Specification and Verification of Graph-Based
Model Transformation Properties*

Gehan M. K. Selim?!, Levi Licio?, James R. Cordy!, Juergen Dingel', and
Bentley J. Oakes?

! School of Computing, Queen’s University, Kingston ON K7L2N8, Canada,
{gehan, cordy, dingel}@cs.queensu.ca
2 School of Computer Science, McGill University, Montreal QC H3A2A7, Canada,
levi@cs.mcgill.ca, bentley.oakes@mail.mcgill.ca

Abstract. We extend a previously proposed symbolic model transfor-
mation property prover for the DSLTrans transformation language. The
original property prover generated the set of path conditions (i.e., sym-
bolic transformation executions), and verified atomic contracts (con-
straints on input-output model relations) on these path conditions. The
prover evaluated atomic contracts to yield either true or false for the
transformation when run on any input model. In this paper we extend the
prover such that it can verify atomic contracts and more complex proper-
ties composed of atomic contracts. Besides demonstrating our prover on
a simple transformation, we use it to verify different kinds of properties
of an industrial transformation. Experiments run on this transformation
using our prover provide results that are two orders of magnitude better
than another verification tool we have evaluated in previous research.

Keywords: MDD, model transformation, verification, property prover.

1 Introduction

In Model-Driven Development (MDD), models are the basic blocks of software
development, and model transformations are used to map between models con-
forming to different metamodels. Given their key role in MDD, verification of
transformations is becoming of increasing interest to researchers [2, 16].

This study investigates verifying properties of transformations implemented
in the graph-based model transformation language DSLTrans [7]. DSLTrans is
non-Turing complete, i.e., DSLTrans cannot specify transformations that require
unbounded loops (e.g., simulation transformations). We extend a symbolic model
transformation property prover for DSLTrans [14, 12] that was previously limited
to verifying atomic contracts (i.e., constraints on input-output model relations).
The extension we present in this paper supports a more expressive property
language that facilitates verifying atomic contracts and compositions of atomic
contracts in the form of propositional logic formulae. Moreover, our prover now
handles rules that overlap in their application.

* This work is supported in part by NSERC, as part of the NECSIS Automotive
Partnership with General Motors, IBM Canada and Malina Software Corp.

The contribution of this study, at a high level, is extending a DSLTrans
property prover that is input-independent [2], i.e., verification results generated
by the prover hold for all possible inputs. Our specific contributions are:

— We describe how our prover currently handles overlapping rules (Section 4).

— We introduce our new property language, and show how it can be used to express
commonly occurring properties, e.g., multiplicity invariants. (Section 5).

— We apply our extended prover to an industrial case study [18] (Section 6).

— We demonstrate how our extensions of the prover led to a two orders of magni-
tude improvement in execution time over the verification tool we used in another
study [17]. We also discuss the strengths and limitations of our prover (Section 7).

This study adds to the state of the art (as discussed in Section 8) and is useful
to transformation verification research in general. We provide some evidence for
our prover’s scalability and usefulness since verification using our prover need
not be redone for every input. Thus, we motivate researchers to adopt our prover.
Moreover, users of languages other than DSLTrans can benefit from our study in
two ways: (1) the study can be used as a guide to develop an input-independent
verification technique for any language; (2) plug-ins can be developed to convert
transformations in other languages to DSLTrans to be able to use our prover.

The rest of this paper is organized as follows: Section 2 summarizes DSLTrans
and it’s simplest properties; Section 3 overviews our prover’s architecture; Sec-
tion 4 describes path condition generation; Section 5 discusses our prover’s ver-
ification technique; Section 6 demonstrates an industrial case study; Section 7
discusses our prover’s strengths and limitations; Section 8 reviews related work;
and Section 9 concludes and presents future work.

2 The DSLTrans Model Transformation Language

DSLTrans [7] is a graph-based transformation language that can be used to spec-
ify out-place, model transformations that are confluent and terminating by con-
struction. Transformation rules in DSLTrans are constructive — elements can be
created but not deleted. The semantics of DSLTrans (currently defined using set
theory) are in-line with, and can be defined using, classical pushout approaches.
We demonstrate DSLTrans using a simple transformation as a running example.

Figs. 1 and 2 present two metamodels used to describe different views of a set
of persons. The ‘Household Language’ represents persons as members of families
which in turn form a set of households. The ‘Community Language’ represents
persons as men or women who belong to a community.

Fig. 3 presents a DSLTrans transformation that aims to transform family
members in the ‘Household Language’ (source metamodel) into men and women
of a community in the ‘Community Language’ (target metamodel). In what
follows, we refer to the transformation in Fig. 3 as the Persons transformation.

A DSLTrans transformation is composed of an ordered set of layers (e.g.,
‘TopLevel’, ‘FamilyMembersToGender’, and ‘BuildCommunityOfPersons’ layers
in Fig. 3) that are executed sequentially. A layer consists of a set of transforma-
tion rules that execute in a non-deterministic order but produce a deterministic
result. Each rule is a pair (MatchModel, ApplyModel) where MatchModel is a
pattern of source metamodel elements and ApplyModel is a pattern of target

Households ‘ Community ‘
1
have Tl has T .
Family ‘ Person ‘
0..1 0.1 0..1 0.1
father mother daughter son
1 1
Member ‘ Man ‘ Woman ‘
Fig. 1. Household Language Fig. 2. Community Language

4 Layer FamilyMembersToGender

4 FatherToMan < MotherToWoman

MatchModel MatchModel

[4» Famiy | father [QMembev] [& Family | mother #Member]

+ ToCommunity 4 BuildCommunity
_— ApplyModel ApplyModel

<4 DaughterToWoman <+ SonToMan

4 Layer TopLevel + Layer BuildCommunityOfPersons

MatchModel

4 Households

MatchModel
4 Woman —_—
4 Households 4 Member
plictiiiital) RN

ApplyModel

MatchModel

[4» Famiy | daughter [0 Member]

ApplyModel ApplyModel

Fig. 3. The Persons Transformation expressed in DSLTrans.

