
Analysis of Model Transformations Workshop Summary

Jürgen Dingel
Queen’s University

Kingston, ON, Canada
dingel@cs.queensu.ca

Levi Lúcio
McGill University

Montreal, QC, Canada
levi@cs.mcgill.ca

Hans Vangheluwe
McGill University and
University of Antwerp

Montreal, QC, Canada and
Antwerp, Belgium

hv@cs.mcgill.ca
Dániel Varró

Budapest University of
Technology and Economics

Budapest, Hungary
varro@mit.bme.hu

1. INTRODUCTION
To facilitate the processing and manipulation of models,

a lot of research has gone into developing languages, stan-
dards, and tools to support model transformations – a quick
search on the internet produces more than 30 different trans-
formation languages that have been proposed in the liter-
ature or implemented in open-source or commercial tools.
The growing adoption of these languages and the growing
size and complexity of the model transformations developed
require a better understanding of how all activities in the
model transformation lifecycle can be better supported.

The AMT (Analysis of Model Transformations) workshop
aims to address this issue by providing a forum in which
the analysis of model transformations to support the devel-
opment, quality assurance, maintenance, and evolution of
model transformations is studied. The adoption of existing
analysis techniques and tools developed, e.g., in the context
of general-purpose programming languages and source code
transformation are of particular interest, but also the identi-
fication of analysis challenges and solutions specific to model
transformations or certain classes of model transformation
languages.

This year we organised the first edition of AMT, hav-
ing accepted 8 papers by authors from 12 countries. The
program was organised in three sessions, namely: intents
of model transformations and model transformation chains;
model transformation testing and debugging ; and quality of
model transformations. In an additional session Dániel Varró
discussed the certification of model transformations.

The last one and a half hours of the workshop were ded-
icated to the discussion of topics of interest to the audi-
ence. Four main topics were identified: the relation between
the analysis of model transformations and program verifica-
tion; the debugging of model transformations; requirements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AMT ’12, Oct 01 - October 05 2012, Innsbruck, Austria
Copyright 2012 ACM 978-1-4503-1803-7/12/10 ...$15.00.

for model transformations; and finally the certification of
model transformations. The audience and workshop organ-
isers formed four groups to discuss these topics, each group
being composed of three to five members. In the remaining
of this document we present the conclusions reached by each
of those groups.

2. THE RELATION BETWEEN THE ANAL-
YSIS OF MODEL TRANSFORMATIONS
AND PROGRAM VERIFICATION

The first question raised during the discussion concerned
the applicability of program verification methods to the anal-
ysis of model transformations. A first informed opinion from
the members of the group was that the analysis of model
transformations cannot in general reuse program verifica-
tion techniques. This is due to the fact that the analysis
of model transformations is typically (but not exclusively)
concerned with properties of the relations between those
transformations’ input and output models, whereas program
verification is rather concerned (but not exclusively) with
properties of those programs’ executions (e.g. that certain
execution conditions are never violated or that hey are al-
ways reached). As such, and given the difference between
the relational and imperative computing paradigms used re-
spectively in model transformations and programs it seems
that: albeit some program verification techniques may be
reused for the analysis of model transformations, specific
techniques for the analysis of model transformations must
be developed.

Given that a member of the discussion group works for
Microsoft Research, the discussion diverged slightly on how
the analysis of model transformation can help in the cer-
tification of software. It is the case that in current de-
velopment practices at Microsoft Research certain data (or
model) translators are implemented using simple rewriting
rules. Because such rules can be seen as model transforma-
tions, the analysis of model transformations might be used
to certify those parts in a software development process.
There are seemingly many such opportunities of applying
simple model transformation analysis techniques to parts
of software development practices. This might mean that
model transformation analysis techniques might contribute

in a non intrusive way to the certification of the software
currently being built. It was also mentioned that software
engineers should be the ones to identify the usefulness of
such approaches within their software development work.

