the relational one). It provides also C++ binding, as well as strong
VLDB features that look promising in terms of storage scalability;

- Purerelational: Although not powerful or expressive enough to handle phys-
ics’ data, the state of maturity of pure relational DBMSs is very interesting. Sys-
tems such as, for instance, MySQL, offer a price/power ratio which places them
among the most used DBMSs in the world today. HEP also employs this tech-
nology very effectively in smaller metadata databases for example for control or
book-keeping purposes;

40

3.2. Databases and HEP

< ROOT I/O: The developers of the former PAW analysis framework evolved
this product to the ROOT system, which is object oriented and more functional
than the previous package. The framework grew also to include general purpose
language’s functionality such as distribution or object persistency. Despite the
fact that ROOT is not a DBMS, the persistency mechanisms that it provides are
quite attractive to the HEP community, as they result from the group’s long
experience in computing in HEP and are tuned to match physics’ data storage,
retrieval and analysis requirements. In [18] ROOT developers explain the rea-
sons why they claim that ROOT 1/O should be preferred over a general purpose
OO database for physics’ data management.

3.2.3. Current problems

The problems of databases in HEP amplify those of databases in general, as HEP

in fact pushes the existing technology to the limits®. An essential difficulty of cur-
rent DBMSs while addressing HEP (or other) problems is the fact that software
database packages are offered as full blocks of functionality, hardly modularized.
This bulk of functionality is of course a trade off with efficiency, by which reason
some experiments are increasingly turning their attention back to in-house HEP
tuned solutions, such as ROOT 1/0.

In [19] the fundamental needs and wants of the HEP community in what concerns
databases (a DBMS system) are described. The following points enumerate only a
subset of them, which is closer to the scope of this dissertation:

- Address large amounts of write-once-read-many data. For physics data the
guantity can go up to tens of petabytes. The data stored by the OBK over the
lifetime of the ATLAS experiment should be one to two orders of magnitude
less;

- Support addition of significative amounts of data on adaily basis while keeping
the system till accessible for querying;

6. An exampleisthe involvement of the HEP community in defining the ODMG standard.

41

Databases (in High Energy Physics)

Support simultaneous queries,

Support data access over an international wide-area network;

Provide a flexible data model which supports versioning and schema evolution;

Interface adequately with tertiary storage, providing support for storing and
guerying the databases efficiently.

While considering the OBK, another aspect of the problem is how to provide the
physicists doing analysis an integration between the physics data and information
stored in the OBK (since the OBK holds the conditions under which the physics
data was acquired). Some sort of integration (in principle not physical) of the phys-
ics data with the OBK’s data will become necessary.

42

3.3. Summary

3.3. Summary

A database can be generically defined as “a collection of related data”. One can
restrict the definition by saying also that: a database represents a subset of the real
world and to be useful should be up-to-date with the part of the world it represents;
a database holds a collection of data with some meaning and is structured accord-
ing to that meaning. The concept of DBMS can be built on top of the one of data-
base: a DBMS makes available mechanisms to store to, retrieve from and update
the database; a DBMS holds not only real-world data but also the catalog of how
that data is mapped in memory; a DBMS centralizes data and makes available
common procedures for reading or writing information.

Database evolution can be fitted into three generations. The first one was born in
the 1960s with systems based on Codasyl network models. The second started in
the 1970s with products based on the relational model by E. F. Codd. Up until
today relational systems still hold by large the largest share of the market. This
trend can be attributed to its ease of use, coupled with the success of the SQL
query language and the clear design methodology associated with the model.
Finally, the third database generation started in the 1990s with the Third-Genera-
tion Database System Manifesto. Third generation database philosophy empha-
sizes rich object structures and rules, reason why Object-Oriented database
DBMSs boomed in the beginning of the last decade. Despite the failure by OO
databases to reach general acceptance, OO features are currently offered with all
the best known relational products (e.g. Oracle).

In what concerns the HEP world, the history of databases is highly dominated by
in-house solutions. This trend is due to the specificity of the problems posed - high
volumes of data, complexity of the data structure - which is not easily tackled by
conventional DBMS systems. However, the standardization of the expressive OO
model for databases interested the physics community, which in the 1990’s
adopted Objectivity/DB for LHC experiments. In our days opinions split again, as
Obijectivity/DB proved not being the ideal tool for the job. Other options such as
Object/Relational Oracle (9i) or ROOT I/O (homegrown solution) seem to be also

43

Databases (in High Energy Physics)

valid candidates. MySQL seems to be also a cheap and efficient aternative, espe-
cially in what concerns secondary databases for management of auxiliary data.

CHAPTER 4

Physics’ metadata
gathering for ATLAS’
Online Software

Chapter 4 is intended to be a study of the OBK from a conceptua
point of view.

In 4.1 the components of the Online Software that the OBK interacts
with are identified and examined in order to provide abasis for acon-
ceptual design and later for the implementation.

4.2. aims at establishing a conceptual design of the envisaged book-
keeper system. This is done in two phases: in the first the high-level
requirements are laid out; in the second a conceptual view of the sys-
tem is presented.

45

Physics’ metadata gathering for ATLAS’ Online Software

4.1. The Online Software from the OBK’s viewpoint

After putting the problem to address into perspective (chapter 2) and evaluating
the technology available (chapter 3), the next step is to devise a conceptual design
of the system. This conceptual design will provide an abstract starting point for
specific technology dependent implementations of the OBK.

In order to arrive to this conceptual design it is necessary to analyze not only what
are the requirements for the system, but also in what fashion the OBK will interact
with other Online Software’s components and how these components behave.

In 2.1 (High Level Requirements) the main goal of the OBK is already stated
generically as being the archival of information “about the data recorded to per-
manent storage by the DAQ system” [2]. In [20] a first refinement of these high
level requirements defines as main data sources for the OBK the Online Software’s
messaging mechanisms (MRS and IS) and the Configuration Database compo-
nents (figure 4.1). In the next section these Online Software’s components/areas
are studied and understood from the OBK’s viewpoint.

FIGURE 4.1. Dependencies between the OBK and the Online Software

1
IS O
R\
N | OBK

\\\

MRS _O< ______
| L

Conf. DB O

46

4.1. The Online Software from the OBK’s viewpoint

4.1.1. Communication infrastructure

The Online Software uses two high-level messaging mechanisms for communica-
tion: the MRS and the |S. Before entering a description of these packages it is use-
ful to understand the underlying communication infrastructure CORBA on which
they are based. A short discussion follows:

An OMG CORBA [21] compliant system called ILU (Xerox’s Inter Language
Unification) was evaluated in [22] as a possible basis to implement a transparent
means of communication for objects, independent of their location. In other words,
a mechanism that would enable message passing between objects located in the
same process or in different processes (running in the same or in different proces-
sors) was thought necessary.

ILU implements a client/server communication mechanism which enables the call-
ing of methods of server objects by clients running anywhere. Apart from the fact
that clients and servers can exist on different computers, they can also be imple-
mented in different languages since ILU provides several language bindings.

The ILU package was however considered too low-level for the Online Software’s
communication needs. The IPC (Inter Process Communication) package [23,24]
was built on top of ILU to provide the needed abstraction. Besides avoiding depen-
dencies on a specific CORBA implementation, IPC also supports the logical
notion of DAQ partitions. Since several partitions may be run in parallel, multiple
instances of the same software objects may have to co-exist in the same
namespace. The IPC provides for the partitioning of the namespace in order to
avoid conflicts.

The full IPC mechanism at run-time consists of one process running a default IPC
server (for partition name management) and zero or more processes running
named IPC servers (for object name management inside a partition). When a client
wants to contact a remote object registered in some partition it may do so by: con-
tacting the default IPC server in order to resolve the named partition (finding the
partition’s namespace server); searching the object’s name in that partition’s
namespace IPC server; retrieving the object’s handle in order to be able to execute

47

Physics’ metadata gathering for ATLAS’ Online Software

it’s methods. The details of resolving the name of the object into a handle (commu-
nicating with the IPC partition namespace servers) are mostly hidden by the IPC
classes’ interfaces.

Although the above IPC overview is quite brief, a detailed study of the Online
Software’s IPC functionality will not be performed here since it is out of the scope
of this document. In the next section the IS and MRS messaging mechanisms will
be described. Both of these components rely on the IPC package for communica-
tion purposes.

4.1.1.1. MRS

The Online Software’s message reporting system’s goal is to provide a uniform
error and information messaging mechanism for all the ATLAS DAQ. Briefly, the
MRS allows for the connection of senders and receivers to an MRS server process.
This server distributes messages published by the senders to all the receivers that
may be interested in them. The fact that the message routing, filtering and assem-
bling is centralized avoids putting too much processing weight on either the sender
or the receiver side of this kind of service. MRS enforces standard well know mes-
sage types across all the DAQ. All the message types available are stored in a data-
base maintained by the MRS server. There is also the possibility of editing the
available message types in the server.

In [25] the full requirement list for the MRS component is presented. Since the
system is supposed to serve the full ATLAS DAQ, the requirements list is long and
describes topics such as message reporting, message transport, message reception,
message filtering and message logging/browsing. Fault tolerance is also contem-
plated as an important issue - for instance the OBK relies heavily on the MRS sys-
tem for correct operation.

As was mentioned before, the basis for all the communication within the Online
Software is the IPC package. In a way the MRS creates still another more abstract
messaging layer, since the system’s API is to be used by all of the DAQ and should
be as simple as possible. The system’s operation at run time can be roughly

48

4.1. The Online Software from the OBK’s viewpoint

described as follows: a sender process connects to an MRS server (one per parti-
tion) in order to be able to pass out messages to other components. The MRS
server redirects the handling of incoming informations to one of the multiple pri-
vate MRS servers. When a client process connects to the MRS server and requests

certain types of messages!, all? the messages of the requested types produced by
senders that fulfill a subscription criteria are passed to that client through the dedi-
cated private MRS server.

There are three MRS APIs made available to the users. the sender, receiver and

command API. The OBK acts as an MRS receiver3, which means that an object of
class MRS receiver has to be instantiated and the subscribe method has to be
called with a subscription expression and callback function as arguments. The call-
back function is a method in the user’s code that will be used by the MRS mecha-
nism to pass messages to the receiver.

It was already mentioned before that MRS messages comply to types as defined in
an MRS database. These types adhere to a structure which is formed by: a message
ID; message text; parameters; qualifiers. This flexible container allows the differ-
ent parts of the DAQ to define and contextualize the MRS message types accord-
ing to their own environment. It is important for the OBK to have knowledge about
the messages’ data structure, since the correct book-keeping data storage will

1. The subscription isformulated by passing aregular expression to the server providing the range of mes-
sagesin which the client is interested.

2. Infact the MRS implements the concept of filters, although this functionality is beyond the scope of the
OBK’s interaction with MRS.

3. Up to the moment when this dissertation is being written the OBK has only used the receiver services of
MRS. In the future the OBK may also become an MRS sender.

49

Physics’ metadata gathering for ATLAS’ Online Software

depend partly on specific MRS messages or on MRS messages’ specific parame-
ters as will be explained later in this document.

41.1.2.1S

The Information System’s goal is to make available information about the run-time
internal state of DAQ software components to other DAQ software components.
The IS is different from the MRS in that MRS only provides distribution of mes-
sages that are notifications of some event. The IS makes available data values on a
continuous basis, which means that, while an IS data value is published by a
source, all the receivers that subscribed to that data value can access it at any time.
This is a substantial change from MRS, where the messages are instantaneous and
the receiver must subscribe in advance in order to be able to get them when they
are emitted.

The requirements for the IS are described in [26]. According to them the system
should, in general terms, be able to provide a means for sender applications to pub-
lish their internal states and update them at regular time intervals, when the data in
question changes or on an explicit request from a receiver. The receivers should be
able to have continuous access to an updated version of data published in the IS,
individually or via logical groups.

The IS also supports the notion of a DAQ partition given the fact that an IS server
that supports the dynamic database for published IS objects is always started in a
given partition namespace. Unlike MRS it is possible to start several IS servers in
the same partition namespace - this makes possible the separation of IS published
information into logical groups.

About the user’s interfaces for IS, as for MRS there exists a sender and a receiver
API. The OBK will be an IS receiver, since part of the book-keeping activity will
involve storing selected 1S messages. Similarly to the MRS subscription, a I1Sn-
foReceiver has to be instantiated and the subscribe method has to be called passing

50

4.1. The Online Software from the OBK’s viewpoint

the IS server name, a subscription expression and the callback function. The server
name is necessary since there may be multiple IS servers per partition.

When the callback function isinvoked on the receiver an IS message containing an
update of data the receiver subscribed to is passed. This information holds the fol-
lowing fields: domain name; information name; type (of the IS class, as defined in
atype database); value (for all the fields of the IS class); last update time.

4.1.2. Configuration Databases

One of the major requirements for the DAQ’s Online Software is that it should be
as flexible as possible, in order to accommodate different data taking modes with
varied architectural configurations of hardware, software or running modes. To
achieve this flexibility it was necessary to enable the system with a parameter data-
base.

In the design document for the configuration databases [27] the requirements are
laid out and can be summarized as follows: the configuration databases should

have the underlying behavior of a full DBMS, providing such services” as storage
of multiple versions of the contents, import/export facilities, schema evolution
facilities, querying schemas or data, system management, locking mechanisms and
access control. In terms of interfacing with the user the document states that there
should exist a way of browsing and editing the contents of a database visually.

In the implementation of the configuration databases, one can distinguish two lay-
ers of abstraction. The pure database layer is managed by the in-memory persistent
object manager OKS [5]. In fact, the specificity of the requirements of the configu-
ration databases made necessary the implementation of a inhouse solution for the

4. At thetime when this dissertation is being written a major subset of these requirementsis already imple-
mented.

51

Physics’ metadata gathering for ATLAS’ Online Software

problem. The OKS was created in order to be a fast and modular in-memory real-
time memory database.

The OK'S graphical and programming interface of OK'S does not however provide
an abstraction layer for the configuration databases’ users, who do not want to
know about specific details of how the persistence is managed but only how they
can create a database and access their specific configuration objects. In this per-
spective the DALSs [28] were created to provide the needed layer of abstraction.

The purpose of the DALSs is mainly to provide independence from the underlying
persistent object manager (POM) and C++ API wrappers for accessing configura-
tion objects. There are several DALS in the DAQ), as the several subsystems found
it necessary to wrap the functionality they required out of their specific configura-
tion databases.

52

4.2. The OBK as an Online Software component

4.2. The OBK as an Online Software component

Given that the TDAQ isalong research project, it is hard to define from the begin-

ning all the requirements for each individual subsystem®. Each of the subsytems
evolved considerably since the project started as DAQ/EF-1 prototype. Not only
the subsystems impact on each other as they grow, but also they are influenced by
other ATLAS systems from outside TDAQ (e.g. detectors).

Being a component of a TDAQ subsystem (the Online Software), the requirements
posed on the OBK have aso evolved considerably since the birth of the project. In
section 2.1 of this dissertation a very high level description of the OBK extracted
from [2] is given, reflecting theinitial expectations for the system. Thefirst formal
gathering of requirements for the OBK took place in 1997 and the resulting docu-
ment [29] was the basis for the first OBK prototype implementation.

From 1997 until today, the Online Software (at the time DAQ/EF-1 Backend)
evolved in terms of design, technology, performance and scalability. To cope ade-
quately with these changes, a formal review of the system’s requirements took
place in the beginning of 2002. This review included also the reformulation of the
OBK’s requirements and made it possible to incorporate functionality requests and
new use cases that came up during the several OBK prototype iterations. As was
mentioned in chapter 2, an (informal) requirements evaluation was done for each
of the implemented OBK prototypes. The OBK requirements document produced
in the 2002 Online Software review [30] gathers and concentrates these previous
requirements evaluations.

Although the studies contained in this dissertation aim at recommending the tech-
nology and design for a production book-keeper system, it is envisaged that until

the OBK enters a production phase6 the requirements for the system will still

5. Subsystem is a generic term, meaning that the system is part of a larger system in TDAQ’s hierarchical
structure. The OBK can be considered as belonging to the bottom layer (components), as it can be imple-
mented by an individual or a small team.

6. Officially 4 years starting from the time that this dissertation is being written.

53

Physics’ metadata gathering for ATLAS’ Online Software

change. At the present time the full ATLAS experiment’s integration phase is just
starting. It is this document’s author opinion that this integration will reveal impor-
tant problems and needs for the OBK system.

