Experienceusing different DBM Ssin prototyping a
Book-keeper for ATLAS DAQ software

|.Alexandrov', V. Amaral’, A AmorinY, E.Badescu®, D.Burckhart-Chromek’, M.Caprini’, M.Dobson’,
R.Hart’, RJones', AKazarov*’, SKolos", V.Kotov', D.Liko', L.Lucio**’, L.Mapelli*, M.MineeV',
L.Moneta®, M.Nassiakou®, N.Parrington’, L.Pedro’, A.Ribeiro’, Yu.RyaboV’, D.Schweiger®, |.Soloviev*®

1) Joint Ingtitute for Nuclea Reseach, Dubrg, Russa

2) FCUL (ScienceUniversity of Lisbon), Lisbon, Portugal

3) Institute of Atomic Physics, Bucharest, Romania

4) European Organizaion for Nuclea Reseach (CERN), Geneva, Switzerland

5) National Institute for Nuclea Physics and High Energy Physics (NIKHEF), Amsterdam, Netherlands
6) Physics Sedion, University of Geneva, Geneva, Switzerland

7) Sunderland University, Sunderland, England

8) Petersburg Nuclea Physics Institute (PNPI), Gatchina, St. Petersburg, Russa

9) Onleaefrom8.

Abstract

The Online Book-keegper (OBK) was developed to keep tradk of past data taking adivity, as well as
providing the hardware and software anditions during physics data taking to the scientists doing
offline analysis. The gproach adopted to build the OBK was to develop a series of prototypes,
experimenting and comparing different DBMS systems for data storage. In this paper we describe the
implemented prototypes, analyse their diff erent charaderistics and present the results obtained using a
common set of tests.

Keywords: Online Book-keeper, ATLAS, Trigger/DAQ, ODBMS, RDBMS, Online Databases
1. Introduction

The Online Software in the ATLAS experiment [1] is the “glue” for al the other sub-systems of
Trigger/DAQ in this LHC's detedor, since it monitors/supervises al of their adivity. It includes the
OBK component that archives the data to be kept from the antrol of the online system and the
information about the data recorded to permanent storage, storing information about ead run that
occurs. This information includes a seledion of the messges pased between the Online Software
components. The Online Software amponents may communicae via the Message Reporting System
(MRS) and via the Information System (1S). Both MRS and IS provide asubscription mecdanism that
isused by the OBK to accessand store messages onli ne whil e they are being interchanged.

Besides the online data taking application, the OBK aso makes avail able offline data retrieval todls.
Users are provided with a Web-based data browser and a C++ APl (Applicaion Programming
Interface, which is used to accessthe data olleded in present and past ATLAS test beams.

2. Implementation

We developed several implementations of the OBK [2], based on different DBMS systems
(Objedivity/DB [3] , OKS[4] and MySQL [5]). The am was to study their different charaderistics,
evolving the design from prototype to prototype, and providing different solutions that could be used
in different Online Software environments. For example, the Objedivity/DB based solution requires a
commercial licence while the OKS and MySQL implementations can be generally used. We
attempted to use asimilar structure for al i mplementations but variations in the fadliti es for schema
definition, programming API' s and data dustering option, resulted in substantial differences in the
prototypes.

2.1. Generic architecure

All the OBK prototypes implement a data aquisition applicaion “obk_dag” (see Fig. 1) that
subscribes to relevant MRS and IS servers in order to receve the MRS/IS messages exchanged
between components via CORBA/IIOP [6] cdlbadks. It then stores these messages associated with
each run. The information includes when did the run start and end, if it was succes<ul, what were the
basic physics parameters, etc. This sledion and organization involves a significaive anount of logic
that has to be resolved without disturbing other Onli ne Software components.

The stored data is then made avail able offline to users by means of a Web-based browser or a C++
APIl. The Web browser enables the user to go through different levels of abstradion of the data
(Partition/Run-Header/Messages) and to visuaizeit in HTML tables. The data extradion for the web
is acomplished using a C++ application “obk _dump” that outputs ASCIl data to PHP scripts for
HTML generation. The possbhility of using URL links to navigate between different levels of
abstradion makes the browser useful for quick seaches.