3. DEBUGGING OF MODEL TRANSFOR-
MATIONS

When debugging a model transformation, we can distin-
guish between debugging the model transformation itself
and debugging its derived artifacts such as the generated
code. In general, debugging a model transformation is eas-
ier if the model transformation specification is interpreted
directly. There are several analogies between debugging pro-
grams and model transformations:

• Inspecting/modifying a program state: the state of an
model is probably more complex than the state of a
program. In particular, in a model transformation
models and graphs are used, rather than plain vari-
ables. However, it would seem that the general debug-
ging principle remains the same;

• Stepwise execution: the main question regarding step-
wise execution is how fine-grained a single step is. Un-
like in debugging programs, we are not interested in
single lines of code but rather in, for example, match-
ing an element, creating/deleting an element, or per-
forming an action on the level of the control flow of
the model transformation;

• Breakpoint: the first question regarding breakpoints
is: where can a breakpoint can be attached in a model
transformation? If we consider a breakpoint attached
to a model transformation rule, that might mean the
execution should be paused when any of the compo-
nents of a rule is executed (e.g. the match rule compo-
nent, the apply rule component, the application con-
dition rule component). On the other hand, applying
breakpoints to elements of operational model transfor-
mation languages (such as Kermeta [1]) is probably
more straightforward. It is also imaginable to spec-
ify breakpoints without locations but with a condition
that triggers the breakpoint, when the condition is sat-
isfied.

4. REQUIREMENTS FOR MODEL TRANS-
FORMATIONS

The discussion centered on the notion of “intent” of a
model transformation. This notion was presented at the
workshop as a description of the goal behind the model trans-
formation and the reason for using it. The group observed
that the idea of “intent”, is more related to ”early require-
ments” or ”goals” in ”goal-oriented” software engineering,
than to (formal) requirements specifications. The differ-
entiator is the fact that it is a human/developer who has
the intent, whereas specifications seem to be related to ar-
tifacts. In light of this, a look at the literature on early
requirements and goal-oriented requirements engineering to
see where model transformation intents fit in seems war-
ranted. The group then further observed that each model
transformation serving a particular intent typically is only
a single step in principle bringing the developer closer to a

bigger goal. In that sense, choosing model transformations
based on intents and goals is akin to an AI planning activity.

5. CERTIFICATION
The certification of model transformation is necessitated

when such transformations are used in critical applications.
Recently, the output model derived by an automated model
transformation developed at TU Berlin was certified as part
of a collaborative project, and now it is deployed on a satel-
lite. Certification of a transformation requires to develop
justified evidence that the transformation is free of flaws.
This frequently involves the combined use of extensive and
systematic testing activities and formal methods for the anal-
ysis of transformations. Another important aspect is to
guarantee end-to-end traceability between the different de-
sign artifacts (high-level requirements, low-level requirements,
software architecture, source code). Certification aspects of
model transformations are being investigated in depth in
the CERTIMOT project. Since certification is a complex
and time consuming activity, a possible way to proceed is as
follows:

• Step 1: certify output models derived by model trans-
formations

• Step 2: certify the use of standalone model transfor-
mation programs (plugins) for a given source model

• Step 3: certify standalone model transformation pro-
grams for any source model

• Step 4: qualification of the code generator for the
transformation plugins

The main conclusion the discussions on this topic was that,
instead of addressing the full qualification of a complex model
transformation engine, first it can be advantageous to ad-
dress the certification of individual (standalone) transforma-
tion programs derived from a specific set of transformation
rules.

6. CONCLUSION
The field of analysis of model transformations is in its

infancy. However, because of the capability model trans-
formations have to abstractly define complex computations
while dealing with domain specificity, explicit model trans-
formations have a role to play in modern software develop-
ment. If sometimes the computational abstraction granted
by model transformation languages allows classical reason-
ing mechanisms to be applied to model transformations anal-
ysis, the richness and diversity of model transformations
poses new interesting challenges when compared to program
or model verification. AMT has attracted a considerable
amount of attention in its first edition, both from established
researchers in the field and from the MoDELS audience. As
described in the AMT’s group discussion conclusions, the
research challenges in the area are varied and scientifically
challenging. We expect they should be intensively tackled
in the coming years.

Acknowledgements
We wish to thank all the participants in the group discus-
sions for their ideas that shaped this summary: Moussa
Amrani, Fabian Büttner, Ethan Jackson, Eugene Syriani,
Claudia Ermel, Stephan Hildebrandt . . .

7. REFERENCES
[1] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving

Executability into Object-Oriented Meta-Languages. In
MoDELS, pages 264–278, 2005.