4.2.1. Requirements

The Online Software’s 2002 requirements review was an effort to (re)gain a wide
perspective of what other ATLAS systems expect from a (close to) production
implementation of the Online Software system. The approach to accomplishing
this involved some formalism - a requirements document template was used to
register the several aspects of what is demanded from the Online Software in gen-
eral and from each one of it’s components in particular. The template is divided
into Use Cases, Constraints, Assumptions/Dependencies, Functional Require-
ments and Non Functional Requirements.

Since the reference to the OBK requirements document has already been given in
the previous paragraph, the next points will just highlight the main guidelines for
developing the OBK. Functional and Non-Functional requirements are not
included since these are derived from the user input, which can be summarized in
the Use Cases, Constraints and Assumptions/Dependencies.

4.2.1.1. Use Cases

Data Acquisition: After being started with the Online Software by a TDAQ

expert’, the OBK will proceed to the acquisition of the specified DAQ data in an
automatic fashion without human intervention. The information will be stored on a
per-run basis;

Information Updating: The OBK will allow a TDAQ operator® to add comments
to runs for the data corresponding to his/her shift period. It will also be possible to

7. The TDAQ expert isresponsible for running and maintaining the TDAQ itself. He isresponsible for the
initialization and the shutdown of the global system or parts of it.

8. The TDAQ operator isresponsible for using the TDAQ system to take data during a particular data taking
session (i.e. shift).

54

4.2. The OBK as an Online Software component

update the stored book-keeping data as offline analysis or reconstruction processes
may requireit;

Data Access. Access to OBK’s database will be provided for several kinds of cli-
ents. Queries will be answered with data structures understandable by those clients
(web browsers, the Online Software’s IGUI, C++ applications). Frameworks such
as ATHENA or ROOT may also act as high level clients of the OBK;

Database Administration: Users with adequate privileges will be able to perform
administrative tasks on OBK’s database.

4.2.1.2. Assumptions and Dependencies

Dependency from MRS The OBK will require information from the MRS system
in order to know when a DAQ run starts and stops;

Dependency from IS The OBK will require information from the IS system in
order to gather run parameters;

Dependency from ConfDB (Configuration Databases): It will be necessary to
access the configuration databases in order to book-keep the DAQ and detector’s
configurations for each data taking session;

Production: The OBK will record and provide access to information from many
data taking sessions along the lifetime of the ATLAS experiment.

4.2.1.3. Constraints

The OBK database shall be accessible during and outside data taking sessions;

55

Physics’ metadata gathering for ATLAS’ Online Software

The OBK should not interfere with the operation of other components of the
Online Software. In case it does, that interference should be measured and mini-
mized.

4.2.2. Conceptual view of the OBK system

From the requirements stated above a simple generic architecture for the OBK can
be devised. Figure 4.2 depicts this architecture which is divided into two function-
ality groups (inside the rectangles): the data acquisition engine, working online
with the rest of the Online Software; the database browsing and administration
software which works offline from the Online Software.

FIGURE 4.2. Generic OBK architecture

<Online SoftwaD

OBK acquisition
software

C++ API
DBMS Web Browser

Other interfaces...

56

4.3. Summary

4.3. Summary

In order to devise a conceptual design for the OBK, it became necessary to gather
requirements for the system. A first part of thiswork was to study the Online Soft-
ware environment and to understand how the OBK could fit in. In order to do that,
the several Online Software components from which the OBK gathers log infor-
mation were analyzed: IS (Information System), MRS (Message Reporting Sys-
tem) and ConfDB (Configuration Databases). Both the MRS and the IS belong to
the messaging super-component and rely on the IPC package (a CORBA imple-
mentation) for inter-process communication. The difference between the MRS and
the IS is that while the MRS’s goal is to provide an error and information messag-
ing mechanism for the TDAQ, IS’s objective is to make available information
about the internal state of TDAQ’s components (using a publication mechanism).
On the other side, the ConfDB provides a way of parameterizing the TDAQ. Start-
ing a run implies that all the TDAQ software and hardware components will read
their configuration from the configuration databases. IS, MRS and ConfDB pro-
vide APIs, which means the OBK can easily connect to them to retrieve interesting
information.

The next step was to clearly and formally define the user requirements for the
OBK software. Being such a long term project, it is obvious that the requirements
for the whole of the Online Software change and are refined as time evolves.
Despite the fact that a set of requirements had been elaborated for the OBK at the
beginning of the project, the most recent revision dates from 2002 when all the
Online Software components were reviewed. The requirements document which
was produced defines the Use Cases, Assumptions and Dependencies, Constraints,
Functional requirements and Non-Functional requirements for the OBK. From all
this information it was possible to clearly define a conceptual view of the OBK
system.

57

Physics’ metadata gathering for ATLAS’ Online Software

58

CHAPTER 5

The OBK software

The present chapter introduces the OBK software developed in the
context of this dissertation. It isafull description of the implemented
tool, both from the user’s and the developer’s viewpoints.

5.1. presents the OBK in terms of data acquisition, data browsing and
other utilities included in the package. The functionality described is
(loosely) common to the three implemented prototypes.

In 5.2. the technical aspects of the OBK are explored and detailed.
The text addresses used tools and supported platforms, as well as spe-
cific techniques applied in solving each of the available prototypes.

59

The OBK software

5.1. The OBK from the user’s viewpoint

In the points that follow an extensive description of the functionality the OBK pro-
vides to the user is given. The description is generic enough to cover all the proto-
types, athough as was mentioned in chapter 4 new requirements were uncovered
from the beginning of the project until the moment when this dissertation is being
written. If the functionality which is being addressed varies considerably from pro-
totype to prototype, that fact will be indicated in the text.

The information present in the present section can be found in a complete formin
the “User’s Guide of the Online Book-keeper for the Atlas DAQ Online Software”
[31] (appendix F).

5.1.1. Data Acquisition

As was defined in 4.2.2., the OBK can be conceptually divided in the data acquisi-
tion module and the data browsing module. The next paragraphs will describe the
acquisition module: first the database logical organization is laid out (an issue
which is also important to understand data browsing) and then the operation of the
OBK is explained.

5.1.1.1. Logical structure of the OBK database

From what was exposed in the previous chapters, a natural organization for the
OBK database can be the following:

The database is divided into three layers: partitions contain runs and runs contain
messages (IS/MRS), comments to runs made by the shift operators, configuration
data for the run, or ISmeta-information®. This way of organizing the book-keeping
data respects both the TDAQ partition and run concepts.

1. The IS defines classes, which are the types of the published objects. The OBK stores on a per
run basis all the IS types (if available) corresponding to the IS messages archived in that run.

60

5.1. The OBK from the user’s viewpoint

As will be explained later, physically the database varies from prototype to
prototype. However, the logical structure depicted in 5.1. is kept as a reference
across the severa OBK implementations.

FIGURE 5.1. Logical structure of the OBK database

Partition n-1 Partition n Partition n+1
Run n-1 Runn Run n+1
IS MRS IS Config.
messages messages Comments meta-inf. data

Runs may be of two different kinds: runs with events (Runs) or slow control runs
(SLCRuns). This distinction was necessary because, in a very generic way, the
Online Software can be in two states. running or stopped. When it is running, it
means that datais being acquired into a Run container in the database. On the other
side, when the Online Software is up but in a stopped state (there is no run), the
TDAQ components still interchange MRS or |S messages. Although they are less
important, the OBK records the messages exchanged during the stopped state in
SLCRun containers. The way the transitions occur between Runs and SLCRunsis
depicted intable5.1..

61

The OBK software

TABLE 5.1. Runs and Slow Control Runs

- acquisition starts.

Starts Ends
Run - MRS Start of Run mes- - MRS End of Run mes-
sage is received. sage is received.
SLCRun - a Run ends; - a Run starts.

The OBK data will be stored to the database in the following fashion: a Run is
followed by one or more SLCRuns, which in turn are followed by another Run and

so on. An example of this sequenceis shown in figure 5.2.

FIGURE 5.2. Logical view on a possible run sequence

Run
1000

SLCRun
1000.1

SLCRun
1000.2

Run
1001

SLCRun
1001.1

Run
1002

5.1.1.2. Operating system environment

Aswill be mentioned in 5.2.5, the platforms the OBK runs on are either UNIX or
Linux. While using these operating systems, an easy way to parameterize
applications is to read values from environment variables. The severa OBK
prototypes use different environment variables to define their run time behavior.

Tables 5.2, 5.3 and 5.4 display these variables and their meanings.

TABLE 5.2. Environment variables for the OBK/OBJY

the Objectivity federa-
tion®.

themselves are located.

in the host machine.

OO _FD BOOT OO DB _HOST OO DB_PATH OBK_LOG _PATH
Whereto find theboot | Name of the machine Path to the directory Path to the directory
file necessary to load where the databases wherethedatabasesare | wherethe OBK log

files are to be stored.

1. An Objectivity federation logically contains one or more databases and their corresponding data

models.

62

5.1. The OBK from the user’s viewpoint

TABLE 5.3. Environment variablesfor the OBK/OKS

OBK_SCHEMA_PATH OBK_FEDERATION_PATH
Directory where to find the file describing the Path to the root of the directory structure where
datamodel for the OBK database. the OBK datais stored.

TABLE 5.4. Environment variablesfor the OBK/MySQL

OBK_MYSQL _ OBK_MYSQL _ OBK_MYSQL _ OBK_MYSQL _
HOSTNAME USERNAME PASSWD DATABASE
Name of machinerun- | User name for the Password for the OBK | Name of the OBK
ning the MySQL OBK database. database. database.

server engine.

Given that the OBK package includes the three implemented prototypes, it is
necessary to provide a mechanism to select a particular implementation to be used
in conjunction with the rest of the DAQ system. This can be done in the context of
the Online Software by setting the environment variable OBK_DB to one of the
following three values. OBJECTIVITY, OKSor MY SQL.

5.1.1.3. Starting and stopping the acquisition

The OBK is started by default with the rest of the Online Software, unless the
no_obk option is given while starting the play_dag? script. At least an |PC server
(for providing the communication infrastructure) and an MRS server must be
running in order for the obk daq_oks application to start (although while running
play_daq this is transparent to the user). Despite the fact that the OBK can aso
subscribe to IS servers, it is not strictly necessary that one is running for the
acquisition to start.

Although in principle the OBK should be started with play _dag, it is also possible
to run it in standalone mode. To do this it is necessary to set up the proper
environment and to run at least an IPC and an MRS server on the partition the

2. play_daqisabash (Bourne Again SHell) script used to start all the Online Software in asynchronized fash-
ion.

63

The OBK software

OBK is going to be started on. An example (using the OK'S implementation) can
be found below:

EXAMPLE 5.1.

bash$ export OBK_SCHEMA PATH=/ af s/ cern. ch/ atl as/ proj ect/tdaqg/
public/

0. 0. 15/ cont obk

bash$ export OBK_FEDERATI ON_PATH=/ hone- user s/ | uci o/ t enp/ obk_dat a

bash$ ipc_server -p ny_partition &
[1] 2386
bash$ "ny_partition" partition server started

bash$ nrs_server -p ny_partition &

[2] 2387

bash$ Loading 2 classes fromfile "/afs/cern.ch/atlas/project/
tdaqg/dist/0.0.14/instal |l ed/ share/ nrs/data/ nrs_db. schema. xm ". ..
Readi ng 47 objects fromdata file "/afs/cern.ch/atlas/project/
tdaqg/ dist/0.0.14/instal |l ed/ com nrs/data/nrs_db.data.xm " in
extended format. ..

bash$ obk_daq_oks -p ny_partition

[obk] OBK_FEDERATI ON_PATH has val ue: /hone-users/|ucio/tenp/
obk_dat a

[obk] OBK_SCHEMA PATH has val ue: /afs/cern.ch/atl as/project/tdaq/
public/0.0. 15/ com obk

[obk] Openi ng database for partition: my_partition

[obk] subscribe MRS server SUCCESS

[obk] Information: Ready to data aquisition!

In example 5.1. the OBK is started in the simplest possible fashion. The command
line obk_daq_ok53 -p my_partition starts the data collection for all the messages
coming from the MRS server that is running for partition my_partition;

As mentioned previously, the two types of information servers the OBK can
subscribeto are MRS and IS. There is one MRS server running per partition, so the

3. The names of the binaries are different for each OBK implementation. the obk_daq_oksbinary is called
obk_daq and obk_daq my for the OBK/OBJY and OBK/MySQL respectively. Thelist of al the binaries
for each implementation and their respective synopsis can be found in appendix A.

64

5.1. The OBK from the user’s viewpoint

subscription only indicates what types of messages one wants to receive from this
server. On the other side, there may be zero or many IS servers, which require one
subscription per server. Examples follow:

EXAMPLE 5.2.

‘ bash$ obk_daq_oks -p ny_partition -M"RC_START| RC_END" ‘

EXAMPLE 5.3.

‘ bash$ obk_daq_oks -p ny_partition -n ny_is_server - ".*" ‘

In example 5.2 the OBK will store all the RC_START and RC_END* messages
that are sent out by the MRS server running on partition my_partition.

In example 5.3 the OBK will subscribe to al the MRS messages coming from the
my_partition MRS server and also to all the IS messages coming from
my _is_server. The definition of what messages are expected is done by the regular
expression ".*". For each IS server one must specify its name (-n switch) and the
regular expression (-1 switch).

To stop the OBK data acquisition the user should send the OBK process either the
INT(errupt) or TERM(inate) UNIX signals. While in the OBK/MySQL both
signals produce the same result, in the OBK/Objy and OBK/OKS the TERM
signal provokes arollback on the database. This means that the all the data being
stored for the current run in discarded.

Example 5.4 shows a normal interruption of an OBK/OK'S process:

4. The OBK must aways subscribe to both these MRS message types since the correct run creation depends
on them.

65

The OBK software

EXAMPLE 5.4.

bash$ obk_daq_oks -p be_test_single_host &

[4] 3060

bash$ [obk] OBK_FEDERATI ON_PATH has val ue: /hone-users/| ucio/tenp/
obk_dat a

[obk] OBK_SCHEMA PATH has val ue: /hone-users/| uciol/tenp

[obk] Openi ng database for partition: be_test_single_host

[obk] subscribe MRS server SUCCESS

[obk] Information: Ready to data aquisition!

bash$ kill -2 3060

bash$ [obk] Interrupting...
[obk] Exiting normally...
[obk] Exiting normally...
[obk] Exiting...

[4]+ Done obk_daq_oks -p be_test_singl e_host

The user may also decide to send a KILL signal to the OBK process. In this case
the program will finish without any recovery actions, which means the database
may go into an inconsistent state - the most likely problem to occur is that the par-
tition where the data is being acquired remains locked, and no more data acquisi-
tion is available for that partition. In this case, the only option is to manually
unlock the partition by using special software for that effect (see 5.1.3.).

If ran with play_daq, the OBK process is stopped by the script itself which in a
normal exit situation sends an INT signal to the process.

5.1.1.4. Annotating book-kept data

An important task of the OBK is to allow shift operators to annotate book-kept
data. Annotations consist of human written texts which are appended to a run
while it takes place or afterwards. The purpose of this mechanism is to provide
extrainput to physicists doing physics data analysis.

The severa OBK prototypes alow the annotation of book-keeping data in
different ways: while the OBK/Objy and the OBK/OK'S implement command line

66

5.1. The OBK from the user’s viewpoint

applications, the OBK/MySQL provides a friendlier graphical user interface for
that purpose.

EXAMPLE 5.5.

bash$ obk_of fli ne_coment_oks -p be_test_single_host

[obk_of fline_comrent _oks] partition = be_test_single_host

[obk_of f1i ne_comrent _oks] Enter Run nunber: 1000

[obk_of fline_comrent _oks] Enter Run Sub nunber (hit <return> for
no sub nunber):

[obk_of f1ine_comrent _oks] Enter the repetition nunber of the run
(hit <return> for the default -0- value):

[obk_of f1ine_comrent _oks] Please wite the comrent (max 300
characters): ola

[obk_of f1i ne_comrent _oks] Done

Example 5.4 depicts a typical usage of the obk offline_comment_oks command
line utility (OBK/OKS). This utility allows adding annotations while the OBK
system is not running. If the system is in the running state, the
obk_online_comment_oks utility will annotate the run which is currently taking
place.

Adding annotations in the OBK/MySQL prototype is done using the OBK web
browser which is also used to visualize book-kept data (see 5.1.2.).