MatchModel

aRDIVIVSCI0 - S
-
[4 Family | son [& Member]

metamodel elements. For example, the MatchModel of the ‘HouseholdsToCom-
munity’ rule in the ‘TopLevel’ layer (Fig. 3) has one ‘Households’ class from the
‘Household Language’ and the ApplyModel has one ‘Community’ class from the
‘Community Language’. This means that ‘Households’ input model elements will
be transformed into ‘Community’ output model elements.

When a DSLTrans rule executes, traceability links are created between each
element in the rule’s MatchModel and each element in the ApplyModel. These
are used to keep track of which output elements came from which input elements.

We describe some DSLTrans constructs that are used to build the Match-
Model of a DSLTrans rule. More DSLTrans constructs can be found in [7,12].

— Match Elements are variables typed by source metamodel classes that can assume
as values instances of that class from the input model. An example of a match
element is the ‘Family’ element in the ‘FatherToMan’ rule (Fig. 3). Match elements
can be of two types: Any match elements are bound to all matching instances in
the input model, and Ezists match elements are bound to only one (deterministic)
matching instance in the input. All match elements in Fig. 3 are of type Any.

— Attribute Conditions are conditions on the attributes of a match element.

— Direct Match Links are links between two match elements that are typed by la-
belled relations of the source metamodel. These links can assume as values links
having the same label in the input model.

4 Contractl 4 Contract2
(N
Precondition Precondition
[4» Member | mother[4 Family | father [4 Member] [4» Member | mother| 4 Family
\ \ / J . H J
. ,‘\ /l A (et N
Puslmndltlm)“ A< Postcondition 'L
\\ 7’ 1
[1— Woman] [+ Man]
A J
A
Fig. 4. Contractl; should hold. Fig. 5. Contract2; should not hold.

— Indirect Match Links represent a path of containment associations between the
linked match elements. For example, an indirect match link appears in the ‘Build-
Community’ rule as a horizontal, dashed arrow between match elements.

— Backward Links link elements of the MatchModel and the ApplyModel of a rule,
e.g., backward links are used in the ‘BuildCommunity’ rule and are denoted as
vertical, dashed lines. Backward links are used to refer to traceability links between
input and output model elements that are generated by the rules of previous layers.

Similar constructs can be used to build a rule’s ApplyModel, as shown in Fig. 3.

— Apply elements are variables typed by target metamodel classes and linked by ap-
ply links. Apply elements that are not connected by backward links create output
elements of the same type each time the MatchModel is found in the input. Apply
elements that are connected by backward links are handled differently, e.g., ‘Build-
Community’ rule connects ‘Community’ and ‘Person’ output elements that were
formerly created from ‘Households’ and ‘Member’ input elements with a ‘has’ link.

— Apply elements can have apply attributes that can be set from references to one or
more attributes of match elements.

AtomicContracts in DSLTrans: An AtomicContract is the simplest prop-
erty that can be expressed in our prover. Each AtomicContract is a pair (pre,
post) that specifies a property of the form: “if the input model satisfies the pre-
condition pre, then the output model should satisfy the postcondition post”. A
precondition is a constraint on the transformation’s input model in the form of
a structural relation between input model elements. Similarly, a postcondition is
a constraint on the transformation’s output in the form of a structural relation
between output elements. Preconditions and postconditions are expressed using
the same constructs as rules. Postconditions may also have traceability links
to link postcondition elements to precondition elements. This signifies that the
property will only match an output element that was previously created from an
input element. The formal definition of an AtomicContract can be found in [12].
Figs. 4 and 5 demonstrate two AtomicContracts for the Persons transformation.
Fig. 4 is interpreted as follows: “a mother and a father in a family will always be
transformed to a woman and a man”. Fig. 5 is interpreted as follows: “a family
including a mother and a daughter will always be transformed to a man”. Our
prover should verify that the AtomicContract in Fig. 4 will always hold for the
Persons transformation, while the AtomicContract in Fig. 5 will not always hold
(with a supporting counterexample).

D5LTrans Transformation + Path Condition |Set Uf _Path Verification of input Property Holds |
Source & Target Metamodels)| Generation Conditions property on the Set -0OR-

5 of Path Conditions Property Does Not Hold + counterexample
Property to verify

Fig. 6. The architecture of our symbolic model transformation property prover.

3 The Symbolic Model Transformation Property Prover

Fig. 6 demonstrates our property prover’s final architecture. Our prover takes
four inputs: the DSLTrans transformation of interest, the transformation’s source
and target metamodels, and the property to verify. Verification is then carried
out in two steps, as shown in Fig. 6. First, the prover generates the set of path
conditions representing all possible executions of the input transformation (Sec-
tion 4). Then, the prover verifies the input property on the generated set of path
conditions and renders the property to be either true or false (with a counter
example) for the transformation when run on any input model (Section 5).

4 Generating the Set of Path Conditions

Our property prover generates a set of path conditions that symbolically repre-
sent the possible transformation executions. For a transformation with n layers,
our prover uses the transformation rules to build the path conditions in n it-
erations. In Fig. 7, we demonstrate how the path conditions for the Persons
transformation are generated in iterations. We identify every rule in each layer
of Fig. 3 with a pair of numbers, e.g., 45 corresponds to the fourth rule (ordered
from top to bottom and then from left to right in Fig. 3) in the second layer (i.e.,
‘SonToMan’ rule). We start off with the empty path condition, where we assume
no transformation rule has been applied. To generate path conditions in iteration
1, the empty path condition is combined with all possible rule combinations of
the first transformation layer. Similarly, to generate path conditions in iteration
2, each path condition from iteration 1 is combined with all applicable rule com-
binations of the second layer. A rule combination of the second layer that does
not have backward links is always applicable, since it does not depend on rules
from the first layer. Rule combinations of the second layer with backward links
are combined with a path condition from iteration 1 only if the path condition
generates the elements linked by backward links in the rule combination.

