
Formalizing EARS – First Impressions
Levi Lúcio, Tahira Iqbal

fortiss GmbH
Guerickestrasse 25
Munich, Germany

{lucio, iqbal}@fortiss.org

Abstract—The Easy Approach to Requirements Specification
(EARS) has been designed primarily as a set of templates to
assist requirements engineers in writing software requirements
that are clear and understandable. Its target are thus require-
ments engineers, software architects and developers. Due to the
minimalistic nature of the English sentences that make up an
EARS specification, it is reasonable to expect that automated
tasks can be performed on EARS specification, among which
verification and code synthesis. Given English cannot be directly
understood by machines without some degree of ambiguity, EARS
requirements can only by automatically processed if they are
translated in advance into formal specifications. In this short
paper, we explore how a translation from EARS into Linear
Temporal Logic can be implemented in practice.

I. INTRODUCTION AND PROBLEM STATEMENT

EARS [6] has been designed at Rolls-Royce having in mind
helping requirements engineers to specify requirements that
are as unambiguous, complete and objective as possible –
while being written in natural language. It is well under-
stood that architecting and writing software are expensive
tasks. Misunderstandings in communicating requirements to
architects and developers amount to using precious software
development resources in an unfruitful manner – leading to
projects running over budget or simply failing [9]. Mavin et
al. have shown with their work that, by using a simple set of
templated English sentences for specifying requirements, am-
biguity, partiality and subjectivity can be significantly reduced
in textual requirements. They have shown this holds even for
large specifications [4], [5].

A byproduct of having requirements written in a simple
subset of natural language is that automation becomes more
possible. The regularity of EARS lends itself well to mathe-
matical treatment and, given the wealth of research in formal
methods, it is only reasonable to investigate how EARS speci-
fications can be turned into fully precise formal specifications.
Such formal specifications can then be used for purposes
such as code synthesis, formal verification or even test case
generation. Teufl [8] explicitly states in her PhD thesis that
having the means to transform requirements (and in particular
EARS requirements) into formal specifications would provide
ground truths. These could then be used for formal verification
and consistence checking during the requirements gathering
process.

The work we present here is motivated by the IETS3 project1

ran recently by our company on the construction of languages
for requirements engineering. With IETS3 we have been
able to synthesize software controllers directly from EARS
specifications. To that end, we have transformed EARS into
Linear Temporal Logic (LTL), a mathematical formalism that
allows expressing temporal dependencies between the states of
a system. The transformation we present in this paper has been
implemented and is part of the EARS-CTRL environment also
developed in the context of the IETS3 project. Note that, while
the EARS-CTRL environment has been described in [1]–[3],
this short paper aims systematically provides an algorithm for
the transformation from EARS to LTL and extracts general
lessons from the implementation of that transformation.

In this short paper we will elaborate on how this translation
has been implemented, identify some of the hurdles found
when building such a translation and extrapolate some lessons
we have learned into the bigger picture of having a formal
counterpart to EARS.

II. FORMALIZING EARS USING LINEAR TEMPORAL
LOGIC

In this section we will use as running example the simplified
requirements for the operation of a controller of an engine
system. The system includes a main engine, an auxiliary
engine and an oil pump engine. The sequence to start the
machine is to first run the old pump engine; after 10 seconds
start the main engine; and after 5 more seconds start the
auxiliary engine. The EARS requirements for such a controller
are depicted in Figure 1.

Fig. 1. EARS requirements expressed in the EARS-CTRL environment

Let us now build a set of LTL formulas that reflect the
semantics of these requirements. LTL builds on propositional
logic by adding temporal operators to it. Formulas in LTL

1IETS3 was funded by the German Federal Ministry of Education and
Research under code 01IS15037A/B.