67

The OBK software

FIGURE 5.3

. Selecting arun to add a comment to

Y O Ve Boskhooper

> Saarch Runs
Database: obk_scal_tests
sub Mum Max Rac Beam Beam
pamition Run % StatDste StatTmetndDate End Time Stetus p DX REC rngger DS, RS BESR amion sction
scolnestad-0200 2002/06/11 1%:39:98 Good @ No Fhysis D Mobeam 100 Dalste omment
be_test 2002/08/06 19146138 cood N b 0 Delste mment
scal nertad-0200 2002/08/12 1011554 Gocd = Dalsts omment
. 5/t 10:15:56 G0 hys Ho bes Dslsts Add Comment
al-nes 2 1 10118149 4 , baw LCalate 249 Comment
. 10:18:51 d N h " Qalats Add Commant
10:29:20 ol h - Delete Add Comment
, 20:29:31 oo i hys 2 Delste mment
o 20132:92 Good 4 - pslsts amment
- 10:33:181 h Dalsts mment
. 10:39:43 bea Dalsts Add Comment
- 10139150 h bes Dslsts Add Comment
. 10:42:33 bea Dalete Add Comment
10:42:35 h : Dalste mment
14116144 = Delste omment
1 14116148 h 2 Dalsts mment
al-ne st 1 1411927 bea Dalets Add Comment
. : 14119:29 " Dalsts Add Comment
+ 14143:00 bea Dalste &dd Comment
14:43:02 h - Dalete Add Comment
- 16:23150 o Dalate omment
6123192 h palsts mment
18:02:33 - Dalsts mment
4 1804111 h bea Dslsts mment
Cument page 1/2 (found 27 runs splitted by 24.)
121
I fiest | pres | nexd | Last |
Advanced Search run details: |
Database: obk_scal_tests, DrdarBys RunNumber,SubRunfium, SortOrder: Asc, Limit; 24
Ganaratad Link for Cusant Sasrch Paga: =1

e = EE N C e)

FIGURE 5.4.

Adding the comment

Fle Ede Yew Go Commuricator Help

i 5 3D am o3& W

Hamspags » Add Comment (Current Datsbase: [obk_scal_tests])
Add Comment (Current Database: [obk_scal_tests])

=1

68

5.1. The OBK from the user’s viewpoint

As can be seen in figures 5.3. and 5.4., while using the OBK/MySQL the user can
add annotations to a run by first performing a search for it (fig. 5.3.), and then
clicking on the “add comment” link. He/she will then be presented with the anno-
tation introduction form as displayed in fig. 5.4..

5.1.2. Data browsing

The OBK package offers the user several ways of accessing the book-kept data:
command line utilities, an internet database browser and a C++ query library to be
linked with client user applications. The next paragraphs provide an overview of
these mechanisms - each of them is suited for a different context of usage of the
bookkeeping data.

5.1.2.1. Command line utilities

Despite the fact that browsing the OBK data in command line mode is not very
sophisticated, for fast checks this is probably the easiest mechanism to use. The

69

The OBK software

OBK/Objy and the OBK/OKS provide an application that does an ASCII dump of
the OBK datato the screen.

The user can choose different types of data to be retrieved by specifying command
line arguments to the dump application (see synopsis on Appendix A).

EXAMPLE 5.6.

bash$ obk_dunmp_oks -P be_test_singl e_host
Run Nunber: 1000

Start date: 26/10/01

Start tinme: 21:28:42

End date: 26/10/01

End tinme: 21:28:42

Status: GOOD

Repetition nunber: O

Nunber of events: 0O

Maxi mum nunber of events: O
Recordi ng enabl ed: 0O
Trigger type: O

Detector mask: O

Beam type: O

Beam energy: O

In example 5.6. one can see how to printout the summary information for each of
the runs stored for the “be test single host” partition. The example uses the
obk_dump_oks (OBK/OKS) application.

5.1.2.2. Web-based browser

For each one of the OBK implementations a web-based database browser was
built. Browsing the book-kept data using a web client (e.g. Netscape or IExplorer)
has the advantage of being simple and accessible from everywhere in the world
(the ATLAS collaboration is spread around the globe).

The first OBK web-based browser was built for the OBK/Objy. Being a first try,
the browser is naturally quite simple, allowing in the first screen the selection of

70

5.1. The OBK from the user’s viewpoint

the partition, in the second the selection a run inside the partition and in the third
the visualization of all the bulked data about the chosen run.

The second internet browser was built for the OBK/OKS and includes more
advanced features than its predecessor, namely the display of run summary infor-
mation and of IS meta-information. In particular, the display of run summary
information (see fig.5.5.) was a major step from the first browser which only
showed run datain bulk. The implementation of this useful feature came to be after
receiving feedback from the people using the OBK/Objy internet browser in the
2000 testbeam.

FIGURE 5.5. OBK/OK S web-based browser - Displaying run summary information

fle Edt Yew Go Communicator Help

= we ~ 4
2 ¢ 3 ¥ 2 B S & @
Back Relod Home Seach Nelape Pint Seoury

Tl Bookmaks 4 Looation [nig:/7poatiast cem chicbk/obk_sel_run_oks phe3 =] @7 What's Felaied

]

OBK OKS Browser - Run Headers

Partition: MUON_MDT_TB_2001

Select Run:
Number | M2X
Run Start | Start End End Run Repetition of Number Ree Trigger Detector Beam Beam
Number = Date Time Date Time | Status = Number Of Enable = Type Mask Type Energy

Event:
VIS | Events

1 10/9/01 | 182557 | 10/%/01 |183025 |GOOD |1 0 0 Mo Physics |0 o o
1 10/9/01 | 18:32:29 |10/9/01 [18:3343 | GOOD 2 0 0 Neo Physics |0 0 0
1 10/9/01 | 183847 | 10/9/01 | 124644 GOOD 3 0 0 e Physics |0 0 0
5 10/9/01 | 185745 |10/9/01 |12593% |\ GOOD 4 0 0 No Physics |0 o o
1 10//01 191604 10/9/01 |1926:19 | GOOD 5 0 0 ot Physics |0 o 0
X 10/9/01 | 192846 |10/9/01 |19294% | GOOD 6 0 0 Neo Physics |0 o o
1 10//01 | 193504 10/9/01 |1937:17 | GOOD |7 0 0 Mo Physics |0 0 0
1 10/8/01 |19:50:2% | 10/9/01 |1%52:11 |GOOD |8 0 0 e Physics |0 0 0 =l
== Dacument; Done G e AP G

The third and most recent OBK internet browser was built for the OBK/MySQL
prototype. This version is much more sophisticated than the previous ones, featur-
ing not only data browsing, but also database administration, helpful utilities, user
access control (see 5.1.3) and the possibility of adding annotations directly in the
browser (as mentioned before in 5.1.1.4.). Given the interest of the ATLAS com-
munity in thistool, the implementation of graphic files upload for complementing

71

The OBK software

annotations and the implementation of an additional mechanism for querying 1S
data are also previewed.

5.1.2.3. C++ query library

Despite the previously mentioned browsing mechanisms, it was felt by the OBK
users that a programmatic query interface for the book-kept data was necessary.
This interface allows users to automate their browsing requests by writing C++
code that retrieves and parses the data to fit specific needs.

Despite its usefulness, the C++ query library was only built for the OK S prototype.
It remains however a good study on relevant book-kept data and how to present
that data in programatical form. In table 5.5. an overview of the library’s methods
is provided. All the detailed information may be found in the “OBK/OKS API
user’s Manual” [32] (appendix E).

TABLE 5.5. OBK query library methods

list<string> * getPartitionNames retrieve all the partition names in the database
list<string> * getRunNames retrieve all the run names for a given partition
OBKRunHeader * getRunHeader retrieve summary information for a given run
OBKParameterVValue * getParameterValue retrieve all the values an parameter of agiven IS

object assumes during a given run

OBKISInfo * getlSInstance retrieve all the information about agiven IS
object in agiven run

list <OBK Comment> * getComments retrieve all the annotations performed on a given
run

The return values for the methods are either simple or composed C++ STL [33]
data structures (classes). These return data structures (OBKRunHeader, OBKPa-

72

5.1. The OBK from the user’s viewpoint

rameterVValue, OBKISInfo and OBKComment) include methods for easy looping
through and retrieving the data.

In order to use the query functionality, the user will have to link his’her C++ pro-
grams against the obkqueryoks.so shared library which is distributed with the OBK
software.

5.1.3. Utilities

During the evolution of the OBK package several problems which came up justi-
fied the development of special applications (utilities) for dealing with them. Obvi-
oudly, for the most advanced OBK/MySQL prototype the amount of these utilities
is much larger than for the first OBK/Objy. The next few lines start by describing
what are the utilities which are common to all OBK implementations, then the
ones that are common to the OBK/OK'S and the OBK/MySQL and finally the ones
that are only available for the OBK/MySQL.

All implementations:

< delete runs: in the OBK/Objy and the OBK/OKS a command line application
exists for this purpose. For the OBK/MySQL it is possible to do it using the
web-based browser, although special user privileges are required.

OBK/OKS and OBK/MySQL:

= delete partitions; as for delete runs;

- release alocked partition: one of the problems common to all the OBK imple-
mentations concerns the termination of the acquisition process via the KILL
signal. While acquiring data the OBK keeps a lock on the partition on which it
isrunning. If the processis not given a chance to remove thislock before finish-
ing, no other OBK process may be started on that partition. The OBK/OKS
implements a command line application to remove locks manually, while the
OBK/MySQL allows doing it through the web-based browser (for users with
adequate permissions).

73

The OBK software

OBK/MySQL:

- Define actions to be done in the beginning of arun: by default the OBK acts as
apassivereceiver to the MRS and IS messagesiit subscribes to when the process
starts. A feature requested after the 2001 testbeam was the possibility to define,
per partition, the names of |S objects whose values should be explicitly read at
the beginning of a run. The OBK web-based browser allows this parameter
input to users with adequate permissions (fig. 5.6.);

FIGURE 5.6. Definition of names of | S objectsto beread at start of arun

3 Online Bookkeeper (MySQL version (.5.2) Browses and Administration - Netscape
Ele Ede Yew Go Commuicator telp

- -v ; . 31
d & 3 4 2 @ =3 & q
Back Reload Hare Seach Netscape Print Seourity
I w Bookmaks s Locatior:[in _soal_t =L O(Comrertz20Datsbase lobk_scal_tests]l =] @1 Whal's Related
@ Jnlie Dookheeper =M~ SR0P G (O] B
Onkine

S Developer J scfcontiol
User Shaved | 9ged a5 Type:
Homepage | News | Logowt | Admin | Search Runs | HowTo | Colaborate | Colaborstors | The Futyure | Links | Contacts | 2002/06/1%
DDDDDD |t | | | 3 5
Create Action (Current Database:[obk_scal_tests])

I
I
fevoz-0e-19
|

- == Documert: Cone: e % AP D 2

- Enable/Disable acquisition of run configuration data: the OBK/MySQL is capa-
ble of storing run configuration data (parameters fed into the several detector
and DAQ systems before the acquisition starts). Through the web browser it is
possible to enable or disable this feature (obviously only to users with sufficient
permissions);

- User management: since the OBK/MySQL web-based browser allows both
read-only and write (administration) actions to be performed on the database, a

74

5.1. The OBK from the user’s viewpoint

user privilege mechanism had to be devised to prevent abuse. Through the
browser it is possible to create new users according to certain predefined user
types which grant different privilege levels.

5.1.4. Available functionality per prototype

Table 5.6. provides a summary of the available functionality per prototype in order
to clarify the evolution of the OBK and to somewhat resume section 5.1.. The fea-
tures that are not clear from previous descriptions are explained in the list follow-
ing the table:

TABLE 5.6. Functionality per prototype

Run Repeated | Web C++ Release | StorelS | Store Retrieve
Status Runs Browser | query Lock Meta- run ISon-
library data config. demand
OBK/ YES NO YES NO NO NO NO NO
Objy
OBK/ YES YES YES YES YES YES NO NO
OKS
OBK/ YES YES YES NO YES YES YES YES
MySQL

- Run Satus: during data acquisition not al the runs terminate correctly. If arun
finishesin error state (for instance, beam islost) then the data may not be valid.
The OBK keeps a flag signaling the correct or faulty end of run;

- Repeated Runs: during production it is expected that an unique run number
will be provided to all of the DAQ. During development however, the different
subsystems may want to use the DAQ for independent testing purposes - in this
case the run number may be repeated. The OBK detects this situation and pre-
vents the overwriting of existing data.

75

The OBK software

5.2. Implementation issues

In the section that follows, atechnical description of the three OBK prototypes is
provided. For each of the implementations the relevant class diagrams are pre-
sented, as well as the schematics representing the physical database structure.
Moreover, the workings of each of the web-based browsers are discussed and spe-
cific technical characteristics of each one of the prototypes are explored.

First, however, in order to place the technical description under perspective, the
tools and languages used to build the prototypes are mentioned and briefly dis-
cussed. After the description of the prototypes the text also refers the platforms for
which the OBK builds.

5.2.1. Languages and tools

The following is a list of used languages and tools while developing the several
OBK prototypes:

e C++ programming language: this extremely well-known programming lan-
guage [34] is used al across the TDAQ for core software development. All the
OBK acquisition engines and user API software are written using C++;

- STL (Standard Template Library): the standard template library is a set of cus-
tomizable data container and algorithm templates which can be used as building
blocks for C++ applications;

= Objectivity/DB: Objectivity/DB is a distributed object oriented database man-
agement system [35]. It alows interfacing with standard languages (C++, Java,
Smalltalk and SQL) in order to manage the persistent objects;

= OKS: anin-memory persistent object manager implemented to satisfy the needs
of the ATLAS TDAQ in terms of configuration databases. The strength of the
OKS lies in being lightweight and oriented to clients which pose strong effi-
ciency and real-time requirements;

76

5.2. Implementation issues

MySQL: open source relationa database product known worldwide for its
speed and ease of use. MySQL also provides interfacing with the C++ language
by means of an API;

PHP: awidely-used general-purpose scripting language that is especially suited
for Web development [36]. All the web-based browsers developed for the OBK
make extensive use of this language;

Perl: another widely-used general-purpose scripting language. Several OBK
utilities were developed using this language;

Apache: awidely-used HTTP web server.

5.2.2. Objectivity/DB prototype

Asmentioned before, the first OBK prototype made use of Objectivity/DB for per-
sistency. Objectivity/DB provides a C++ binding, which means that the user can
define hig’her persistent classes using this language. This feature makes the inter-
facing C++ applications with the databases becomes (almost) transparent. The per-
sistent objects which are managed by Objectivity/DB may be dealt with as any
other transient object while in memory, the advantage since they survive in sec-
ondary storage after the application ends.

The data model of objectivity consists of four layers of abstraction:

Federation: an Objectivity federation logically contains one or more databases,
their corresponding data models and a catal og of all databases inside the federa-
tion;

Database: a database contains objects, which may be clustered into containers,

Container: object clustering unit, for efficiency and performance purposes;

Object: persistent object, containing data and methods to deal with that data. At
the level of the object (class definition), Objectivity/DB supports a multitude of

77

The OBK software

primitive data types, aggregate data types (e.g. arrays), associations between
classes, aswell asinheritance.

Objectivity/DB aso provides locking services (a specialized server) in order to
manage concurrency issues. While dealing with multiple clients of a database, one
of the issues is to avoid simultaneous writes of the same block of data or reads of
data which is being written at that moment. Objectivity/DB provides locking ser-
vices at the level of the federation, the database and of the container.

A good practice while building a data-centered applications [37] isto start by con-
structing the data model and then to build the application around it. The descrip-
tion contained in the next paragraphs follows this philosophy, reason why the data
model is described first:

The first problem while mapping the OBK logical data model described infig. 5.1.
into the Objectivity/DB data model was how to use advantageously Objectivity’s
federation/database/container/object layered structure. Fig. 5.7. depicts the
adopted solution:

FIGURE 5.7. Mapping of OBK’s data model into Objectivity/DB’s data model

Federation

Database
Run Container
Object Object

This mapping option seems quite natural and mainly stems from the fact that clus-
tering all the objects belonging to the same run in a single container improves
access to run information, thus benefiting queries that focus on data from a single

78

5.2. Implementation issues

run. It also allows managing the concurrency (locking) at two different levels of
granularity: partition or run.