Each path condition thus accumulates a set of rules describing a possible
path of rule applications through the transformation’s layers. We refer to the
accumulated MatchModels (or ApplyModels) of all the rules in a path condition
as the path condition’s match pattern (or apply pattern). Since our technique
abstracts from how many times the rule executes for an input, a transformation
rule only occurs once in each path condition. Thus, a path condition symbolically
represents a set of concrete executions since each of the rules in a path condition
can be concretely executed any number of times on an input model.

In Fig. 8, we show the path condition of the node with the dotted edge in
Fig. 7. As shown from the numbers in the node, the path condition contains
four combined rules (i.e., ‘HouseholdsToCommunity’, ‘FatherToMan’, ‘Moth-
erToWoman’, ‘BuildCommunity’) and traceability links. When combining the
rules, elements of the same type of the combined rules can be merged. This rep-
resents the fact that different rules may execute over the same input elements.

Iteration 1 @" O

- 7 Y-
Iteration 3 1‘1‘11 \)
RN

Fig. 7. Generation of the set of path conditions in iterations.

Match Pattern

4 Households

Apply Pattern

\
\
m
\
[l
1
1

Fig. 8. A path condition of the Persons transformation.

Only the path conditions from the last iteration are returned as as the result
since they capture all the possible complete transformation executions. Details
on path condition generation can be found in [12].

Overlapping Rules: The industrial case study presented later in Section 6
uncovered an unforeseen transformation structure; overlapping rules. These can
be defined as follows: whenever two rules in the same layer use match elements of
the same metamodel classes of type Any or Ezists, then the MatchModel of one
rule syntactically subsumes the MatchModel of the other rule. For example, a
rule having a MatchModel consisting of only an Any match element of class ‘A’
is subsumed by a MatchModel of another rule that consists of an Fxists match
element of class ‘A’ and an Any match element of class ‘B’.

Our path condition generation algorithm was extended to handle overlapping
rules. This extension led to a pronounced decrease in the number of generated
path conditions in our case study, since a set of rules in a subsumption relation
(described above) can often be merged into a smaller set of rules. Depending
on whether rules overlap totally or partially, rule merge may be done before
path condition generation or during path condition generation. For transforma-
tions with rule overlaps, this extension leads to an improved management of the
combinatorial explosion in path condition generation [12].

5 Verification of the Property of Interest

We extended the technique proposed in [14] for verifying AtomicContracts of
DSLTrans transformations to enable the verification of more complex properties.
Our extended technique employs the following syntax and semantics.

Syntax: Our syntax is based on propositional logic. An AtomicContract
(pre,post) is the smallest unit in our property language. A propositional formula
can be built using one or more AtomicContracts and the operators —. (not),

Vie (0r), Ae (and), and =, (implication), where tc stands for “transformation
contract”. Assuming that (pre,post) is an element of the set of AtomicContracts
AC, the syntax of formulae is:
@ = (pre,post) | 2te@ | @ Viep | @ N p | o =>ic ¢ (1)

Free variables can occur in any element e of an AtomicContract’s pre/ post-
condition. This occurrence binds the free variable to all the matches found for
e within an instantiation of a MatchModel. Using the same free variable in
different AtomicContracts allows these AtomicContracts to refer to the same
matched element, e.g., AtomicContract contl in Fig. 9 binds a matched element
of type ‘Community’ to the free variable ‘COMMUNITY’ such that this element
can be referred to in cont2 and cont3. The bindings of a set of free variables
{vary,...,var,} (occurring in elements {es,...,e;} of an AtomicContract) to
matched elements {m1,...,m,} in a path condition is expressed as a binding
function I = {(vary,my), ..., (var,, my)}, ie., 1 € P(FV x BE), where FV and
BE are the sets of free variables and bound elements, and P is the power set
operator.

Semantics: We define a function eval atomic(pc, ¢) that evaluates an Atom-
icContract c= (pre,post) for a path condition pc as follows:

1. If pc contains an isomorphic copy of pre but does not contain an isomorphic copy
of post, then eval atomic(pc, ¢) returns false (i.e., ¢ does not hold for pc and the
transformation) and an empty set of binding functions L=0.

2. Otherwise, eval atomic(pc, ¢) returns true (i.e., ¢ holds for pc) and a set of binding
functions L for the free variables of ¢, where L C P(FV x BE).

Thus, eval Atomic is defined as eval atomic : PC x AC — {true, false} x P(FV x
BE), where PC is the set of path conditions of a transformation 7. Note that a
set L of binding functions is returned since an AtomicContract may evaluate to
true using different bindings of the free variables. Thus, L is constructed from
all binding functions [/; returned by all possible subgraph isomorphisms.
Assuming that FORMULAFE is the set of elements generated by the grammar

in Eqn.(1), we evaluate a formula ¢ for a path condition pc € PC using a function
eval:PC x FORMULAE — {true, false} x P(FV x BE) as follows:

(resi, L1) if p € AC, eval atomic(pe,) = (resi, L1)

(—resi, L1) if ¢ = —etp, eval(pe,) = (res1, L1)

((res1 Vres2) A C(L1, L2), if ¢ =1 Vie ¢, eval(pe,) = (res1, L1),
LU Ly) eval(pc,) = (resa, L2)

eval(pe, p) = e B

((res1 Ares2) A C(L1, L2), if ¢ =Y Awe ¢, eval(pe,) = (res1, L1),
LU Ly) eval(pc,) = (resa, L2)

((res1 = res2) A C(L1, L2), if o =1 = ¢, eval(pe,) = (resi, L1),
L1 U Ly) eval(pc,) = (resa, L2)

(2)
where the semantics of the propositional operators (-, V, A, =) is standard, and
res; € {true, false}. The consistency function C' : P(FV xBE)xP(FV xBE) —
{true, false} checks for two sets of binding functions (e.g., L and L’) that all free
variables bound by a binding function in the first set L will always be bound to