The C++ API on the other side provides a much more detail ed interfaceto the data, making it posshble
for an applicaion, for example, to seach for instances of a particular 1S class parameter or to cycle
throughall the run headersin a partiti on.

obk_dxq

Figure 0 - OBK'sgeneric architedure

2.2. Implemented prototypes

The OBK component of the online software is an interfaceto the offline analysis environment and is
embedded in the TDAQ distributed system. It provides a laboratory to test the use of different
Database Management Systems that are candidate to general solutions for the HEP community. The
Objedivity and OKS prototypes are using the ATLAS standard dffline and online database solutions.
A third prototype was build using an Open Source solution to evaluate the use of the common
functionality of the relational database systems.

2.2.1. Prototype based on Objedivity/DB

The Objedivity based prototype was the first to be developed as it uses the DBMS chosen inside the
ATLAS Sftware for long-term data management. The Objedivity/DB databases for OBK are stored
centrally in database server and accessble by means of an AMS (Advanced Multithreaded Server)
daemon running on the server machine. The gproach for storing bodk-keeping data in Objedivity/DB
was to “bre&” the messages in pieces and store them in as®ociated but distinct persistent objeds (e.g.
eat IS messge parameter is gored in a different objed). The online partitions are mapped to
different databases and runs are asociated to containers.

2.2.2. Prototype based on OK S

The second OBK prototype to be implemented uses OKS as a persistency system. OKS is a light-
weight C++ based in-memory persistent objed manager developed as a padckage within the Online
Software framework. It is primarily used within the Online Software for managing the @nfiguration
databases. The fad that it is Open Source software, avoids the problems related with licensing faced
with Objedivity. Also some of the alvantages of the OKS approac are that this DBMS is lighter and

more oriented for red-time processng than Objedivity. The disadvantages are that it is not afull scde
DBMS and doesn't feaure dl the functionaliti es, such as suppart for transadions. Another interesting
point of the OKS approach is that the data can be stored in XML format, therefore making it human
readable and highly portable. Given that OKS is also an Objed Oriented DBMS, the persistent objed
schema foll ows the one implemented for the Objedivity version.

2.2.3. Prototype based on MySQL

The most recent implementation of the OBK prototype uses the MySQL Open Source DBMS.
MySQL is a relational database system as oppased to the Objed Oriented model used before. The
mapping of the OBK in MySQL took some rethinking of the interface with the DBMS, that was
changed considerably to be etirely SQL based. We have adieved a mapping between an OO and a
relational database schemathat was siitable for the OBK nedds.

2.3. Design and implementation experience

While designing and implementing the various prototypes we discovered bah positive and negative
aspeds of ead of the DBMS and could appreciate some of the benefits/disadvantages of usingan OO
or arelational approach. Using Objedivity/DB and OKS benefited from a natural integration of the
applicaion code with the objed database system. The schema medanisms of both DBMS are
powerful and flexible, and allow a dired mapping of application objeds with the database objeds.
What was found less attradive was the complexity of the mde involved, as well as the difficulty to
tune DBMS accesses. The code is very dependent of the spedfic objed database implementations.
While the Objedivity based prototype does not cluster together the run summary information but
spreads it over al the run containers, the OKS prototype defines a spedal XML file antaining the run
summary information for al runs. This overcomes the need to parse many XML files to seled runs
based on certain properties. The results presented are pasitively influenced by this optimisation.

The alvantages of using MySQL are that it is very easy to develop a database gplicaion — easy to
define the schema, easy to make SQL queries — and the @de quantity/complexity involved in
implementing the queries was much reduced.

We found less flexibility in mapping the software objeds to the database schema provided by the
relational model. This was partially overcome by storing complex objeds in “XML like” format as
strings in the database. All the parameters that are foreseen to be used in seledion criteria were made
explicitly available astable dtributes. Thisis also influencing the resultsin a positi ve fashion.