In what concerns detailed data modeling, figure 5.8. presents the Objectivity/DB
persistent class information model of the book-kept data. As can be seen from the
diagram, the OO concepts of inheritance and composition are used in order to sim-
plify and organize the data model. To be noticed also that, as explained before, all

79

The OBK software

the persistent objects may become transient during run time. This means that the
application may manipulate them as normal® C++ objects.

In Figure 5.8. the persistent class structure for OBK/Objy (i.e. the database
schema) is presented:

FIGURE 5.8. Persistent class structure for the OBK/Objy (UML)

IOBKRunWEventg
OBKRun OBKISInfo
1
—> f]
OBKSLCRun 1 |1 1
1.*%
OBKISAttribute|
0. 0. A DBKISAttrArray
IOBKAnNnNotation OBKMRSMessage
DBKISAttrBasid
0..* 1
1 0.*
OBKAuthor OBKMRSParam

As can be seen from the above diagram, the mapping of the bookkeeping data
(chapter 4) into a C++ class structure is quite natural and intuitive. The main class
isthe abstract OBKRun, which holds (by composition) all the MRS, IS and annota-

5. Infact persistent objects are managed using the Objectivity provided ooRef or ooHandle wrapper classes,
which provide almost transparent usage of C++ objects while enabling them with persistency properties.

80

5.2. Implementation issues

tion information. To notice the two classes OBKRunWEvents and OBKSLCRun,
which inherit from OBKRun and implement the logical concepts of run with
events (Run) and dow control run (SLCRun). The OBKLockedRuns class is an
auxiliary class used in order to always keep track of the last run which was cor-
rectly stored.

As depicted in fig. 5.7., objects of type OBKRun are created as containers, which
means that all the objects coupled with arun (1S, MRS or annotations) are stored in

contiguous memory/disk pagas.6 - access to objects in contiguous memory is very
efficient. Thereis no particular class to implement the logical concept of partition,
as the OBK process creates a database with the partition name for each new parti-
tion where the data acquisition is started.

The enabling of C++ classes with persistency properties is done via a dedicated
Objectivity/DB mechanism which is be used in the following manner [35]:

1. Creation (by hand, using Objectivity/DB tools) of a federated database;

2. Definition of the data model (persistent classes) by writing extended C++ header files contain-
ing the class definitions. The extension consists of making persistent classes inherit from the
000bj class and replacing pointers with Objectivity/C++ references (see example 5.7.);

3. Processing of the datafiles defined in step 2 using the ooddlx processor provided by Objectivity
- from this phase two C++ header files containing the user defined classes and classes required
by Objectivity are created. A C++ code file containing part of the implementation of the classes
defined in the header filesis also created;

4. Implementation of the user defined methods to manipulate the data in the persistent classes and
of the application using those persistent classes;

5. Compilation of the hand-written and Objectivity/DB generated implementation files and linking
with the necessary libraries.

6. Objectivity/DB uses a page server architecture, which means that the unitary block of exchange between
secondary (disk) and primary (main) memory is apage. A page contains a cluster of objects, which acts as
a cache and speeds up accesses while avoiding disk accesses.

81

The OBK software

EXAMPLE 5.7. Definition of the Run persistent class using the Objectivity/C++ DDL’

class Run : public ooContObj {

publi c: \ Inheritsfrom
Run(); the container Objectivity

Run(ui nt 32 runNunb) ; class => persistency
voi dset RunNunb(ui nt 32 runNunb) ;
voi dset St art Dat e(const d_Ti nest anp& startDate);
voi d set EndDat e(const d_Ti nest anp& endDat e) ;

ui nt 32get RunNunb() const ;
vi rtual ui nt 32get SubRunNunmb() const = 0;
d_Ti nmest anpget St art Dat e() const ;

d_Ti nmest anpget EndDat e() const ;

virtual voidprint()const;
voi dprint(uint8 h :

Objectivity/C++
refererence to access
persistent objects

ooRef (OBKComment) runConms[] <- > commToRun[];

ooRef (Coor di nat or) runCoor di nat or <-> r Coor di nated[];
ooRef (LockedSt atus) runToLStat[]<-> | Stat Of Run[];
ooRef (OBKConf db) hasConfi g<-> appl i esToRuns[];

pr ot ect ed:
ui nt 32 m_runNunb;
d_Tinmestanp mstartDate;
d_Ti mestanp m endDat e;

Definition of
associations*

* Associations model relationships between objects (i.e. one-to-many, one-to-one,
...). With relationshipsit is aso possible to create composite objects with behavior

propagation (delete, lock, copy and versioning).

Having the database schema ready, it is possible to proceed to figure 5.9. which
displays the transient classes OBKServer and OBKUtils, as well as their relation-

ships with the persistent classesin fig. 5.8. (represented by OBKRun).

7. Data Definition Language

82

5.2. Implementation issues

FIGURE 5.9. Transient classstructurefor the OBK/Objy (UML)

OBKUtils

0
|
|
|
|

I
OBKServer

The OBKServer class provides a high leve interface to the OBK database. It
includes public methods to store MRS messages, IS messages and annotations
(processMRSMIsg(), processiSnfo() and createComment()), to safely stop the
acquisition (stop() and abort()) and to browse the database (listPartitions(), lis-
tRuns() and printRun()). The OBKUtils class provides additional services for
timestamp (from IS and MRS messages) conversions.

Finally, the OBKServer class is instantiated by the obk dag, obk dump,
obk_online_comment and obk_offline_comment applications (see appendix A for
the list and description of the OBK/Objy binaries). A special mention to the
obk_daq application, which takes care of subscribing to the MRS and IS servers by
using the MRS and IS receiver classes (see 4.1.1.1. and 4.1.1.2.) and passing these
messages to OBK Server class objects for storage in the database.

5.2.2.1. Web browser implementation

The web-based browser for the OBK/Objy was developed using PHP scripts to
produce the dynamic HTML that shows the data contained in the Objectivity data-

83

The OBK software

base. To make this data available web-wide, the Apache web server with the PHP
interpreter module installed is used.

In what concerns extracting the data from the database, since PHP provides no API
to talk to the Objectivity/DB engine, a special application had to be developed for
this purpose. In fact, the obk_dump binary provides a command line option (-F) to
produced formatted ASCII output to be interpreted by the PHP scripts. When exe-
cuted by Apache/PHP interpreter, the PHP scripts call the obk dump application
with the necessary flags in order to access the necessary information, parse it and
makeit available asHTML. Figure 5.10. depicts this process:

FIGURE 5.10. OBK/Objy’s web-based browser topology

HTML ASCII

PHP/ Obijectivity/
- Web server & | obkdump |<E— J y

5.2.2.2. OBK/Objy Specificities

The OBK/Objy uses specific Objectivity/DB facilities to ease coding of the appli-
cation while improving the efficiency. Some of these facilities are:

- Transactions: Objectivity/DB works based on a transaction model - a transac-
tion consists of a group of operations that doesn’t affect the database until it is
finished (committed). This feature is a very important security feature for data-
bases because it allows the safe removal of database operations that didn’t fin-
ish correctly (rollback), thus avoiding database corruption.

The OBK starts a new transaction for each run, which means that it is possible
to safely keep all the previous stored runs if the data acquisition for the current
one goes wrong for some reason (e.g. Objectivity/DB server dies due to power
failure);

5.2. Implementation issues

Objectivity/DB provides two sort of commit policies: Full Commit, which
closes the federated database, releases all locks and resolves all the object refer-

ences or handles into OIDs®; Commit-and-Hold, which is a lighter version of
Full Commit since it preserves locks and pointers to objects. The OBK/Objy
executes a Commit-and-Hold at the end of each run and a Full Commit when the
acquisition process is stopped,;

= Concurrency issues. A very simple overview of Objectivity’s locking mecha-
nism goes as follows: a basic object can have multiple readers, as long as there
is no process writing it. When a process has an update lock on an object, no
other process (reader or writer) may use either the object or the container that
holds that object (which also gets locked). However, Objectitivity/DB makes
available a mechanism which allows safe reading of objects which have one
update lock - MROW (Multiple Readers One Writer).

The fashion in which the OBK uses these mechanisms is the following: pro-
cesses which are writing to the database hold update locks for objects being
written; reader processes (e.g. obk_dump) use the MROW mechanism in order
to be able to see all the runs in the database, even the ones that are currently
being written.

Apart from preventing accesses to objects which are currently being used, the
OBK/Objy also includes a simple mechanism to avoid that two OBK acquisi-
tion processes start on the same partition (which could provoke two simulta-
neous writes of the same data): when an OBK acquisition process starts in some
partition it checks a known file (obk.pid) to see if any OBK process is already
running in that partition. If not, it starts operation and writes to the obk.pid file

its pid9 and the name of the partition. If yes, the OBK acquisition process stops.

8. Object Identifier - each persistent object has a unique identifier which allows it to keep its identity when
either in disk or in main memory.

9. Process Identifier - in the UNIX or Linux operating systems, each running process holds an identification
number.

85

The OBK software

5.2.3. OKS prototype

The second OBK prototype makes use of OKS for persistency. As Objectivity/DB,
OKSisaso an OO DBMS that provides a C++ binding. However, given that the
OKSisan ATLAS homegrown solution, it does not require a commercial licence
to be used outside CERN. An OBK prototype based on OKS was found advanta-
geous in the sense that collaborating institutes located all over the world could test
and use the book-keeping software, free of charge.

Despite its object-orientation, the OK S tool is quite different from the Objectivity/
DB one in many aspects. In fact OKS does not provide an engine to process
requests from clients wanting to access the database. It is rather alibrary to be used
in conjunction with user applications, that supports smple persistent in-memory
object management. Although in general the data model adopted by OKS is less
sophisticated than the Objectivity/DB one (e.g. persistent object do not support
embedded methods), OKS provides very fast processing sinceit is lightweight and
the data that can be dealt with at a certain moment is necessarily in main memory.

The OK S datamodel itself is quite simple: the OK'S persistent object manager uses
the concept of datafiles - these are containers of data (objects) which are held uni-
tarily in memory and loaded/stored from and to the filesystem in atomic opera-
tions. The OK'S can manage severa datafilesin memory simultaneously, but while
in memory a datafile has to be complete. These files are ASCII XML information
and may be stored in the local filesystem, AFS or NFS.

At the level of persistent class definition, the OKS library provides roughly the
same data types as Objectivity/DB (although defined in different ways), aswell as
class associations and an inheritance mechanism.

From the description above, it is clear that the OKS data model does not support
such a “clean” mapping of partition and run concepts as was seen in 5.2.2. for
Obijectivity/DB. This problem was obviated by mapping the OBK data into OKS
in the way depicted in fig. 5.11.

86

5.2. Implementation issues

FIGURE 5.11. Mapping of OBK’s data model into OKS’s data model

I Federati
File &/Stem/* igolon

Federation datafile

Partition
‘ ‘ ‘ info

L L L datafile
Partition 1 Partition 2 Partition 3

|
|
|
|
|
|
|
Runl1l Run 2 Run 3 |
|
|
J

Run datafiles- MRS, IS (also meta-inf.), annotations

Figure 5.11. basically showsthat the OBK/OK S database is a set of datafiles orga-
nized using the filesystem’s directory structure: in the first level of the directory
structure it is possible to find a data file containing information about the partitions
for which book-kept data exists; in the second level a data file containing all the
summary run information for the partition coexists with the data files which con-
tain specific MRS, IS and annotation information.

Figure 5.12. displays the persistent class structure for the OBK/OKS prototype.
The similarities between this figure and figure 5.8. account for the compatibility of
Obijectivity/DB’s and OKS’s data model at the level of class definition.

87

The OBK software

FIGURE 5.12. Persistent classstructurefor the OBK/OKS (UML)

Partition PartitionInfo
ﬁ 1
IOBKRunWEvent
I 1.-*
OBKRun OBKISInfo OBKISClassInfo
1 1. 1
—> ri
1
OBKSLCRun 1 |1 1
— 1.%
1..*
OBKISClassAttr
OBKISAttributel
0.* 0.* A
OBKAnnotation OBKMRSMessage
DBKISAttrArray
DBKISAttrBasid
0.* 1
1 0.*
OBKAuthor OBKMRSParam

The major differences between the OBK/Objy’s and the OBK/OKS’s persistent
class structure are:

the inclusion of the persistent classes Partition and Partitionlnfo. Objects of
type Partitioninfo are stored at the level of the federation information data files
(see fig. 5.12) and hold the names of all the partitions for which data exists as
well asalogical field signaling whether that partition is currently in use or not.

In what concerns objects of type Partition, these are stored at the level of the
partition information data files and contain pointers to objects of class type Run
which are also stored in the same datafiles.

88

5.2. Implementation issues

« theinclusion of the OBKISClasslnfo and OBKISClassAttrInfo classes to handle
the storage of 1S meta-information.

The way OKS provides persistency properties to its data is somewhat different
from Objectivity/DB. OKS does not provide persistency to the C++ classes them-
selves (as does Objectivity/DB, by inheriting from 0oObj or coContObj classes), it
rather uses a defined set of C++ classes contained in the OKS library to build the
database schema and to manage the data itself. In this sense the C++ binding of
OKSislighter than the Objectivity/DB one.

The database schema may either be created at run time using the OKS schema
classes (OksClass, OksAttribute, OksRelationship) or built previously by a dedi-

89

The OBK software

cated application and stored as an XML data file which can be loaded by the appli-

cation requiring it. The OBK/OKSS uses the second approach.

The instantiation and usage of OKS objects is done via the OKS data classes
OksClass and OksData as can be seen from example 5.9., where an object of class
type Partitionlnfo isinstantiated and its attributes partitionName and inUse are set.

The schema consists of a number of objects of type OksClass which are used as a
reference by the OksObject constructor'® to build objects of OKS user-defined

type classes. Example 5.8. depicts the definition of the Run persistent class:

EXAMPLE 5.8. Definition of the Run persistent classusing OKS

CksCl ass *Partitionlnfo = new OksC ass("Partitionlnfo",
"I nformati on one partition in the federation.",
fal se);

{

OksAttribute *partitionName = new OksAttri bute(
"partitionNane",
OksAttribute::string_type,
fal se,
"unknown",
"String that holds the nane of one of the partitions.",
true);

CksAttribute *inUse = new OksAttri bute(
"inUse",
CksAttribute:: bool _type,
fal se,
"unknown",
"Bool ean field that indicates whether the partitionis in
use or not.",
true);

Partitionl nfo->add(partitionNane);
Partitionlnfo->add(i nUse);

}

To notice also in example 5.9. the usage of an object of type OksKernel to get a
reference to the Partitionlnfo class type object. OksKernel is used for administrat-

10. Each C++ class has one or several constructor methods with which it is possible to initialize the data mem-

bers of a newly created object or perform necessary operations at object creation time.

90

5.2. Implementation issues

ing the whole of the database, including functions such as loading/saving data files
to disk, setting verbosity levels or getting database statistics.

EXAMPLE 5.9. Creation and usage of OK S objects

CksKernel kernel = new CksKernel ();
CksCl ass *Partitionlnfo = kernel ->Fi ndd ass("Partitionlnfo");
CksOhj ect *pi Dat a;

pi Data = new OksCbhject(Partitionlnfo, partitionNanme.c_str());

CksDat a d;
d. Set (partitionNane);
pi Dat a- >Set Attri but eVal ue("partitionNanme", &d);

d. Set (true);
pi Dat a- >Set Attri but eVal ue("i nUse", &d);

The transient OBK/OKSS class model can be seen in figure 5.13.. As can be under-
stood while comparing this figure with the transient class model for the OBK/Objy
(fig. 5.9.), the OBK/OKS class moddl splits and groups common functionality in
specialized classes.

FIGURE 5.13. Transient class structure for the OBK/OKS (UML)

OBKLockOKS OBKAux

AAVAN

OBKULtilsOKS DBKServerOKS OBKQueryOKS

IOBKQueryReturn
OKS

91

The OBK software

The OBKAUxXOKS and OBKLockOKS classes are used has auxiliaries, providing
support to OBKServerOKS OBKULiISOKS and OBKQueryOKS. It needs to be
mentioned also that the OBKQueryOKS class builds as a C++ shared library which
provides a C++ API to the user (see5.1.2.3.).

5.2.3.1. Web browser implementation

From the implementation point of view, the OBK/OKS web-based browser is
almost similar to the OBK/Objy’s one. The browser includes better features than
its predecessor, along with improved usability (see 5.1.2.2.).