4 contl 4 cont2 4 cont3

e e
Precondition Precondition Precondition

. J . J - J

J
J

C A (- (Iti
Postcondition Postcondition Postcondition

r N
4 Community (4 Community has | 4 person 4 Community
&COMMUNlTV) LCOMMUN”V COMMUNITY

\ J \ J
. J J = J

Fig. 9. Three AtomicContracts that can be used with different propositional operators
to convey different properties for the Persons transformation.

the same elements by a binding function of the second set L’ as follows:

C(L,L')y=Vle L' e L : (Ve FVi:((v,m) €lA(v,m')€l')= m=m') and
Vi'eL',3le L: (Y€ FVy:((v,m') €l A(v,m) €l) = m' =m)
®3)

where m,m’ € BE, and FV;, FV} are the sets of free variables used in [and
I’ respectively. Based on the former definitions, we evaluate a formula ¢ for a
transformation 7 (with path conditions PC') using a function eval(r, ¢):

eval(r,) = {t”‘e if Vpc € PC : eval(pc, @) = (true,L) W

false otherwise

where L is any set of binding functions. Thus, eval(7, ¢) renders a property ¢ to
be true or false for a transformation 7 by verifying ¢ for each path condition.
Function eval(r, ¢) returns true only if for all path conditions of 7, ¢ holds and
the bindings of all free variables consistently refer to the same elements.

Formulae of AtomicContracts: The new syntax and semantics allows us
to formulate complex properties by composing propositional formulae of Atom-
icContracts. We demonstrate how the AtomicContracts in Fig. 9 (i.e., contl,
cont2, cont3) together with free variables can be used with different proposi-
tional operators to convey multiplicity invariants'. A property that mandates
that the Persons transformation will always generate an output where every
community has one or more ‘Persons’ (i.e., a multiplicity invariant of ‘1..*’) can
be expressed as ‘contl =, cont2’. In other words, if an element of type ‘Com-
munity’ is generated in the output, then this element must have at least one
‘Person’. Whereas the property ‘contl =4 (cont2 Ay —pecont3)’ expresses a
multiplicity invariant of ‘1.1’ (i.e, if a ‘Community’ is generated in the output,
then this ‘Community’ must have one ‘Person’ and not more).

6 Industrial Case Study

Previously in [18], we developed an industrial transformation that maps between
subsets of a legacy metamodel for General Motors (GM) and the AUTOSAR
metamodel. In that work, we focused on subsets of the metamodels that repre-
sent the deployment and interaction of software components. Later in [17], we
proposed properties of interest for our GM-2-AUTOSAR transformation.

! Note that the three AtomicContracts in Fig. 9 have empty preconditions meaning
that they will match on any input model.

PhysicalNode modde

S provided F._:*
| Scheduler |

Service |:
T required

Fig. 10. Subset of the GM metamodel used by our transformation.

| System |

mappingr 1 suft\va_rECompusitiunYl softwareComposition
| SvstemMapping | | SoftwareComposition | >|1 CompositionType |
swMapping |0..* component j i
SwcToEcuMapping ComponentPrototype

eculnstance ,[,1 component,[,1..* componentPromtyp;TO,,“

| Eculnstance | |S\choEcuMapping_compcnau‘ | PPortPrototype H RPontPrototype |
Fig.11. Subset of the AUTOSAR metamodel used by our transformation.

We use our prover to verify the properties proposed in [17] on the GM-2-
AUTOSAR transformation [18] after reimplementing it in DSLTrans. In this
section, we summarize the transformation [18] and its properties [17]. Then, we
discuss formulating and verifying these properties using our prover.

6.1 GM-2-AUTOSAR Model Transformation

The Source GM Metamodel: Fig. 10 illustrates the subset of the GM meta-
model used in our transformation in [18]2. A PhysicalNode may contain multiple
Partitions (i.e., processing units). Multiple Modules can be deployed on a sin-
gle Partition. A Module is an atomic, deployable, and reusable software element
and can contain multiple Schedulers. A Scheduler is the basic unit for software
scheduling. It contains behavior-encapsulating entities, and is responsible for
providing/requiring Services to/from these behavior-encapsulating entities.
The Target AUTOSAR Metamodel: In AUTOSAR, an Electronic Com-
ponent Unit (ECU) is a physical unit on which software is deployed. Fig. 11 shows
the subset of the AUTOSAR metamodel [1] used by our transformation. The
ECU configuration is modeled using a System that aggregates SoftwareCom-
position and SystemMapping. SoftwareComposition points to CompositionType
which eliminates any nested software components in a Software Composition.
Software Composition models the architecture of the software components (i.e.,
ComponentPrototypes) deployed on an ECU and their ports (i.e., PPortProto-
type/ RPortPrototype for providing/ requiring data and services).
SystemMapping binds software components to ECUs using SwcToFEcuMap-
pings. SwcToEcuMappings assign SwcToEcuMapping_components to an Eculn-
stance. SwcToEcuMapping-components, in turn, refer to ComponentPrototypes.
Reimplementation of the GM-2-AUTOSAR Transformation in
DSLTrans: We reimplemented the GM-2-AUTOSAR transformation [18] in
DSLTrans so that we can verify it in our prover. Table 1 shows the rules in each
transformation layer, and the input/output types that are mapped/generated by

2 We follow the same obfuscated naming conventions that we used for the GM meta-
model in [18] for reasons of confidentiality.

10

Layer|Rule Name Input Types |Output Types
MapPhysNode2FiveElements |PhysicalNode |[System, SystemMapping, SoftwareComposition,
1 CompositionType, Eculnstance
MapPartition Partition SwcToEcuMapping
MapModule Module SwCompToEcuMapping-component,
ComponentPrototype

MapConnPhysNode2Partition|PhysicalNode, |SystemMapping, Eculnstance,

Partition SwcToEcuMapping
MapConnPartition2Module PhysicalNode, |[CompositionType, ComponentPrototype,
Partition, SwcToEcuMapping,
Module SwCompToEcuMapping-component
3 CreatePPortPrototype Scheduler PPortPrototype
CreateRPortPrototype Scheduler RPortPrototype

Table 1. The rules in each layer of the GM-2-AUTOSAR transformation after reim-
plementing it in DSLTrans, and their input and output types.

each rule. Rules of the first and third layers create output elements. Rules of the
second layer generate associations between elements created by the the first layer
(shown in the actual transformation using backward links). Thus, the input and
output types shown for the rules of the second layer are types that have already
been matched and created and for which the rules create associations.