3. Test Procedure

RC_START MRS Message
To evauate the performance of the different Transaction

0,25 committed in case

prototypes we have defined a set of tests that o ofObjectivity
cover both storing the information in the OBK 02 e
databases and performing analysis queries. The oo, B /)

— 0,15 1 oor R B5 O Objectivity

considered examples either retrieve the e = A D

Time (s)
a
=]
5]
[u]
[}
0|
[m}
a

information in one run (Query 1) or seleds a set 00 oo gmmie B e 5. e @SS | o MysoL

of runs with a given criteria, fulfilled by 5% of e o R R S R

the runs (Query 2). The tests for the three OBK B N NCT Ao

prototypes were performed using PlIl PC client T XIS TS 11T

and server machines running Linux The 0 50 oo 150 200 250
databases were populated with 1000 Run's for NumberofRun

ead prototype. Figure 2 - The time taken to store and processthe start of run

MRS Message.

4. Results

The time taken to store and processthe start of run MRS Message is presented in Fig. 2. The start of
run is used to creae the containment for the new run and setting the gpropriate variables. The
Objedivity and OKS prototypes dow an increase of the storing time with successve runs. In the
Objedivity case thistrend can be overcome by committi ng the transadion.

The Table 1 presents the necessary disk space and shows the average query time for queries
performed diredly in the database server machine and remotely using a diff erent computer.

Space Elapsed Time (s) User + system Time (s)
in Query 1- Query 2- Query 1- Query 2-
Mbytes Loc./Rem Loc./Rem Loc./Rem Loc./Rem
Objedivity 634 0.13 094 | 1813 | 11608 0.12 0.12| 874 8.7
OKS 3.7 0.38 142 0.35 118 0.38 142 | 034 118
MySQL 11 0.39 0.70 0.02 0.08 0.03 0.07| 0.02 0.05

Table 1: The spacerequired in Mbytes and the average query time in seaonds for diff erent prototypes
for a sample database of 1000runs.

5. Conclusions

The ATLAS OBK was used to perform a cmparative study of different DBMS solutions. The
performance results can be seen as favourable to the MySQL prototype and less optimal for the
Objedivity solution. One must however take into acount that the queries performed benefited from
the fad that no iteration was required through the alledions of XML fileg/strings snce they were
made available in MySQL table atributes or in the OKS run summary file. The rather large remote
accesstime for the query 2 in Objedivity can be seen as resulting from downloading information from
al run containers through the network. Implementation of the query using predicae queries and
indexed parameters samed not to improve the situation. In contrast, browsing a single container for
the query 1 is very fast for this objed database, espedally taking into acount that it is the only
prototype to implement transadions for database processng. Another relevant point is the big storage
spacerequired by Objedivity, as oppcsed to that required by OKS and MySQL. We interpret this
difference & being the overheal introduced by all the extra functionality and scdability posshiliti es
avail able in Objedivity, at least in what concerns the OKS DBMS.

The OBK is work in progress We plan in the long term to be ale to test al the prototypes more
thoroughy and in heavier memory/disk usage situations, in order to better chedk their scdability
possbiliti es.

6. Acknowledgements

We would like to thank Beniamino Di Girolamo for his useful comments and RD Schaffer for his help
in the Objedivity implementation.

7. References

1. “ATLASHighLevel Trigger, DAQ and DCS Technicd Proposal”, CERN/LHCC/200017

2. “Design of the Run Bookkegper System for the ATLAS DAQ prototype—1", A. Amorim,
H.Wolters, 1997 Seehttp://atddac.cern.ch/Atlas/Notes/04YNote049-1.html

3. Objedivity home page, seehttp://www.objedivity.com

4. "OKSUser'sguide”, I. Soloviev. Seehttp://atddoc.cern.ch/Atlas/Notes/033Wel come.html

5

6

MySQL home page, seehttp://www.mysgl.com
“Use of CORBA inthe ATLAS DAQ Prototype”, A. Amorim et al., IEEE Transadions on
Nuclea Science, vol.45, No 4, August 1998