5.2.3.2. OBK/OKS specificities

While building the OBK/OKS, several strategies were adopted in order to deal
with the fact that the OKS library does not support many of the features which are
included in Objectivity/DB (e.g. concurrency management, transactions). Still
other mechanisms were devised in order to deal with other constraints, such as for
instance speed of access to the database. Some of these specificities are described
in the following points:

< Concurrency issues: As mentioned before, the OKS library does not support
any sort of concurrency management. For this reason it was necessary to imple-
ment away in which write exclusivity may be granted to aclient. Thisfeatureis
specialy important for OKS since data files are completely loaded to memory -
if two clients load the same data file smultaneously for write purposes, the
changes done by the first one who saves will not be taken into consideration.

A very simple lock mechanism was implemented in order to deal with this prob-
lem: the process which requires the lock reads from a well known file the lock
status. If the lock is on (the file contains “1”), the process requiring the lock
waits until the lock is free (the file contains “0”). It then acquires the lock by
writing “1” to the file. Despite the fact that the operating system provides better
solutions, this very simple mechanism solves the problem for the granularity
required by the OBK.

92

5.2. Implementation issues

The problem of not alowing that two OBK acquisition processes start in the
same partition was solved by the OBKLockOKS class (see fig. 5.13). This class
includes methods that allow the locking and the releasing of one partition. An
OBK process that may write to the database is always required to request alock
on the partition it is going to act upon;

« Transactions: the OKS does not support transactions, which means that recov-
ery actions for afailed database update do not exist. The way to guarantee some
safety was to store one run (including al necessary messages) per data file(s).
This means that if failure occurs during data acquisition, only the current run
dataislost (all the previous runs were already stored);

= Optimization of data accesses: since the OBK stores information on arun basis,
it is very important to know for each run what type of physics data is being
searched for and how (run parameterization). Given the importance of these
parameters, it is wise to have them ready for fast access. Keeping this trend in
mind, each run’s parameters are stored in the partition data file in Run class type
objects (see figures 5.11. and 5.12.). This strategy drastically diminishes read
access times by avoiding the problem of opening the IS messages data files for
each run and searching for the messages that contain this sort of information.

5.2.4. MySQL prototype

Finally, the third OBK prototype was developed using the MySQL DBMS [38] for
persistency. Being an Open Source product, MySQL does not pose licence prob-
lems such as Objectivity/DB while providing widely tested and quality database
services. The decision to implement a MySQL based prototype stemmed also from

93

The OBK software

the desireto try arelational approach while developing the OBK, as opposed to the
two previous object oriented approaches.

The MySQL package makes available an engine for dealing with SQL queries!
which when deployed runs continuously, accepting local or remote connections.
These connections my be established directly by human users (MySQL client con-
sole) or by software applications - MySQL makes available an ODBC and a C/
C++ interface.

As mentioned before, MySQL implements the relational model (see 3.2.1.), alow-
ing the creation of databases - each database contains a number of tables and each
table contains a number of fields (e.g. strings, numbers, dates). Tables may be
associated with other tables, implementing relationships such as one-to-one or
one-to-many.

It is easy to understand that the previous mapping of OBK’s data using the object
oriented data model is not valid while dealing with the relational data model. In
fact, as was already discussed in chapter 3, the relational data model is closer to the

11. All the database manipul ation operations are performed on the MySQL database through the use of the
SQL language.

94

5.2. Implementation issues

machine than the OO data model which was invented later. For this reason, strong
redesigning of the database schema was necessary.

FIGURE 5.14. Relational data model for the OBK/MySQL

ISattributet/alue
ISaAt butet/alield
Sinfold

ity ibuteTypeld
attributevalue

dag_my_lodk
pbk_dan_lockld

SatributeTypeld
attribute Type

I=Document
SDocurmentd
ame

Desa iption

RunToConDB

Funid
onfFikeld

Funinfold
Boilshiurmber
Eventshumbear

i Eventshiurmber
PhysicsEvantshumber
Pedestr aEventshumber
[C sEventshumber

| aserEventsiurnbear
ReEnahle

[Trigoer Type

P etec torask
PeamType
peamEnengy

150 ocumentatiribute

FunToComment
PunToCormrmentd

95

The OBK software

Ascan be observed in figure 5.14., the OBK/MySQL persistent class structure var-
ies substantially from the structures implemented for the previous prototypes. In
wide terms, the main concepts (e.g. Run, IS and MRS messages) which were pre-
viously described as classes are now mapped into tables. The relational result is
however less elegant since the data model is less expressive - take for instance the
need to use the RunToConfDB or RunToComment tables to implement many-to-
many relationships.

Apart from data model differences, it is also possible to notice in fig. 5.14. newly
introduced concepts:

= the actions table which defines objects which value should be read from IS at
start of run (see 5.1.3.);

= the conffile table which stores the configuration files which are associated to a
run. Since the configuration files are stored by OKSin XML (text) format, itis
possible to record them in atable field of type text (ASCII stream).

An example of usage of MySQL through the C/C++ APl isgiven out in 5.10.. As
can be observed, the C APl makes available a series of functions and data struc-

96

5.2. Implementation issues

tures which are used to sent out queries to the MySQL engine and to process the
results of those queries.

EXAMPLE 5.10. Example of usage of the MySQL C API

MYSQ. *sock, mysql ;
MYSQL_RES *res;
MYSQL_ROW t np;

MySQL
data structures
definition

int Runld = O;
string sel ect gbuf;
unsigned int nFields = 0;

sel ectgbuf = ("SELECT Runld FROM run WHERE RunNumber = " +
i nt ToString(runNunber) + " AND SubRunNum = " +
i nt ToStri ng(SubRunNurmber) + " and Partitionld = " +
Partitionld);

i f(nysql _query(sock, sel ectgbuf.c_str())) {
user agi ng- >m obkErr (new string("Qery: " + selectqbuf + "
failed! " + (string)mnysql _error(sock)), 2);

}

if(!'(res = nysql _store_r
userMeggaging->m_obKErr
query:

Lt(sock))) {
string(‘'Couldn’t get result from
string)mysqgl_error(sock)),?2);

Retrieving
the query’s result

}

nFields = mysql_affected_rows(sock);
if(nFields == 0) {
Runld = 0O;

else {
tmp = mysql_fetch_row(res);
Runld = atoi(tmp[0]);
mysql_free_result(res);

The transient class structure for the OBK/MySQL is presented in figure 5.15.. It is
somewhat similar to the transient structure of the OBK/Objy, as it was imple-

97

The OBK software

mented based on that first OBK prototype. This fact is mainly due to the shortage
of time and manpower available at the time of implementation.

FIGURE 5.15. Transient class structure for the OBK/MySQL

OBKUtils OBKAux

OBKServerMy

5.2.4.1. Web browser implementation

The implementation of the web-based browser for the OBK/MySQL is quite
diverse from the ones of the previous prototypes. Instead of using a specialized
application (seefig. 5.10) to retrieve data from the database, the browser commu-
nicates directly with the MySQL engine using an already existing interface in
native PHP.

This approach has great advantages given that it allows the direct passing of SQL
gueries from PHP to the MySQL engine, making the search very flexible. This
possibility was not implemented in the previous prototypes given the fact the there
are no interfaces between PHP and MySQL for OKS or Objectivity/DB.

5.2.4.2. OBK/MySQL specificities

= Concurrency issues: the OBK/MySQL includes locking mechanisms to avoid
either having either two writers or one reader and one writer trying to access the

98

5.2. Implementation issues

same data. However, from the previous prototypes it was already shown that it
is hecessary to avoid the possibility of launching two OBK data acquisition pro-
cesses simultaneously. The OBK/MySQL implements this by writing to a spe-
cific table (obk_dag my_lock) who started an OBK process on which partition.
Before starting book-keeping a partition, each OBK acquisition process reads
the obk_dag _my_lock table to check if thereisan OBK process already started
on that partition. If not, the process starts. If yes, it stops;

= Transactions. despite the fact that MySQL supports transactions and atomic
operations, the OBK/MySQL does not make use of that possibility. While the
previous prototypes consider arun to be a transaction unit, the present one does
not support that feature. If there is a failure, the OBK/MySQL stores the data
that was introduced in the database until that failure occurred. Although thereis
no major risk of damage for the OBK database, this problem should be better
addressed in future releases of the OBK/MySQL;

- Optimization of data accesses. as for the OBK/OKS prototype, the OBK/
MySQL prototype keeps the run parametersin a specia purpose container - the
runinfo table. The principle is the same, allowing fast accesses to parameters
which are the most important while describing the run;

- Storage of configuration data: as mentioned before, the OBK/MySQL’s schema
holds the conffile table which is used to store the run configuration data. Con-
figuration for each run is composed of a number of text files, which are copied
entirely into the MySQL database in case they don’t already exist there (several
runs may share the same configuration files).

99

The OBK software

5.2.5. Supported platforms

The platforms!? involved in the data acquisition are an heterogeneous collection,
reason why the Online Software builds (at the time of the writing of this disserta-
tion) for the following ones:

e 2Linux platforms: Red Hat 6.1/egcs-1.1 and Red Hat 7.2/gcc-2.96
= 2 Sun platforms: Sun 2.5.1/egcs-1.1 and Sun 2.7/CC-5.2
< A Lynx platform (real time Operating System): Lynx 3.0.1/g++-2.9-98r2

The OBK only builds for the Linuxes and the Suns, given that the Lynx machines
are dedicated to run real-time constrained physics data acquisition.

The presented list of platforms varied substantially during the project, change that
was due to the evolution of operating systems and compilers over the two yearsthe
project lasted. As mentioned beforein 2.3.2., to handle the multiple changing plat-
formsin arelatively automatic way, a set of tools was used:

= CVS (Concurrent Versions System) [39] to centrally keep track of changes to
the source code. CVS also allows severa developers working simultaneously
on the same package by warning the developer when his/her version of the
source code is outdated in comparison to the one held in the repository;

- SRT (Software Release Tools) [40] to manage the differences while building for
different platforms. Instead of requiring a makefile for each different platform
(taking into consideration that the system libraries may be located in different
places, the compiler options may be different, etc), the SRT provides the facili-
ties to build an abstract specification of the software to build and how to install
it. Details particular to each platform are solved automatically by the tool. SRT
is a homegrown solution from CERN.

12.Operating System + C++ compiler version

100

5.2. Implementation issues

« CMT (Configuration Management Tool) [41] performs the same function as the
SRT tool. Developed in collaboration with CERN, this software provides more
functionality than SRT. The Online Software counts on adopting CM T and drop
SRT in the near future, as SRT is no longer supported. While this dissertation is
being written, the Online Software builds using both tools.

In order to check the constant integration (at the level of the programming inter-
faces) of the several packages of the Online Software, anightly build is setup. The
build job, which is launched automatically, gets the needed sources from CVS,
builds them for each specific platform according to the rules defined by SRT (or
CMT) and installs the needed binaries and libraries. When a release is to be built
the procedure is the same, only not done automatically since the software needs to
be first checked for correct building and running.

101

The OBK software

5.3. Summary

The developed OBK software can be described from two different viewpoints: the
user’s and the developer’s. From the user’s perspective, the system can be divided
into the data acquisition and the browsing module. The data acquisition module
acquires information into the OBK database which is logically organized into par-
titions. Partitions contain runs which in turn contain IS messages, MRS messages,
Comments (run annotations), IS meta-information and Configuration Data. The
user may define the behavior of the OBK prototypes by means of environment
variables which are different for each of the prototypes (Objectivity/DB, OKS,
MySQL). The OBK can be started either with the rest of the Online Software (by a
specialized script) or in standalone mode from the command line. Either while in
data acquisition or offline, the user can annotate runs by executing command line
applications for that purpose or by using the OBK web-based browser (depending
on the OBK prototype). Another aspect of the usage of the OBK is browsing
recorded data. This can be done in three different ways: through a command line
application, through a web-based browser or by means of a C++ API.

From the developer’s viewpoint several aspects of the OBK may be considered:
the prototypes were built using a varied set of languages and tools, such as C++,
STL, Objectivity/DB, OKS, MySQL, PHP, Perl and Apache. Despite the fact that
all the OBK prototypes are based on the same conceptual model, each implementa-
tion is different given the distinct database technologies and APIs they use. Due to
this trend and also to the fact throughout the project knowledge about design prob-
lems evolved, each OBK prototype is distinct from the other. This fact can be
faced as providing an extra degree of richness for the evaluation phase of the
present dissertation. It needs to be mentioned also that the OBK prototypes are
built for several different platforms, all either Suns or Linuxes.

102

CHAPTER 6

Evaluation of the
practical work

The present chapter focuses on evaluating the practical work done in
the context of this dissertation. It concludes the software develop-
ment process cycle by describing the test and integration phases, as
well as discussing some issues regarding deployment and metrics.

Section 6.1. lays down the functionality, performance and scalability
tests that were performed on each of the OBK prototypes. The inte-
gration of the OBK with other Online Software components is also
discussed.

In 6.2. deployment is addressed. The real-life situations where the
OBK was used are described along with the gathered results and
feedback into the devel opment.

6.3. presents and comments on metrics for the various phases of the
software development process of the OBK.

Finally, section 6.4. provides a discussion on lessons learnt through-
out the whole development process of the OBK software.

103

Evaluation of the practical work

6.1. Test and integration phase results

In this section the tests performed on the several OBK prototypes are described
and explained. Firstly the functionality and error recovery tests are mentioned, fol-
lowed by the performance and scalability ones. It is important to refer that all the
tests obeyed to a common test plan [42], which allowed the easy comparison of
results. After describing the tests and interpreting the results, the issues regarding
integration with other Online Software components are discussed.

6.1.1. Functionality and error recovery tests

Functionality tests were performed on the OBK to evaluate its conformity against
the requirements. As is described in the test plan document, the following are the
severa functionality tests that were applied to each prototype:

1. check if the OBK correctly connectsto all the specified sources of data;

2. check if OBK archives al the MRS and IS messages received as well as the selected informa-
tion from the configuration database. Check if al theinformation is stored in the proper run and
if the run parameters are correctly collected;

check if OBK properly stores information on abnormal end of run;

check if OBK properly stores operator’s comments;

check OBK behavior when can’t establish connection to the database server;
check OBK behavior if looses the connection to the database server;

check OBK behavior when an existing run number is given;

check OBK behavior when trying to use an invalid MRS/IS server;

check OBK behavior when a MRS/IS server crash;

10. check OBK behavior if more than one obk acquisition process is started (in the same and in dif-
ferent partitions).

© © N o 0 &~ w

Specia purpose testware was developed in order to perform the above mentioned
tests. The results can be found in the Test Report document [43] (also found in
appendix G). The functionality tests yielded valuable input by either pinpointing

104

6.1. Test and integration phase results

flaws on the software or asserting its correction, thus increasing the level of confi-
dence on the OBK package.

6.1.2. Performance and scalability tests

The following lines will describe the performance and scalability tests that were
performed on each of the OBK prototypes. A discussion of the results will also be
provided. The text is based on the results presented on the “Test Report of the
Online Book-keeper for ATLAS DAQ Online Software” document [43], as well as
on the first paper written in the context of this dissertation [44] (appendix C) and
presented in Beijing, China, at the Computing in High Energy Physics (CHEP
2001) conference.

6.1.2.1. Test definition

The scalability and performance tests can be divided into two major groups:

Data acquisition

1. Caculate the mean timeto store typical MRS messages,

2. Calculate the mean timeto store typical 1S informations;

3. Caculate the mean time to store the selected information from the configuration databases,
4.

Test the behavior of OBK’s data acquisition application with concurrent access from multiple 1S
and one MRS servers;

5. Calculate the disk space required to store a predefined amount of book-keeping data.

Data retrieval

6. Calculate the mean time to retrieve all the information about a particular run;
7. Calculate the mean time to select all the runs that fulfill a given criteria (explained later);

Specia testware applications were also built in order perform the scalability and
performance tests. These applications were used in conjunction with instrumented

105

Evaluation of the practical work

OBK code in order to produce timing results. The obtained results are presented in
the next section.

6.1.2.2. Test results

Data acquisition

The results presented in this section are based on the following premises:

= All the test messages are sent without any delay in between,;

e The machines where the tests were performed (linux7.1/gcc2.96 - PIII/800MHZz) were
unloaded;

= The test databases are stored to: a remote server machine running the Objectivity/DB server in
the case of OBK/Objy; the local filesystem in the case of OBK/OKS; a remote server machine
running the MySQL server in the case of OBK/MySQL.