To represent positive application conditions (PACs) in our transformation
rules, we use a combination of Any and Ezists match elements (Section 2). For
example, rule ‘MapPhysNode2FiveElements’ in Table 1 maps every PhysicalNode
to five elements, only if the PhysicalNode is eventually connected to at least
one Module. Thus, the MatchModel of rule ‘MapPhysNode2FiveElements’ has a
PhysicalNode (Any) match element connected to Partition and Module (Ezists)
match elements. Similarly, rule ‘MapModule’ maps every Module (represented as
Any match element) only if it is contained in one PhysicalNode and one Partition
(represented as Erists match elements). The MatchModel of rule ‘MapPartition’
also has a Partition (Any) match element connected to PhysicalNode and Module
(Ezists) match elements to represent a PAC. Thus, the rules in the first layer
totally overlap if we abstract from the match element types (i.e., Any or Exists).
The extension explained in Section 4 combines the rules of the first layer into
one path condition which simplifies property verification. Partially overlapping
rules (Section 4) also occur in layer 2 of our transformation.

6.2 GM-2-AUTOSAR Model Transformation Properties

In [17], we stated that properties could be invariants or contracts. Invariants are
properties defined on the target metamodel elements only, while contracts relate
source and target metamodel elements. Based on these definitions, we further
defined four categories of properties in [17]: Multiplicity Invariants, Uniqueness
Contracts, Security Invariants, and Pattern Contracts. For each category, we
formulated several properties that are summarized in Table 2 and discussed
in [17]. We omit Uniqueness Contracts in this study since they require reasoning
about attribute values, which is not yet implemented in our property prover.
Multiplicity invariants ensure that the transformation’s output preserves the
multiplicities in the AUTOSAR metamodel. The security invariant mandates
that a System does not refer to a ComponentPrototype that is not allocated in
that System. Pattern contracts require that if a pattern of elements is found in

11

Multiplicity Invariants: (Properties defined on the target metamodel elements only)

(M1) Each CompositionType is associated to at least one ComponentPrototype.

(M2) Each SoftwareComposition is associated to one CompositionType.

(M3) Each SwcToEcuMapping is associated to at least one SwcToEcuMapping-component.
(M4) Each SwcToEcuMapping is associated to one Eculnstance.

(M5) Each System is associated to one SoftwareComposition.

(M6) Each System is associated to one SystemMapping.

Security Invariant: (Property defined on the target metamodel elements only)

— (S1) All the composite SwcToEcuMappings of a System must refer to ComponentPrototypes that
are contained within the CompositionType lying under the same System.

Pattern Contracts: (Properties that relate source and target metamodel elements)

— (P1) If a PhysicalNode is connected to a Service through the provided association (in the input),
then the corresponding CompositionType will be connected to a PPortPrototype (in the output).
— (P2) If a PhysicalNode is connected to a Service through the required association (in the input),
then the corresponding CompositionType will be connected to a RPortPrototype (in the output).

Table 2. Properties of interest for the GM-2-AUTOSAR transformation.

the input, then a corresponding pattern of elements must be found in the output.

6.3 Verifying Properties of the GM-2-AUTOSAR Transformation
We demonstrate the formulation of pattern contracts (e.g., P1 and P2 in Table 2)
in our prover by showing the formulation of PI in Fig. 12 as an example. PI1
mandates that if a PhysicalNode is connected to a Service through the provided
association in the input (as in the precondition of Fig. 12), then the correspond-
ing Composition Type will be connected to a PPortPrototype in the output (as in
the postcondition). As explained in Section 2, using a traceability link in Fig. 12
mandates that P! will only match CompositionTypes that were previously cre-
ated from PhysicalNodes. We demonstrate the formulation of ‘1..1" multiplicity
invariants (e.g., M2, M4, M5, M6) by showing M6 as an example. M6 ensures
that if a System is created in the output, then this System must be connected to
one SystemMapping (and not more). Using the AtomicContracts in Fig. 13, M6
can be expressed as AC2 =, (AC3 Ay AC4). Variable ‘SYSTEM’ mandates
that if AC2 holds for a specific System, then AC3 should hold and AC/ should
not hold for the same System. Changing the former formula to AC2 =, AC3
expresses a ‘L..*" multiplicity invariant (e.g., M1, M8). Using the AtomicCon-
tracts in Fig. 14, the security invariant S1 can be expressed as ACH5 =>;. AC6.
Variables ‘SYSTEM’ and ‘COMPONENTPROTOTYPE’ mandate that if AC5
holds for a specific System and ComponentPrototype then AC6 should also hold
for the same System and ComponentPrototype.

Verification Results: We used our prover to verify the formulated prop-
erties of Table 2. The transformation was found to violate M1 and M3, i.e., our
prover uncovered the same bugs that we found using another tool in [17]. After
examining the generated counter examples (not shown due to space limitations),
we identified and fixed the two bugs in the transformation. The properties were
reverified on the updated transformation, and they all returned t¢rue. This implies
that our transformation will always satisfy the properties in Table 2.

To assess our prover’s performance, we measured the time taken to generate
path conditions and to verify the properties (Table 2) of the GM-2-AUTOSAR

12

4 AC1

Precondition

% PhysicalNode 4 Partition 4 Module & Scheduler'_»‘ *Service)]
partition module |~ scheduler) provided, _))
<

Postcondition g
P
+ CompositionType i PPortPrototype
port

Fig. 12. One AtomicContract that is used to express property P1.