Ubiquitous The 〈system〉 shall 〈response〉 G(response)
Event-Driven When 〈trigger〉 the 〈system〉 shall 〈response〉 G(trigger → X(response))
State-Driven While 〈in state〉 the 〈system〉 shall 〈response〉 G(in state → response)

Option Where 〈feature〉 the 〈system〉 shall 〈response〉 G(feature → response)
Complex While 〈in state〉, when 〈trigger〉, the 〈system〉 shall 〈response〉 G((in state ∧ trigger) → X(response))
Unwanted If 〈preconditions〉 〈trigger〉, the 〈system〉 shall 〈response〉 G((preconditions ∧ trigger) → X(response))

Fig. 2. Translation between EARS templates and LTL

are particularly appropriate to express properties of runs of
a reactive system, meaning how the state of that system
should evolve over time. For example, one may want to state
that always, when a motor is on, a thermostat is measuring
its temperature. Or that, while the start button of a car is
pressed then the starter engine will assist in firing the main
engine. Or even, that eventually in the future the motor will
stop. LTL incorporates operators to precisely describe these
situations. Due to space limitations we will refrain from
formally introduce LTL here, but will rather explain the parts
of it that are relevant to our presentation. Note that we do
assume basic familiarity with logical notations. LTL was first
introduced by Pnueli in 1977 [7].

By looking carefully at the example in Figure 1 it is possible
to understand that all requirements are given in the form
of EARS event-driven templates. Take for instance Req1. A
reasonable translation for it into LTL would be as follows:

G(start button pressed →
X(start oil motor ∧ start 10 sec timer))

The mathematical expression above reads as: globally,
during a run of the system (temporal operator G), if the
system receives the start button event, then in the next moment
(temporal operator X) the motor will be started as well a 10
second timer.

In the table in Figure 2 we present a generic set of rules for
transforming the EARS templates presented in [6] into LTL.
Note that all the transformation rules follow a similar pattern:
for every state in a run of the system some output is triggered,
if a state satisfies a given condition. In the ubiquitous case,
all states in the run have to produce the response (enforced
by the G operator). In the state-driven and option case, the
response is produced only if the state meets a certain condition
or a certain feature of the system is enabled. The event-driven,
complex and unwanted patterns are different in the sense that
the response only appears in the moment following the arrival
of the trigger (as imposed by the X operator).

III. THE IMPORTANCE OF CONTEXT

While the translation we have presented in section II pro-
vides a boilerplate to transform EARS into LTL, the rules
given in table 2 are naive regarding the interaction between
the complete set of requirements in an EARS specification.
For example, if one take into consideration the transforma-
tion rule for Event-Driven requirements, the LTL formlula

corresponding to those will only state that in the moment
immediately after the trigger is received, the response will
be given. However, the requirement states nothing about the
life of the system after that moment. It is reasonable to ask
questions such as:

1) after a trigger is received, will the response keep pro-
duced by the system for some period?

2) if so, until when?

While it is challenging to come up with a generic answer for
these questions, we will attempt to describe a solution for the
case in which such a specification is used for code synthesis,
as is done in our EARS-CTRL tool.

As mentioned in section I, EARS-CTRL was built to syn-
thesize software controllers directly from requirements written
in EARS. Software controllers receive input from sensors and
produce output on actuators. By orchestrating those signals a
software controller controls the operation of a machine, such
as the system of motors presented in Figure 1.

Coming back to questions 1 and 2 above, let us attempt to
answer then by analysing a concrete example based on our
motor controller case study. Part of Req1 states that when
the start button is pressed then the oil motor will start. It
is assumed that the motor will continue to be on until it is
shutdown2, which can only happen if Req4 applies (meaning
the stop button has been pressed). However, this is information
that can only be deduced by taking Req4 into consideration.

In order to incorporate this contextual information in an
LTL specification, static analysis of the EARS requirements
becomes necessary. Such a static analysis is embodied in the
algorithm in Figure 3. The algorithm calculates which triggers
exist in other EARS requirements that should be taken into
consideration during the translation and accumulates them in
the untilClause set. The body of the algorithm goes through
all other requirements in the specification and checks whether
the responses overlap, in which case their triggers are added to
the untilClause set. Such a static analysis needs to be done
for all EARS templates in table 2, except for the Ubiquitous
template – in which case the response should in any case
always be present in the system.