FIGURE 6.1. Test 1results-timeto storean MRS Sart of Run message

350000 250000
300000

250000

200000

200000

150000 4
100000 ¢
50000

time (microseconds)

0+

100 200 300 400 500 600

150000

100000

time {microseconds)

50000

100

200

300 400 500 E00

]
OBK/Obe run number OBK/OKS run number
350000
. 300000 * .
5
2 250000 .
o
b4 -
g 200000 <
£ 150000 1 v .
T T tres el ..
5 o fa e _aved A
. 5 " JR -
0
0 100 200 300 400 500 600
OBK/MySQL run number

106

6.1. Test and integration phase results

FIGURE 6.2. Test 2 results - timeto store atypical | S message

45000
40000 30000
g 3000
% 30000
! 25000 $ 20000
& 20000 § Jeses
£ 5000 &
E 10000 £ 10000
5000 5000
0
0 100 200 300 a00 500 £00 9 3 - g Ao o3
OBK/Objy 1S me ssage number OBK/OKS 1S message number
400000
- 350000
300000
250000
£ 20000
E 150000
£ 100000
=
50000
0
0 100 200 300 400 500 600
OBK/MySQL IS message number

107

Evaluation of the practical work

FIGURE 6.3. Test 3-timeto storean MRS Sart of Run message + config. data

1600000 1
1400000 2
1200000
1000000 + .
00000
600000

N
=
S
=
b=
=
-
.
.
>
v

time {microseconds)

200000 43
o4

0
OBK/MySQL

100 200 300 400 500 600
run number

TABLE 6.1. Test 4 - concurrent access from multiplel Sservers+ 1 MRS server

prototype vs #
of ISservers 10 20 50 100
OBK/Objy OK OK but some- Online software -
timesthe |S/ becomes blocked
MRS servers
become blocked
OBK/OKS OK OK OK but some- Online software
timesthe |S/ becomes blocked
MRS servers
become blocked
OBK/MySQL OK OK but some- Online software -
timesthe |S/ becomes blocked
MRS servers
become blocked

TABLE 6.2. Test 5 - disk spacerequired to store a sample OBK database (1000 runs)

OBK /Objy

OBK/OKS

OBK/MySQL

63.4

37

211

108

6.1. Test and integration phase results

Data Retrieval

The results presented in this section are based on the following premises:

= The machines where the tests were performed (linux7.1/gcc2.96 - PI11/800MHz) were unloaded
-intables6.3. and 6.4.;

= |ocal means the query application and the database server are located in the same machine;
remote means the query application is located is a different machine from the database server,
on the same LAN;

= The databases used for the tests are filled with 1000 runs;
= Thecriteriafor the query on test 2 is met by 5% of the runs;

= For thetests performed on the OBK/OKS, the remote case applies to the writing of the database
files through NFS (network filesystem).

TABLE 6.3. Test 6 - timeto retrieve all the information about a singlerun

L ocal Remote
OBK/Objy 0.13 0.94
OBK/OKS 0.38 142
OBK/MySQL 0.39 0.70

TABLE 6.4. Test 7 - timeto select all therunsthat fulfill a given criteria

6.1.2.3. Test results discussion

L ocal Remote
OBK/Objy 18.13 116.08
OBK/OKS 0.35 1.18
OBK/MySQL 0.02 0.08

The following lines provide an interpretation of the results presented in the previ-
ous section, along with a final comment which tries to wrap-up the results and

109

Evaluation of the practical work

present a conclusion involving al the prototypes. For each one of the prototypes,
only the relevant results will be mentioned.

OBK/Objy

Test 1: The OBK/Objy presents the steepest rise in time to create a new run.
This problem can be attributed to the longer times it takes to create a new con-
tainer as the database grows bigger, since the OBK checks before wether a run
with the same number already exists. One can also see in figure 6.1. a clear
decrease of the times at run ~200. This takes place when the OBK/Objy is ter-
minated and a full commit occurs;

Test 5: The disk space taken by the OBK/Objy is one order of magnitude higher
than for the OK'S and MySQL implementations. This time is mainly dominated
by the size of the memory page defined when the federation is created - a con-
tainer always allocates a predefined number of pages [45];

Test 6: Only one container is opened, outperforming the other prototypes when
the test is executed locally;

Test 7: In this second query the OBK/Objy presents the worst performance,
both in the local and in the remote case. This trend can be attributed to the fact
that the information the query searches for is cashed (kept in special containers)
by both the OK'S and the MySQL prototypes. On the other side, the OBK/Objy
has to download all the containers in the database to find the required informa-
tion.

OBK/OKS

Test 1: Asfor the OBK/Objy, this prototype also presentsaclear risein thetime
it takesto create anew run. The reason for this problem is aso the same, i.e. the
raise in the time to check whether a run with the same number already exists;

Test 2: While storing 1S informations the OBK/OKS is actually the fastest pro-
totype. Being an in-memory DBMS, the OKS only performs I/O operations to

110

6.1. Test and integration phase results

secondary memory either to create, load or store data files. Since access to data
files only happens at the beginning and end of run, the storage of IS informa-
tions (predominating over MRS messages) is done in-memory, which justifies
the very low times - taken up mainly by processing operations;

« Test 4. Also in this test the OBK/OKS outperformed the other prototypes. The
test involved starting a variable number of IS servers, feeding them with contin-
uous information and letting the OBK subscribe to all that information. The
OBK/OKS s capable of coping with alarger flux of IS data, which is due to the
fact that it processes IS informations faster than the other OBK prototypes. In
fact, the IS servers are not fully asynchronous with its receivers (e.g. OBK),
given that the messages are held in a queue while waiting for processing. If the
processing on the receiver side does not cope with the requests, the queue is
filled and the IS servers block;

OBK/MySQL

« Test 1: The OBK/MySQL is the only prototype which presents a stable time
value to start a new run. Despite the fact that the code checks wether the run
number already exists or not, this does not seem to affect the performance;

- Test 3: One can observe a very large difference in the times to store a start of
run message in fig. 6.1. and 6.3. (configuration data storage off or on, respec-
tively). Clearly, storing the configuration data files places a heavy processing
burden on the OBK;

» Test 5: Ascan be seenintable 6.2., the OBK/MySQL presents the lowest occu-
pied space for the same amount of book-keeping data. This trend seems to be
due to the fact that while for the MySQL prototype al the data is stored in a
fixed number of tables (each table corresponding to afile), for the OKS proto-
type 4 data files (with all its overheads) are created for each run;

e Tests 6 and 7: While performing data retrieval queries the OBK/MySQL pre-
sents the best performance results. The queries for the OO databases are built
using C++ code for browsing through the persistent objects, while for the

111

Evaluation of the practical work

MySQL database the query is done via the SQL language. It is clear from the
tests that the SQL processing engine is more optimized than the hand-written
queries used for the OK S and Objectivity/DB book-keeping databases.

From the test results one can withdraw the following generic conclusions concern-
ing each prototype: the better overal performance was achieved by the OBK/
MySQL; the OKS implementation of the OBK also presents strong results which
are mainly due to itsin-memory features,; the OBK/Objy presents the less optimal
results. This last trend can be attributed mainly to the facts that the OBK/Objy was
thefirst prototype to be designed and that Objectivity/DB requires deep know-how
in order to be tuned correctly. In [45], a study in optimization of the OBK/Objy is
provided.

6.1.3. Connectivity to other Online Software components

Aswas mentioned in chapter 4, the OBK has connectionsto the IS, MRS and Con-
figuration Databases components of the Online Software. Given that the ConfDB
data is accessed directly via the filesystem (not through a specialized server), the
connection to the ConfDB component cannot affect the performance of the Online
Software.

However, after analyzing the results in table 6.1. it is possible to understand that
the performance of the OBK also influences the performance of the IS and the

MRS! servers to which are subscribed. In case of overflow of the OBK parts of
Online Software system may eventually sow down considerably or even crash,
since the whole of the Online Software depends on the correct functioning of the

messaging system.

Test 4 should however be put under perspective, since the probability of the need
of the OBK to subscribe to the amount of servers tested is very low. It is nonethe-
less indicative that the callback times for the OBK should be kept as low as possi-
ble.

1. Given that the subscription mechanismis similar.

112

6.2. Deployment

6.2. Deployment

The OBK was deployed for both large scale tests within the Online Software and
testbeams (sub-detector test) taking place every year during the summer. These
tests involved the Online Software running as a whole, which allowed the detec-
tion of problemsin the OBK that would have not arisen in avery controlled testing
environments such as the ones described in sections 6.1.1. and 6.1.2..

6.2.1. Large scale tests (of the Online Software)

For the finalized ATLAS experiment, the Online Software system is supposed to
serve an indeterminate number of clients requiring control, configuration and mon-
itoring services. At the time of the writing of this dissertation, the final number of
nodes requiring Online Software services is estimated at several thousands. This
being, it became necessary to verify the functionality of the system at these scales.
The tests were done accordingly to a specified test plan [46].

In 2001 the Online Software the tests were performed correctly on 111 controlled
nodes, running on 111 PCs. In 2002 the tests were extended to 210 machines, run-
ning 210 controllers. Although it was possible to go up to ~600 nodes running on
the 210 machines, instability was encountered and this scale.

The OBK was used to create and browse the log book for these tests - no scalabil-
ity problems were encountered. Some minor functionality bugs were discovered
and fixed both in 2001 (OBK/OKS) and 2002 (OBK/MySQL). The tests were use-
ful mainly as experience in setting up and configuring the OBK to run in an inte-
grated fashion with the rest of the Online Software. Results of the tests including
comments on OBK usage can be found in [47].

6.2.2. Testbeams

The ATLAS is composed of several sub-detectors, each one of them being sepa-
rately tested for correct functioning. At the beginning of 2000 the DAQ/EF-1 pro-

113

Evaluation of the practical work

totype (including the Online Software) was adopted as the data acquisition
software for the Tilecal detector. In the years that followed the Muon Drift Cham-
bers and the Pixel subdetector also made the same choice. For the 2000 testbeam
the OBK/Objy was used, for 2001 the OBK/OKS and for 2002 the OBK/MySQL .

The testbeams provided excellent testbeds for the Online Software, given that the
nodes being controlled have real interactions with the detector and are not simu-
lated, as happensin the large scale tests described in the previous sections. In what
concerns the OBK the testbeam experience was extremely fruitful: large databases
were created, allowing to check the scalability of the tool when the amount of
book-kept data becomes significative. The next isalist of problems (apart from the
functionality ones) and requests identified by users during the several testbeamsin
which the Online Software participated:

2000 testbeam (OBK/Objy):

= Too simplified web browser - need to present the data in a more readable fash-
ion and not in “bulk™;

e Overal Online Software slowdown due to communication problems with
Objectivity/DB server;

= Reqguest for an API to retrieve the book-kept data via a programming language.
2001 testbeam (OBK/OKYS):

= The filesystem approach to store the database generates too many files in a not
centralized fashion. Thisleads to easily losing track of the book-kept data;

= Request for redesign of certain parts of the OBK/OKS C++ API;

= Reqguest for implementation of a mechanism that alows the active retrieval of
IS data by the OBK at the beginning and end of run.

114

6.2. Deployment

2002 testbeam? (OBK/MySQL):
- Slow SQL queries on large databases (hundreds of megabytes);

= Reqguest for increased functionality for the browser in terms of data display.

2. In progress at the time of the writing of this dissertation.

115

Evaluation of the practical work

6.3. Some metrics

In the first part of this section some metrics concerning the several phases of the
software development process of the three OBK prototypes are presented. The
numbers should be interpreted loosely (except for the lines of code metrics), given
that most of the time the several tasks were done in parallel and with a varying
number of developers. In the second part (table 6.7) a match is made between the
original learning contract (appendix B) and the achieved goals during study time.

= Requirements gathering: 2 man/month of pure requirements gathering. The
“Online Book-keeper Requirements” document [30] was produced. Despite the
fact that time was dedicated specifically to requirements gathering, this was a
task that spanned throughout all the project given the continuous input from
OBK’s users;

= Design and implementation:

TABLE 6.5. Design and implementation metrics

Effort (man/month) Lines of Code (LOC)
OBK/Objy 18 4166
OBK/OKS 4 8799
OBK/MySQL 3 6193

- Testing

TABLE 6.6. Testing metrics

Effort (man/month)

OBK/Objy
OBK/OKS
OBK/MySQL 05

= Documentation: approximately 3 man/month were used in writing the OBK
requirements document [30], the OBK user’s guide [31] and the OBK test

116

6.3. Some metrics

report [43]. This time also includes the writing of the online documentation
(e.g. release notes) included in the Online Software’s web page [1].

The remaining time was used in maintenance of the package. This included tasks
such as bug fixing, integration with the release tools, preparation for scalability
tests and test beams and answering questions from the users.

TABLE 6.7. Achieved goals from the original lear ning contract

Documented
Code | Original objective Secondary (de facto) objective in
A Multiple readings about the data- Chapters 2
bases discipline and the concrete and 3
book-keeping problem.
B Research on solutions for similar Chapter 3
problems, tools and methodol ogies.
C OK S port of the book-keeper proto- Chapters 4
type. and 5, Appen-
dixesE and F
D Testing of the OKS prototype and Chapter 6,
comparison with the Objectivity/ Appendixes
DB one. C,Dand G
E Familiarization with the Condi- Familiarization with the MySQL
tionsDB tool. DBMS toal.
F Refinement of the requirements, Refinement of the requirements, Chapters 4
design and methodology used in design and methodology used in and 5, Appen-
the previous prototype. Condi- the previous prototype. MySQL dix F
tionsDB port of the OBK. port of the OBK.
G Evaluation of the new MySQL pro- Chapter 6,
totype. Appendixes
C,Dand G
H Comparison of all the developed Chapter 6,
prototypes and mapping of solu- AppendixesC
tiong/results within the previous and D
research.
| Evaluation of the database subject Chapters 6
in general and recommendation of and 7, Appen-
necessary resources for a produc- dixesCand D
tion OBK.

117

Evaluation of the practical work

6.4. Lessons learnt and practical recommendations

The next paragraphs address the conclusions that can be withrawn from the experi-
ence acquired while developing the OBK software. These conclusions are aso
(partly) mentioned in the second paper written in the context of this dissertation
[48] (appendix D) which was presented at the Very Large Databases (VLDB 2002)
conference which took place in Hong-Kong, China

Software Development Process

Following a clear software development process was a very useful and enriching
experience. As was mentioned in chapter 2, following the same set of guidelines
while building each prototype made clear where are the differences between the
three implementations. That was not the only advantage, as one can observe in
tables 6.5 and 6.6 that the effort diminished both in the design & implementation
and testing phases for the latter prototypes. The acquired experience along with the
previously written documentation and the automatization of certain tasks (e.g.
testware for the test and integration phases) lead to an increasing optimization of
the whol e process.

From a software engineering point of view this project provided a way of under-
standing in the field the benefits of a formalized approach to the development of
software, specialy in the case of large applications such as the Online Software
(~1 million LOC). The clear approach to phases that typically receive less atten-
tion (requirements, high level design, testing & integration and documentation
writing) simplified and helped to the delivery of a quality OBK product. Also, it
was well understood that the usage of auxiliary software engineering tools and

118

6.4. Lessons learnt and practical recommendations

templates (e.g. CVS, SRT, CMT, documentation templates) induces a clean and
effective software devel oping environment.

Technology

The necessity for integration of the various tools used while developing the OBK
package provided valuable experience in what concerns the construction of multi-
technological software.

< DBMS technology: the OO paradigm was found to be more flexible for map-
ping the OBK data than the relational one. In fact, while the database schemas
for the OBK/Objy and the OBK/OKS are quite natural and easily capture the
real-world entities the OBK stores, more trouble was found while using the
relational data model. OBK/MySQL’s schema (see 5.2.4.) is less intuitive than
the others due to the more rigid (tabular) data model approach. In particular, the
lack of collection types (e.g. arrays, lists) was felt.

Another plus for the OO DBMS approaches is the elegance of the code, as both
for the OBK/Objy and the OBK/OKS the close integration of the C++ language
with the data model yields code which is uniform, easy to design and to read. To
be mentioned also that if one takes into consideration the difference in function-
ality for the different implementations, the amount of code for the several proto-
types is similar (probably slightly less in the case of the OBK/MySQL).