3 3
4 AC2 & AC3 4 AC4
(Precondition [Precondition] [Precondition]
(Postcondition Postcondition Postcondition

SystemMappi
- mappin] 4 SystemMapping
4 System 4 System _ | 4= systemMapping 4 System ng{ —— —
mapping| —P
B

SYSTEM YSTEM SYSTEM

+SystemMapping

mapping

J U J

Fig. 13. Three AtomicContracts that are used to express property M6.

r e
4 ACS 4 AC6
{Precondton Precondition]
) .
4
Postcondition Postcondition
(B
4 system + sttemMaEging] 4 SwcToEcuMapping (-0- System 4 SoftwareCom position
i softwareCom position
SYSTEM [mappin J el lsvsmvn =
* ‘compon ent softwareComposition
s s s
ComponentPrototype 4 SwcToEcuMapping_component ComponentPrototype 4 CompositionType
COMPONENTPROTOTYPE component]| COMPONENTPROTOTYPE o
Prototype
N)

Fig. 14. Two AtomicContracts that are used to express property SI.

transformation after fixing the bugs. The prover took on average 0.6 seconds
to generate the path conditions. Table 3 (first row) shows the time taken (in
seconds) to verify the properties in Table 2 using the generated path conditions.
We do not include the time taken for path condition generation in Table 3 since
it is performed once for the transformation. The longest time taken to verify a
property was 0.02 seconds (P1, P2). Thus, our prover can verify an industrial
transformation’s properties in a short time. More experiments are needed before
we can claim that our prover scales to transformations of varying complexities.

Our property prover and the transformation used in [14] is available at [13].
The industrial transformation is not included for confidentiality reasons.

7 Discussion

We discuss the strengths and limitations of our prover by comparing it to a tool
that we used to verify the GM-2-AUTOSAR transformation in [17]. The tool
we used in [17] verifies ATL (textual) transformations by translating them to a
relational representation and then using constraint solvers to prove properties for
the translated transformation within a scope (i.e., maximum number of objects
per class). In contrast, the prover described in this study verifies DSLTrans

13

Property M1 |M2|M3|M4|M5|M6| S1 |P1|P2
Verification Time .013(.017|.013|.017|.017{.019|.017|.02| .02
(our property prover)

Verification Time 76 |73.4| 75 | 75 |75.5(74.5| 114 256|251
([17] at scope 6)

Table 3. Time taken (in seconds) to verify the properties in Table 2 using our property
prover (first row) and using a tool based on constraint solving [17] (second row).

(graphical) transformations in their native form (i.e., without translating them
to another formalism) using the symbolic transformation executions.

We identify three strengths of our prover in comparison with the tool we
used in [17]. First, our prover’s verification result holds for all transformation
executions and is not limited to a scope. Second, our prover verifies the transfor-
mation without translating it to another formalism. Third, our prover verified
the properties faster than the tool we used in [17]. Table 3 shows the time taken
to verify the properties in Table 2 using our prover (first row) and using the
tool in [17] (second row). In Table 3, we only show the results for the smallest
scope we used in [17] (i.e., 6). As shown in Table 3, our prover takes significantly
shorter time to exhaustively verify the properties, whereas much longer times
were needed to verify the same properties in a scope of 6 in [17]. Thus, we claim
that our prover scales well in comparison with the tool we used in [17].

We identify two limitations of our prover in comparison with the tool we used
in [17]. First, although negative application conditions (NACs) are expressible
in DSLTrans, our prover cannot verify transformations with rules having NACs.
Second, our prover cannot verify properties that reason about attribute values
such as the uniqueness contracts (Section 6.2) that we were able to verify in [17].
We are currently working on addressing both limitations in our prover.

8 Related Work

We review studies that propose (1) verification techniques and tools that are
input-independent and (2) property languages similar to ours.

(1) Biittner et al. [9] and Cabot et al. [10] translated a transformation
and its metamodels into a transformation model and used model finders (e.g.,
UML2Alloy) and constraint solvers (e.g., UMLtoCSP) to verify a transformation
property. Anastasakis et al. [3] and Baresi and Spoltini [6] translated a trans-
formation and its metamodels into an Alloy model and used the Alloy Analyser
to verify the Alloy model within a scope. Troya and Vallecillo [20] translated
a transformation into Maude and used Maude’s analysis capabilities to verify
the transformation. Becker et al. [8] verified if a transformation can generate
forbidden patterns by checking if the backward application of each rule to each
forbidden pattern can produce a valid input. Orejas and Wirsing [15] proposed
translating graphs to triple algebras to verify (e.g., using Maude) propositional
formula of properties. The study claimed that verifying graph transformations
is difficult, and hence the need for the translation to algebra. Approaches used
by tools such as Henshin [4] and AGG [19] are input-dependent.

(2) Biittner et al. [9] expressed properties in OCL and verified them us-
ing model finders. Guerra et al. [11] proposed PaMoMo, a graphical language

14

to express contracts and complex properties that manipulate contracts. These
properties can be compiled into OCL and injected into any OMG-based trans-
formation implementation (e.g., ATL) for automated verification. Asztalos et
al. [5] formulated properties and rules as assertions in first-order logic. Deduction
rules were then used to deduce the property assertion from the rules’ assertions.
AGG’s [19] property language is similar to ours (i.e., contracts that can be used
to build complex properties) except that AGG’s verification is input-dependent.

Difference between our study and related work: Our study differs from
the surveyed studies in one or more of the following aspects. First, verification is
performed on an intuitive, graphical language that does not require a mathemat-
ical background to be used, e.g., Maude [20, 15]. Second, we used our prover to
verify a simple and an industrial transformation. Third, we demonstrated several
property kinds that our prover can verify as opposed to verifying specific prop-
erties, e.g., forbidden patterns [8]. Fourth, verification is based on generating
the symbolic executions. Fifth, we have proved the soundness and completeness
of our technique in [12]. Many studies translated a transformation into another
formalism and verified properties on the translated transformation [9,10, 3,6,
20,15]. Such approaches should prove the soundness of the translated transfor-
mation before verifying properties. Moreover, such approaches should translate
the verification result back to the original formalism for comprehension. Other
studies proposed incomplete techniques that are restricted to a scope [9] or that
do not guarantee that the transformation is fault-free, e.g., testing.