If we now revisit the translation of Req1 to include con-
textual information calculated by the static analysis algorithm,
we can now produce the following LTL formula:

2Note that we assume that start motor oil = ¬(stop motor oil). In EARS-
CTRL this is explicitely expressed in a glossary accompanying the require-
ments in Figure 1.



untilClause = ∅
currentReq = requirement being transformed
contextReq = first requirement different from currentReq
while not all context requirements have been processed do

if currentReq.responses ∩ contextReq.responses
then
untilClause = untilClause ∪ contextReq.trigger

end if
end while

Fig. 3. Algorithm to calculate contextual information

G(start button pressed →
(X(start oil motor ∧ start 10 sec timer)

U stop button pressed))

The U operator in the formula enforces that the start motor
on actuator will be left on Until the stop button is pressed.
Note that the LTL formula contains only one proposition
after the until operator. This is in general not the case for
the algorithm Figure 3, as more than one proposition can
be accumulated in the untilClause set – in which case the
propositions after the until operator appear disjuncted in the
corresponding generated LTL formula.

IV. OPEN ISSUES AND DISCUSSION

In this paper we have provided an algorithm for translating
EARS requirements into LTL. The algorithm operates in two
phases: it first translates every EARS requirement present in the
specification taking into consideration only local information
(section II), while a second pass adds some of the contextual
information present in the totality of the requirements (section
III).

We do not presume our translation if generalizable for
all other code synthesizers or other tools that consume LTL
specifications (such as model checkers). Nonetheless, we are
convinced that the local and context translation phases we have
identified in our translation are generally necessary. Being
aimed at requirements engineers that deal mostly with natural
language, it is expectable that some of the information exposed
in an EARS specification is implicitly stated. While for humans
this does not pose a major problem, it is a showstopper
for computers. By breaking down the translation into phases
and bringing that implicit knowledge to the foreground while
encoding into LTL formulas, we believe a part of this problem
is solvable in practice.

Note that other contextual information could be retrieved
from an EARS specification and made explicit. Such infor-
mation could include e.g. finding similar terms that denote
the same entity, automatically deriving a notion of state of
the system and even explicitly deriving the behavior (e.g. as
state machines) from EARS requirements. Such state machines
could e.g. be partially built using the static analysis algorithm
we have presented in section III.

From a more abstract viewpoint, the translation we present
here is also potentially also an enabler for the formal verifi-
cation of and test case generation from EARS specifications.
Which kind of model-checker or test-case generator specific
information would be required to be added to the LTL we
currently produce is beyond the scope of this paper. Research
in this direction could marry the increasing power of formal
verification tools with the proposals of the EARS community.

REFERENCES

[1] EARS-CTRL Model Development Environment. https://github.com/
levilucio/EARS-CTRL.git.

[2] L. Lúcio, S. Rahman, S. bin Abid, and A. Mavin. EARS-CTRL:
generating controllers for dummies. In Proceedings of MODELS 2017
Satellite Event: FlexMDE, 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2017), Austin,
TX, USA, volume 2019 of CEUR Workshop Proceedings, pages 566–570.
CEUR-WS.org, 2017.

[3] L. Lúcio, S. Rahman, C.-H. Cheng, and A. Mavin. Just formal enough?
automated analysis of ears requirements. In NASA Formal Methods
- 9th International Symposium, NFM 2017, Moffett Field, CA, USA,
Proceedings, volume 10227 of Lecture Notes in Computer Science, pages
427–434. Springer, 2017.

[4] A. Mavin and P. Wilkinson. Big Ears (The Return of ”Easy Approach to
Requirements Engineering”). In RE, pages 277–282. IEEE, 2010.

[5] A. Mavin, P. Wilkinson, S. Gregory, and E. Uusitalo. Listens Learned (8
Lessons Learned Applying EARS). In RE, pages 276–282. IEEE, 2016.

[6] A. Mavin, P. Wilkinson, and M. Novak. Easy Approach to Requirements
Syntax (EARS). In RE. IEEE, 2009.

[7] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46–57, 1977.

[8] S. Teufl. Seamless Model-based Requirements Engineering: Models,
Guidelines, Tools. PhD thesis, Technical University Munich, Germany,
2017.

[9] The Standish Group. Software Chaos. https://www.projectsmart.co.uk/
white-papers/chaos-report.pdf, 2014.