On the other side, MySQL presents a very strong alternative in terms of perfor-
mance (see 6.1.2.2.). Relational databases are presently the dominating solu-
tions in the market due to the state of maturity of the technology. SQL engines
are very efficient, result of ~30 years of investigation and deployment;

- Evolution of the design: while within the context of an online system, a strong
requirement for the OBK is light weight in terms of processing and primary
memory usage. To fulfill this purpose the design evolved in terms of minimiz-
ing accesses to the database while keeping in memory the least possible amount
of data. In what concerns data retrieval, it was found that using caches for fre-
guently accessed data drastically reduced read times;

119

Evaluation of the practical work

e Useof XML: Inthe OBK/MySQL, XML strings were used to cope with the dif-
ficulty of storing collection types (parameters which vary in number), not avail-
able in the data model implemented by MySQL. Despite not being too elegant,
this technique seems to simplify storage of data during acquisition and could
even be used in conjunction with the OO prototypes to avoid the creation of too
many simple data objects;

« Tools: as was aready mentioned CVS, SRT and CMT contributed to a better
software developing environment. PHP was found to be avery flexible tool for
web development, specially if used in conjunction with MySQL. Perl [49] was
used mainly as “glue” between applications for tasks such as testing, integration
or database error recovery software.

I nteraction with users

Although it may seem a commonplace, it is important to state that a good and con-
stant interaction with the final users of the system being built yielded simpler and
faster development. In the OBK project this trend was particularly evident, given
that the interaction with the users grew as the project advanced in time. Enhanced
knowledge about the systems with which the OBK is connected to as well as
increasingly better interaction with the people working on those systems helped
putting the project under perspective.

In fact, while for the first prototype(s) the development was done based only the
first set of requirements stated in [29], for the latter ones the day-to-day and test-
beam feedback proved to be extremely valuable in understanding thoroughly the
problem at hand. This facilitated focusing on the aspects of the OBK which are
most relevant and the tuning of the usage of the software development process
accordingly. To be mentioned also that from this continuous interaction with the
users a formal open requirements document for the OBK [30] came to be.

The available means were used in order to ease communication between OBK
developers and users: meetings (live and by phone), email, visits to the testbeam
site, informal corridor talks, etc. As a result of this effort, at the time of the writing
of this dissertation the OBK package is being actively used by the following

120

6.4. Lessons learnt and practical recommendations

groups at and outside CERN: Tilecal subdetector people (CERN), Muon subdetec-
tor people (CERN), TDAQ Dataflow people (CERN) and Brookaven Lab. people
(USA).

121

Evaluation of the practical work

6.5. Summary

In order to assert the soundness of the OBK software, a set of functionality/error
recovery and performance/scalability tests was prepared and applied to the OBK.
While the functionality and error recovery tests provided the means of correcting
functionality bugs, the performance and scalability tests allowed a deep analysis of
the software both in terms of data acquisition and data retrieval. After analysis of
the results, it is possible to attribute the best overall performance to the OBK/
MySQL, which seemsto be in general faster and more stable than the other proto-
types. The OBK/OKS also presents good overall results and the OBK/Objy seems
to be the less optimal solution. In what concerns the connectivity with the other
Online Software components, it was observed that the processing times of the
OBK affect the IS and MRS components and should thus be kept as low as possi-
ble.

From 2000 until the time when this dissertation is being written, the OBK software
was deployed consecutively for two types of situations: large scale tests of the
Online Software or testbeams (tests involving real beam and parts of the ATLAS
detector). In what concerns the large scale tests, they involved deploying the
Online Software to control in asimulated environment an increasing amount of the
TDAQ (up to 210 machines). The OBK behaved correctly and created the log
books for the tests. The testbeams implied usage of the OBK in areal life situation,
to book-keep several parameters coming from all the TDAQ chain. Theinteraction
with the users yielded extremely valuable input and lead to uncover new require-
ments for the OBK.

The two years spent devel oping the OBK software were rich in lessonsin software
development. In terms of software engineering it became clear that a formalized
approach to software construction (defined software development process, usage
of auxiliary software engineering tools, good documentation) produces high qual-
ity software that is easily maintained and modified. In what concerns the technol-
ogy, it was found that while the OO paradigm (OBK/Objy and OBK/OKYS) ismore
expressive and yields more elegant design and code than the relational one. On the
other side, the relational engine used (MySQL) is very efficient in query process-

122

6.5. Summary

ing. Finally, despite being common knowledge, it is important to reestate that
strong and constant interaction with the software’s final users is extremely impor-
tant in order to produce software that is clearly designed and easy to use, as well as
to avoid development pitfalls hence accelerating the development.

123

Evaluation of the practical work

124

CHAPTER 7

Evaluation of the
rescarch

Chapter 7 concludes the present dissertation by evaluating the devel-
oped research work. The results which were presented in chapter 6
are matched and compared with the current directions of the database
community.

In section 7.1 considerations about adequate DBMS technology for
the OBK are formulated. These considerations take into account not
only the results presented in chapter 6, but also the knowledge and
insight acquired while attending conferences (CHEP and VLDB) and
reading specialized books and articles.

Section 7.2 describes some projects which can be considered scope-
related to the OBK.

Finally section 7.3 provides pointers towards work which, if devel-
oped, would provide interesting data to further the studies contained
in this dissertation.

125

Evaluation of the research

7.1. DBM Stechnology for the OBK

In the next paragraphs pointers towards a DBM S technology for the OBK are pro-
vided. They are divided into pointers coming from the developed work and point-
ers coming from the database community in order to facilitate the matching of the
two. A final recommendation is provided in the end.

7.1.1. Pointers from the devel oped work

< Aswas shown in chapter 6, the OBK prototype which was implemented using
MySQL proved to perform generally better than the OO prototypes. It actualy
seemed to work better than the OO prototypes “out of the box”, without any
major tuning;

= Although the OO data model is more complete and flexible than the relational
one, the data stored by the OBK is found not to be very complex. Using tech-
niques such as storing complex objects in XML strings the data can be easily
accommodated in arelationa schema;

= The usage of either in-house devel oped solutions or open source products seems
to be more adequate to the DAQ environment than commercial products.
Although CERN possesses licences for DBMS tools such as Objectivity/DB or
Oracle 9i, the usage of these DBMSs by ingtitutes outside CERN (without
licenses) is difficult.

7.1.2. Pointers from the database community

= Whilethereis still indecision within the physics community on whether to keep
on using pure OO DBMS products or to use relationa products with OO fea-
tures, the database community has already moved on and seemsto show little or
no interest in the pure OO paradigm for databases. L ooking back into the 1990s,
there was definitely a clear divergency from the relational paradigm. However,
the big players such as Oracle, IBM or Sybase were capable of incorporating

126

7.1. DBMS technology for the OBK

the features offered by OO DBMSs in their products, while keeping the power
of the already existing relational engines,

= Pure research on databases nowadays has as main concerns either traditional
topics (e.g. query optimization, indexing, tuning), or topics that derive from the
needs of e-business which seems to be a decisive factor in database evolution.
e-business imposes strong requirements on databases at the level of distribution,
responsiveness, security or recovery. More importantly than that, the massively
distributed system which is today’s web includes a myriad of devices which run
on different bandwidths, processing power and memory capabilities. Running
smoothly poses enormous problems of filtering, routing and generically manage
the data flow so that the entire system does not degrade. Putting part of the
intelligence in the data itself (self describing information) seems to be the way
to go in order to make the complexity manageable.
This being, the database research community is currently highly committed to
investigation in storing, querying and indexing XML data, which is thought to
be the enabling technology of the next Web revolution of data management
[50]. Other research issues such as security and privacy, self-tuning, technology
for web search engines, management of enterprise data, data mining or data
warehousing are also either related to or stem from the needs of e-commerce;

= Current research as explained in the previous point seems to take into consider-
ation that the foundation of the database field is the relational model [51].
Despite the fact that big database manufacturers offer OO featuresin their prod-
ucts, the underlying paradigm continues to be the relational one and the new
technology is being built on top of that.

7.1.3. Recommendations

From the discussion above, one can reach the conclusion that the DBMS tool
which will provide persistency services to the OBK should meet the following set
of criteria

= |t should implement either the relational or object/relational paradigm, asthisis
clearly the direction that the database community is taking and the most techno-

127

Evaluation of the research

logically advanced database products are either purely relational or object/rela-
tional. As was proven by the practical work, the relational data model is
sufficient to express the complexity of OBK’s data;

= A product developed outside CERN is preferable to an in-house solution. Until
the ATLAS experiment is running some years will still pass and the technology
which is being used now will undoubtedly present better performances. In order
to cope with this evolution it is easier to use an external DBM S package than to
maintain and develop a homegrown solution. This also makesit easier to follow
the generic direction of the database community and to adopt technology
upgrades that may appear;

< A light, fast and smple DBMS system is preferable given the soft real-time
characteristics of the OBK software. Heavy DBMSs may comport too many
features which are unnecessary for the OBK and may contribute to the slow-
down of the data acquisition;

= An open source product is preferable to a commercial one given that the OBK
software is to be distributed to several institutes which may not want to buy
licenses for commercial products.

128

7.2. Related work

7.2. Related work

Inside ATLAS two systems which are very close to the OBK are the Liquid

Argon® book-keeper [52] and the Tilecal? book-keeper [53]. Both of them store
run catalog data and use as underlying technologies PHP and MySQL.

Another interesting book-keeping tool being used in ATLAS, thistime for catal og-
ing and replication of distributed data, is the Magda project [54]. Magda is cur-
rently being used by the ATLAS’s Offline software systems in order to keep track
of event data generated in a simulation context. Technologies used include
MySQL, Perl, Java and C++.

Finally, although the spitfire project of the DataGrid Data Management Work
Package [55] is not a book-keeping tool on its own, it aims at providing middle-

ware for the integration of heterogeneous SQL based metadata® repositories. Spit-
fire’s purpose is to act as an intermediary between clients of metadata in very large
distributed systems. Underlying technologies include (among others) Java, XML
and MySQL as the default database backend.

1. A sub-detector of the ATLAS, specialized in observing certain characteristics of the physics events.
2. ldem.

3. OBK’s data can be characterized as metadata, as it is “data which makes data more accessible to the user”
[48].

129

Evaluation of the research

7.3. Future work

Given that time and other resources available for the present dissertation were lim-
ited, some of the work that could have led to deeper investigations and results was
identified but not developed. The following points describe what remains to be
done:

= Study on how the OBK prototypes scale in terms of storage of large quantities
of data (up to the terabyte order of magnitude);

= Study on how desirableit isto use Object/Relational featuresin an OBK proto-
type. This sort of study can be carried out by implementing an OBK which uses
Oracle 9i for persistency (Oracle 9i licenses are available at CERN);

= Study on the usage of the OQL query language in the case of Objectivity/DB
and of the OKS query API in the case of OKS to understand if these mecha-
nisms produce faster results than the direct manipulation of persistent objects.

130

7.4. Summary

7.4. Summary

While in chapter 6 conclusions about the practical work were laid out, the present
chapter matches those results with the current directions of the database field. The
practical investigation points to MySQL, an externally developed relationa
DBMS systems as the best of all the tested persistency systems. The database com-
munity seems to have always been sceptical about the OO paradigm - all the major
players in today’s database arena implement essentially relational engines and the
current research seems to take into consideration that the foundation for the data-
base field is the relational model. For this reason the recommendation of this dis-
sertation concerning DBMS resources for a production OBK focuses on a light,
fast, open source relational DBMS system. In what concerns future work, the most
important point is to understand how the several OBK prototypes scale to store
larger loads of data than the ones which were already tested.

131

Evaluation of the research

132

Glossary

133

Glossary

AMS - Advanced Multithreaded Server

API - Application Programming Interface
ATLAS- A Toroidal LHC ApparatuS

CASE - Computer Assisted Software Engineering
CERN - European Organization for Nuclear Research
DAQ - Data AcQuisition system

DBMS - Database Management System

DCS - Detector Control System

DDL - Data Definition Language

EF - Event Flow

HEP - High Energy Physics

HLT - High Level Trigger

HPSS - High Performance Storage System

IS - Information System

LHC - Large Hadron Collider

LVL1- Leve 1 Trigger

LVL2- Level 2 Trigger

MRS - Message Reporting System

134

MSS - Mass Storage System
OBK - Online Book-K eeper

OBK/Objy - Online Book-keeper prototype implemented using Objectivity/DB
for persistency

OBK/OKS - Online Book-keeper prototype implemented using OK S for persis-
tency

OBK/MySQL - Online Book-keeper prototype implemented using MySQL for
persistency

ODMG - Object Data Management Group

OKS - Object Kernel Support

OO - Object Oriented

OODBMS - Object Oriented Database Management System
ORDBMS - Object Relational Database Management System
ROD - Read Out Driver

TDAQ - Trigger and data acquisition system

UML - Universa Modelling Language

VLDB - Very Large Database

135

Glossary

136

References

137

References

[1] ATLAS’s Online Software home page: http://atlas-onlsw.web.cern.ch/Atlas-
onlsw

[2] ATLAS High-Level Triggers, DAQ and DCS - Technical Proposal. CERN,
2000

[3] Partitioning issues in DAQ/EF prototype -1 - D. Francis and T. Wildish,
CERN 1997 http://atddoc.cern.ch/Atlas/postscript/Note060.ps

[4] Object Databases in Practice - Mary E. S. Loomis and Akmal B. Chaudhri,
Prentice Hall, 1998

[5] OKS Documentation Set - Igor Soloviev, CERN 1998
http://atddoc.cern.ch/Atlas/postscript/Note033.ps

[6] Fundamentals of Database Systems - Ramez A. Elmasri and Shamkant B.
Navathe. Addison-Wesley, 1994.

[7] The UNIVAC 1100 in the Early 70s - George Gray.
URL.: http://www.cc.gatech.edu/gvu/people/randy.carpenter/folklore/vin4.html

[8] A General Purpose Programming System for Random Access Memories”,
C.W. Bachman et al, Proc FICC 26(1), AFIPS (Fall 1964)

[9] Hierarquical Database Model & IMS Concepts from University of Pittsburgh.
URL.: http://www.cs.pitt.edu/%7Echang/156/14hier.html

[10] A Relational Model of Data for Large Shared Data Banks - E. F. Codd. Com-
munications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387.

[11] Third-Generation Database System Manifesto - The Committee for Advanced
DBMS Function. Proceedings of the IFIP TC2 Conference on Object Oriented
Databases, 1990.

[12] ODMG-93: The Object Database Standard - Francois Bancilhon and Guy Fer-

138

ram. SIGMQOD, 1993.

[13] Advanced Database Techology and Design - Mario Piattini and Oscar Diaz.
Artech House, 2000.

[14] Building a Multi-Petabyte Database: The RD45 project at CERN - Jamie
Shiers. Object Databases in Practice, Prentice Hall 1998, pp. 164-176

[15] Jefferson Lab Mass Storage and File Replication Services - lan Bird et al. Pro-
ceedings of CHEP 2001, pp. 276-279

[16] The BaBar Experiment’s Distributed Computing Model - Dominique
Boutigny. Proceedings of CHEP 2001, pp. 280-283

[17] Object Persistency for HEP Data Using an Object-Relational Database - Mar-
cin Nowak et al. Proceedings of CHEP 2001, pp. 272-275

[18] The ROOT Object I/O System - Rene Brun and Fons Rademakers.
http://root.cern.ch/root/InputOutput.html

[19] Critical Database Technologies for High Energy Physics - David M. Malon
and Eduard N. May. Proceedings of the 23rd VLDB Conference in Athens,
Greece, 1997

[20] Design of the Run Bookkeeper System for the ATLAS DAQ prototype -1 -
Antonio Amorim and Helmut Wolters, CERN, 1997.
http://atddoc.cern.ch/Atlas/postscript/Note049.ps

[21] The OMG’s CORBA website - http://www.corba.org

[22] Inter-component communication in the the ATLAS DAQ back-end software -
Sergei Kolos, CERN, 1996. http://atddoc.cern.ch/Atlas/postscript/Note003.ps

[23] Inter Process Communication package - Serguei Kolos, CERN, 2001.
http://atddoc.cern.ch/Atlas/postscript/Note075.ps

139

References

[24] Applications of Corbain the Atlas prototype DAQ - Antonio Amorim et al,
10th |EEE Real Time Conference, Beaune, France, 1997

[25] Design of the Message Reporting System for the ATLAS DAQ prototype -1 -
Doris Burckhart, Mihai Caprini, Serguel Kolos and Zuxuan Quian, CERN, 1997.
http://atddoc.cern.ch/Atlas/postscript/Note032.ps

[26] Information Service for the ATLAS DAQ prototype -1 - Mihai Caprini,
Pierre-Yves Duval, Robert Jones and Serguel Kolos, CERN, 1997.
http://atddoc.cern.ch/Atlas/postscript/Note031.ps

[27] Design of the Configuration Databasesfor ATLAS DAQ prototype-1 - Robert
Jones, Michele Michelotto, Ashruf Patel and Igor Soloviev, CERN, 1997.
http://atddoc.cern.ch/Atlas/postscript/Note030.ps

[28] Data Acess Library for ATLAS DAQ prototype -1 Configuration Databases -
Igor Soloviev, CERN, 1997. http://atddoc.cern.ch/Atlas/postscript/Note054.ps

[29] Antonio Amorim and Helmut Wolters, “Requirements for the Run Book-
keeper system for the ATLAS DAQ prototype -1”, CERN, 1997.
http://atddoc.cern.ch/Atlas/DagSoft/document/URD_27.html

[30] A.Amorim, L.Lucio, L.Pedro, A.Ribeiro, H.Wolters, “Online Book-keeper
Requirements”, CERN, 2002.