While textual property languages (e.g., OCL [9] and assertions [5]) have been
used for specifying properties, we believe that a graphical property language is
useful as more researchers adopt graph transformations due to their intuitive,
graphical format. Approaches where graphical properties are translated into a
textual formalism (e.g., [11]) have two drawbacks. First, the soundness of the
translation should be proved before verifying the translated properties. Second,
the translated properties in [11] can not be used to automatically verify trans-
formations implemented in graph-based transformation languages.

We believe that our graph-based property language (that can be verified
without translation to another formalism) and input-independent verification
technique advances the state of the art and may encourage users in safety critical
domains to use the more intuitive, graph-based transformation languages.

9 Conclusion and Future Work

In this study we extended a symbolic model transformation property prover [14,
12] that initially only verified AtomicContracts. The extended prover now verifies
AtomicContracts and propositional formulae of AtomicContracts for DSLTrans
transformations. We have also extended the path condition generation algorithm
presented in [12] by treating overlapping rules. Further, we demonstrated our
property prover on an industrial case study [18]. We showed that the prover is
of practical use and features fast property proving times when compared with
another prover. We also discussed the strengths and limitations of our prover.
For future work, more experiments on bigger transformations are needed
to test the prover’s scalability. Moreover, as mentioned in Sections 6.2 and 7,

15

we plan to handle NACs and attribute values when generating the set of path
conditions to facilitate verifying properties that reason about attribute values.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

AUTOSAR Consortium. AUTOSAR System Template,
http://AUTOSAR.org/index.php?p=3&up=1&uup=3& uuup=3&uuuup=04&
uuuuup=0/AUTOSAR_TPS_SystemTemplate.pdf, 2007.

M. Amrani, L. Licio, G. Selim, B. Combemale, J. Dingel, H. Vangheluwe, Y. Le
Traon, and J. R. Cordy. A Tridimensional Approach for Studying the Formal
Verification of Model Transformations. In VOLT, pages 921-928, 2012.

K. Anastasakis, B. Bordbar, and J. Kiister. Analysis of Model Transformations
via Alloy. MoDeVVa, pages 47-56, 2007.

T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin: Ad-
vanced Concepts and Tools for In-Place EMF Model Transformations. In MoD-
ELS, pages 121-135. Springer, 2010.

M. Asztalos, L. Lengyel, and T. Levendovszky. Towards Automated, Formal Ver-
ification of Model Transformations. In ICST, pages 1524, 2010.

L. Baresi and P. Spoletini. On the Use of Alloy to Analyze Graph Transformation
Systems. In ICGT, volume 4178 of LNCS, pages 306—-320, 2006.

B. Barroca, L. Licio, V. Amaral, R. Félix, and V. Sousa. DSLTrans: A Turing
Incomplete Transformation Language. In SLE, pages 296-305. 2011.

B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling. Symbolic Invariant
Verification for Systems with Dynamic Structural Adaptation. In ICSE, 2006.

F. Bittner, M. Egea, J. Cabot, and M. Gogolla. Verification of ATL Transforma-
tions Using Transformation Models and Model Finders. In ICFEM, volume 7635
of LNCS, pages 198-213, 2012.

J. Cabot, R. Clarisé, E. Guerra, and J. de Lara. Verification and Validation of
Declarative Model-to-Model Transformations Through Invariants. Systems and
Software, 83(2):283-302, 2010.

E. Guerra, J. de Lara, D. Kolovos, and R. Paige. A Visual Specification Language
for Model-to-Model Transformations. In VL/HCC, pages 119-126. IEEE, 2010.
L. Licio, B. Oakes, and H. Vangheluwe. A Technique for Symbolically Verifying
Properties of Graph-Based Model Transformations. Technical Report SOCS-TR-
2014.1, McGill U., 2014.

L. Licio and G. Selim. DSLTrans Property Prover and Example Transformation,
http://msdl.cs.mcgill.ca/people/levi/police_station_verification_example.zip.

L. Licio and H. Vangheluwe. Model Transformations to Verify Model Transfor-
mations. In VOLT, 2013.

F. Orejas and M. Wirsing. On the Specification and Verification of Model Transfor-
mations. In Semantics and algebraic specification, pages 140-161. Springer, 2009.
L. A. Rahim and J. Whittle. A Survey of Approaches for Verifying Model Trans-
formations. SoSyM, pages 1-26, 2013.

G. Selim, F. Biittner, J. R. Cordy, J. Dingel, and S. Wang. Automated Verification
of Model Transformations in the Automotive Industry. In MODFELS, 2013.

G. Selim, S. Wang, J. R. Cordy, and J. Dingel. Model Transformations for Migrat-
ing Legacy Models: An Industrial Case Study. ECMFA, pages 90-101, 2012.

G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In AGTIVE, pages 446-453. Springer, 2004.

J. Troya and A. Vallecillo. A Rewriting Logic Semantics for ATL. JOT, 10:5: 1-29,
2011.

16

Appendix - Overlapping Rules
This appendix elaborates on the generation of path conditions when overlapping
rules occur in a transformation (explained at the end of Section 4).

The shape of our industrial transformation introduced the need to treat rules
that have overlapping MatchModels in path condition generation. Overlapping
rules are defined as follows: for two rules in the same layer, the MatchModel of
one rule syntactically subsumes (contains) the MatchModel of the other rule.
More concretely and formally, we mean that there is an injective graph ho-
momorphism between the match elements of one rule and the other rule that
respects the metamodel classes of the match elements, as well as the types of the
relations between those elements (but is independent of whether those classes
are of type Any or Euists). Overlapping rules require specific handling during
path condition generation. Intuitively, when two rules overlap then the execution
of the ‘larger’ rule necessarily implies the execution of the ‘smaller’ rule as they
match over the same set of input elements.