[31] User’s Guide of the Online Book-keeper for the Atlas DAQ Online Software -
Levi Lucio, Antonio Amorim, Luis Pedro and Andre Ribeiro, CERN 2002
http://atddoc.cern.ch/Atlas/postscript/Note176.ps

[32] OBK/OKS API user’s Manual - Levi Lucio, CERN 2001
http://atddoc.cern.ch/Atlas/Notes/172/Notel72.pdf

[33] The C++ Standard Library - A Tutorial and Reference - Nicolai M. Josulttis.
Addison Wesley, 1999.

140

[34] C++ Primer - Stanley B. Lippman and Josee Lajoie. Addison Wesley, 1998.
[35] Objectivity Technical Overview - Objectivity, Inc..
[36] The PHP website - http://www.php.net

[37] UML for Database Design - Eric J. Naiburg and Robert A. Maksimchuk.
Addison Wesley, 2001.

[38] The MySQL homepage - http://www.mysgl.com

[39] The CV S homepage - http://www.cvshome.org

[40] The SRT homepage - http://atddoc.cern.ch/Atlas/DagSoft/sde

[41] The CMT homepage - http://www.lal.in2p3.fr/SI/CMT/CMT.htm

[42] Test Plan of the Online BookK eeper for the Atlas DAQ Prototype-1 - Antonio
Amorim, Levi Lucio, Luis Pedro and Andre Ribeiro, CERN 2002
http://atddoc.cern.ch/Atlas/postscript/Notel67.ps

[43] Test Report of the Online Book-keeper for the Atlas DAQ Online Software -
Levi Lucio, Antonio Amorim, Luis Pedro and Andre Ribeiro, CERN 2002
http://atddoc.cern.ch/Atlas/postscript/Notel77.ps

[44] Experience using different DBMSs in prototyping a Book-keeper for ATLAS’
DAQ software - L.Lucio, N.Parrington, A.Amorim, R.Jones, L.Mapelli, L.Pedro,

141

References

A.Ribeiro et al. Proceeding of CHEP (Computing in High Energy Physics) confer-
ence, Beljing 2001, pp. 248-251.

[45] OBK - An Online Book-keeper for High Energy Physics Experiments - Andre
Ribeiro. Master dissertation dissertation, Faculdade de Ciencias de Lisboa, 2002,
pp. 95.

[46] Scalability and Performance Integration Test Plan of the Online Software of
ATLAS, CERN 2000. http://atddoc.cern.ch/Atlas/postscript/Notel63.ps

[47] Systems Integration and Deployment in Test Beams and Large Scale Tests -
Online Software team, CERN 2002.

[48] OBK - An Online High Energy Physics’ Meta-Data Repository - L.Lucio,
N.Parrington, R.Jones, L.Pedro, A.Amorim, L.Mapelli, A.Ribeiro et al. Proceed-

142

ings of the 28th VLDB (Very Large Databases) conference, Hong Kong 2002, pp.
920-927.

[49] Programacao em Perl (Programming Perl) - L.Lucio and Vasco Amaral. FCA
Portugal, 2001.

[50] Data Routing Rather than Databases: The Meaning of the Next Wave of the
Web Revolution to Data Management - Adam Bosworth. Proceedings of the 28th
VLDB (Very Large Databases) conference, Hong Kong 2002, pp. 3.

[51] Foundation Matters - C.J. Date. Proceedings of the 28th VLDB (Very Large
Databases) conference, Hong Kong 2002, pp. 4-5.

[52] ATLAS Tile Calorimeter Run Information Database - Igor Solovianov.
http://tileinfo.web.cern.ch/tileinfo/runinfo.php

[53] Bookkeeping Database Search Interfaces - Solveig Albrand and Jerome
Fulachier. http://largbookkeeping.in2p3.fr

[54] Magda - Manager for Grid-based data - Torre Wenaus.
http://atlassw1.phy.bnl.gov/magda/info

[55] Grid Enabled Relational Database Middleware - Wolfgang Hoschek and
Gavin McCance. Presented at the Global Grid Forum, Frascati, Italy.

143

References

144

APPENDIX A List of binaries, libraries
and scripts for each
OBK prototype

145

A.1. OBK/Objy

Available binaries:

obk _daq (C++ application)

= obk_dump (C++ application)

« obk_offline_comment (C++ application)
= obk_online_comment (C++ application)

- obk_delete run (C++ application)

Synopsis:

obk_daq

obk_daq -p partition-nane [-M MRS-subscri be-expression]
[-n server-nane] [-1 |S-subscribe-expression]
[-S Confdb-schenma-file] [-D Confdb-data-file]

Opt i ons/ Argunent s:

-p partition-nane partition name

-M MRS-subscri be-expression MRS subscribe expression.

-n server-nane list of IS servers.

-1 IS-subscri be-expression list of IS informations subscribe
expr essi on.

-S Confdb-schema-file Configuration databases schema file.

-D Confdb-data-file Configuration databases data file.

Descri ption:

This programstores, in an Cbjectivity database, subscribed MRS mes-
sages, |Sinformations, and the configuration databases. Default MRS

subscri be-expression is ALL.
The nunber of 1S subscribe-expression has to match the nunber of
servers.

146

A.1. OBK/Objy

obk_dump
obk_dunp [-p partition-name] [-R run-nunber] [-F]

Opti ons/ Argunent s:
-p partition-name partition nane

-R run- nunmber run nunber
-F turn on “php” formated output
Description:

This program dumps the contents of the database. With no arguments,
lists the partitions in the database.

obk offline comment

obk_offline_comment -p partition-name

Opti ons/ Argunent s:
-p partition-name partition name

Description:
This program stores, in an Objectivity database, comments to runs.

obk online comment

obk_online_comment -p partition-name

Opti ons/ Argunment s:
-p partition-name partition name

Description:
Send MRS messages to be collected by obk daqg.

obk delete run

obk_delete_run -p partition-name

Opti ons/ Argunent s:
-p partition-name partition name

Description:
This program deletes the selected run and associated sub-runs.

147

A.2. OBK/OKS

Available binaries and scripts:

obk_daqg_oks (C++ application)

obk _dump_oks (C++ application)
obk_offline_comment_oks (C++ application)
obk_online_comment_oks (C++ application)
obk_delete_oks (C++ application)
obk_rebuild_header oks (Perl script)

obk_release lock oks (C++ application)

Availablelibraries:

libobkqueryoks.so (C++ dinamic library)

148

A.2. OBK/OKS

Synopsis:
obk_dag oks (same as obk_daq)

obk_dump_oks (same as obk_dump)

obk_online_comment_oks (same as obk_daq)

obk_offline_comment_oks (same as obk_daq)

obk_delete lock_oks (same as obk_daq)

obk rebuild header oks.pl

perl obk_rebuil d_header_oks. pl |ocation_of_schena_file
| ocati on_of federation

Opti ons/ Argunent s:
location of OBK/OKS’s schema file
location of the federation

Description:
Rebuilds the header file “partition.data” for a given federation.

obk release lock oks

obk_release_lock_oks -p partition-name

Opti ons/ Argunent s:
-p partition-name partition name

Description:
This program releases a lock on a database partition that has been
left incorrectly locked after processing.

149

A.3. OBK/MySQL

Available binaries:

= obk_dagq my (C++ application)

Synopsis:

obk_dag my (same asobk_daq)

150

	Studies on online book- keeping for the ATLAS experiment
	Table of contents

	CHAPTER 1 Introduction
	1.1. Overview
	1.1.1. The physics
	1.1.2. The machinery
	FIGURE 1.1.� LHC aerial view
	FIGURE 1.2.� The ATLAS detector

	1.1.3. The triggers and data acquisition system
	1.1.4. Offline computing

	1.2. MSc program objectives
	1.3. Dissertation’s structure
	1.4. Summary

	CHAPTER 2 Scope of the problem
	2.1. High Level Requirements
	FIGURE 2.1.� Online Software and other Trigger-DAQ systems
	FIGURE 2.2.� Online Software’s internal structure

	2.2. Previous Investigation
	2.2.1. Use of OO
	2.2.2. Objectivity/DB experience

	2.3. Structure of the problem
	2.3.1. Research into DBMS
	2.3.2. Software developing environment and process
	2.3.3. Evaluation

	2.4. Summary

	CHAPTER 3 Databases (in High Energy Physics)
	3.1. Database concepts
	3.1.1. Database principles
	3.1.2. Database technology evolution
	3.1.3. Current picture

	3.2. Databases and HEP
	3.2.1. Some history
	3.2.2. Current trends
	3.2.3. Current problems

	3.3. Summary

	CHAPTER 4 Physics’ metadata gathering for ATLAS’ Online Software
	4.1. The Online Software from the OBK’s viewpoint
	FIGURE 4.1.� Dependencies between the OBK and the Online Software
	4.1.1. Communication infrastructure
	4.1.1.1. MRS
	4.1.1.2. IS
	4.1.2. Configuration Databases

	4.2. The OBK as an Online Software component
	4.2.1. Requirements
	4.2.1.1. Use Cases
	4.2.1.2. Assumptions and Dependencies
	4.2.1.3. Constraints
	4.2.2. Conceptual view of the OBK system
	FIGURE 4.2.� Generic OBK architecture

	4.3. Summary

	CHAPTER 5 The OBK software
	5.1. The OBK from the user’s viewpoint
	5.1.1. Data Acquisition
	5.1.1.1. Logical structure of the OBK database
	FIGURE 5.1.� Logical structure of the OBK database
	TABLE 5.1. Runs and Slow Control Runs
	FIGURE 5.2.� Logical view on a possible run sequence

	5.1.1.2. Operating system environment
	TABLE 5.2. Environment variables for the OBK/OBJY
	TABLE 5.3. Environment variables for the OBK/OKS
	TABLE 5.4. Environment variables for the OBK/MySQL

	5.1.1.3. Starting and stopping the acquisition

	EXAMPLE 5.1.
	EXAMPLE 5.2.
	EXAMPLE 5.3.
	EXAMPLE 5.4.
	5.1.1.4. Annotating book-kept data

	EXAMPLE 5.5.
	FIGURE 5.3.� Selecting a run to add a comment to
	FIGURE 5.4.� Adding the comment
	5.1.2. Data browsing
	5.1.2.1. Command line utilities

	EXAMPLE 5.6.
	5.1.2.2. Web-based browser
	FIGURE 5.5.� OBK/OKS web-based browser - Displaying run summary information

	5.1.2.3. C++ query library
	TABLE 5.5. OBK query library methods
	5.1.3. Utilities
	FIGURE 5.6.� Definition of names of IS objects to be read at start of a run

	5.1.4. Available functionality per prototype
	TABLE 5.6. Functionality per prototype

	5.2. Implementation issues
	5.2.1. Languages and tools
	5.2.2. Objectivity/DB prototype
	FIGURE 5.7.� Mapping of OBK’s data model into Objectivity/DB’s data model
	FIGURE 5.8.� Persistent class structure for the OBK/Objy (UML)
	1. Creation (by hand, using Objectivity/DB tools) of a federated database;
	2. Definition of the data model (persistent classes) by writing extended C++ header files contain...
	3. Processing of the data files defined in step 2 using the ooddlx processor provided by Objectiv...
	4. Implementation of the user defined methods to manipulate the data in the persistent classes an...
	5. Compilation of the hand-written and Objectivity/DB generated implementation files and linking ...

	EXAMPLE 5.7. Definition of the Run persistent class using the Objectivity/C++ DDL
	FIGURE 5.9.� Transient class structure for the OBK/Objy (UML)
	5.2.2.1. Web browser implementation
	FIGURE 5.10.� OBK/Objy’s web-based browser topology

	5.2.2.2. OBK/Objy Specificities
	5.2.3. OKS prototype
	FIGURE 5.11.� Mapping of OBK’s data model into OKS’s data model
	FIGURE 5.12.� Persistent class structure for the OBK/OKS (UML)

	EXAMPLE 5.8. Definition of the Run persistent class using OKS
	EXAMPLE 5.9. Creation and usage of OKS objects
	FIGURE 5.13.� Transient class structure for the OBK/OKS (UML)
	5.2.3.1. Web browser implementation
	5.2.3.2. OBK/OKS specificities
	5.2.4. MySQL prototype
	FIGURE 5.14.� Relational data model for the OBK/MySQL

	EXAMPLE 5.10. Example of usage of the MySQL C API
	FIGURE 5.15.� Transient class structure for the OBK/MySQL
	5.2.4.1. Web browser implementation
	5.2.4.2. OBK/MySQL specificities
	5.2.5. Supported platforms

	5.3. Summary

	CHAPTER 6 Evaluation of the practical work
	6.1. Test and integration phase results
	6.1.1. Functionality and error recovery tests
	1. check if the OBK correctly connects to all the specified sources of data;
	2. check if OBK archives all the MRS and IS messages received as well as the selected information...
	3. check if OBK properly stores information on abnormal end of run;
	4. check if OBK properly stores operator’s comments;
	5. check OBK behavior when can’t establish connection to the database server;
	6. check OBK behavior if looses the connection to the database server;
	7. check OBK behavior when an existing run number is given;
	8. check OBK behavior when trying to use an invalid MRS/IS server;
	9. check OBK behavior when a MRS/IS server crash;
	10. check OBK behavior if more than one obk acquisition process is started (in the same and in di...

	6.1.2. Performance and scalability tests
	6.1.2.1. Test definition
	1. Calculate the mean time to store typical MRS messages;
	2. Calculate the mean time to store typical IS informations;
	3. Calculate the mean time to store the selected information from the configuration databases;
	4. Test the behavior of OBK’s data acquisition application with concurrent access from multiple I...
	5. Calculate the disk space required to store a predefined amount of book-keeping data.
	6. Calculate the mean time to retrieve all the information about a particular run;
	7. Calculate the mean time to select all the runs that fulfill a given criteria (explained later);

	6.1.2.2. Test results
	FIGURE 6.1.� Test 1 results - time to store an MRS Start of Run message
	FIGURE 6.2.� Test 2 results - time to store a typical IS message
	FIGURE 6.3.� Test 3 - time to store an MRS Start of Run message + config. data
	TABLE 6.1. Test 4 - concurrent access from multiple IS servers + 1 MRS server
	TABLE 6.2. Test 5 - disk space required to store a sample OBK database (1000 runs)
	TABLE 6.3. Test 6 - time to retrieve all the information about a single run
	TABLE 6.4. Test 7 - time to select all the runs that fulfill a given criteria

	6.1.2.3. Test results discussion
	6.1.3. Connectivity to other Online Software components

	6.2. Deployment
	6.2.1. Large scale tests (of the Online Software)
	6.2.2. Testbeams

	6.3. Some metrics
	TABLE 6.5. Design and implementation metrics
	TABLE 6.6. Testing metrics
	TABLE 6.7. Achieved goals from the original learning contract

	6.4. Lessons learnt and practical recommendations
	6.5. Summary

	CHAPTER 7 Evaluation of the research
	7.1. DBMS technology for the OBK
	7.1.1. Pointers from the developed work
	7.1.2. Pointers from the database community
	7.1.3. Recommendations

	7.2. Related work
	7.3. Future work
	7.4. Summary

	Glossary
	References
	APPENDIX A List of binaries, libraries and scripts for each OBK prototype
	A.1. OBK/Objy
	A.2. OBK/OKS
	A.3. OBK/MySQL