Rulel Rule2 Rule3

MatchModel

MatchModel

MatchModel

,

,

A (Exists)|

ApplyModel

| ApplyModel

| ApplyModel

==

Fig. 15. Three overlapping rules.

Given two rules R and R/, for our path condition generation purposes we can
distinguish two types of rule overlap:

1. Total Overlap: This case happens when R subsumes R’ and R’ subsumes R. In
Fig. 15, Rule!l and Rule2 totally overlap.

2. Partial Overlap: This case happens when R subsumes R’ but not the other way
around. In Fig. 15, rules Rule! and Rule2 subsume Rule3, but Rule3 does not
subsume Rulel or Rule2. As such, Rulel and Rule3, as well as Rule2 and Rule3,
partially overlap.

In path condition generation, the above two cases are treated differently. In
order to treat case 1 where two or more rules totally overlap, a step preceding
the path condition generation algorithm is executed that merges the totally
overlapping rules into one rule. This new merged rule contains the MatchModel
that is shared by both rules, as well as the disjoint union of the ApplyModels
of the two rules. This allows us to symbolically represent the fact that the two
rules always execute together. We present in Fig. 16 the result of merging Rulel
and Rule2, as well as the result of merging Rule2 and Rule33. The fact that the
match elements are of type Any or Exists plays a role in the merge: when two

3 We use the notation [R R'] to refer to the result of merging rules R and R’. Note
that the merge operation is n-ary.

17

match elements m and m’ are merged, the resulting element will be of type Any
if either m or m’ are Any. The resulting element will be of type Fwists only if
both m and m’ are of type Fuxists*.

Finally, the original rules participating in the merge are removed from the
layer and the merged rule is added.

[Rulel Rule2]

[Rule2 Rule3]

MatchModel

MatchModel

r

r
A (Exists)|

| ApplyModel

| ApplyModel

[o]

(o) [<]

Fig. 16. Rule merge examples.

In order to treat case 2 where rules partially overlap, additional reasoning
during path condition generation is necessary. In [12], we have argued that in
order to build a set of path conditions for a single layer, all combinations of
rules need to considered (i.e., the power set of the set of rules in the layer is
calculated). However, assume that a layer includes four rules, Ry, R2, R3 and
R4. Assume further that the subsumes relation between those rules induces the
partial order in Fig. 17. Since Ry subsumes R3 (noted in what follows Re > Rj3),
if rule Ry executes, then R3 also necessarily executes and they can be merged as
shown in Fig. 16. Similarly, if R; executes, then all the rules that R; subsumes
necessarily execute and can be merged with R;. Rules R3 and R4 can execute
on their own or combined, since they do not subsume any other rules. Finally,
rule R4 can also execute with or without the merge of Rs and Rj3 given they
belong to different branches of the partial order in Fig. 17.

R4

R1

/
\

R2 |«

R3

Fig. 17. A partial order between rules induced by MatchModel subsumption.

4 During rule merge, Any match elements take precedence over Ezists match elements.
This is so because, symbolically, the merged match element represents an arbitrarily
large number of matches of that element in an input model (from the Any match
element), plus one match (from the Exists element). It is relevant to keep track of
whether the match elements are Any or Exists because this allows to reason about
the number of instances produced by the transformation, although this research is
beyond the scope of this paper.

18

Thus, for the case where rules partially overlap within a layer, not all rule
combinations of that layer are meaningful for path condition generation. This is
because the execution of some rules necessarily implies the execution of others
and thus certain rules cannot execute in isolation. The algorithm we describe
next takes as input the set of rules within a layer and the partial order induced by
the subsumption relation between those rules (such as the one shown in Fig. 17),
if any. The algorithm returns the set of rules and merged rule combinations that
should be considered for path condition generation for that layer. The algorithm
starts by building the set of all possible rule combinations, independently of
partial overlaps. Then, the algorithm eliminates from that set any rule com-
binations that cannot occur because they include rules that cannot execute in
isolation. Finally, the algorithm merges rules that must execute together within
a combination. The algorithm is as follows:

1. Generate the power set of the rules in the layer. For our example in Fig. 17, this
step produces the set {0, {R1},{Rz2},{Rs},{Ra},{R1, R2},{R1, Rs}, {R1, Ra},
{R2, Rs}, {R2, Ra}, {R3, Ra}, {R1, R2, Rs}, { Ry, R, Ra}, { R, Rs, Ra}, {R2, Rs, Ra},
{R1, Rz, Rs, R4}}, including 2* = 16 rule combinations. We call this set PC, the
set of path conditions for this layer.

2. Calculate the merges of each rule in the partial order with all the rules it subsumes.
In our example, this step produces the merges [R1 Rz R3R4] and [R2 Rs3]. Intuitively,
these merges correspond to sets of rules that necessarily execute together. We call
the set of merged rules for this layer M = {[R2R3], [R1R2R3Ra]}.

3. Remove a rule combination from PC' if it contains a rule R and does not contain
a rule R’ such that R > R’. In our example, this corresponds to removing rule
COIIlbina.tiOIlS {R1}, {}%2}7 {Rl,Rz}, {]’21,]%3}7 {R1,R4}, {P€271%4}7 {Rl,R27R3},
{R1, R2, R4}, and {R1, R3, Ra}. Intuitively, this step removes a rule combination
from PC' if that combination contains rules that cannot execute in isolation, but
the set of additionally required rules does not exist in that combination.

4. Search for rule combinations of PC' that contain all the rules composing one of
the rule merges of M. When found, replace the elements in the rule combination
by their corresponding merge. In our example this would mean replacing rule
combination { R1, Rz, R3, R4} by {[R1R2R3R4]} and rule combination { Rz, R3, R4}
by {[R2Rs3], R4}. Intuitively, this step merges in the remaining rule combinations
the rules that necessarily execute together.

After executing the above algorithm, the resulting set of path conditions in
our example is PC' = {0, {Rs}, {R4}, {[R2R3]}, {Rs, Ra}, {[R2Rs), Ru},
{[R1R2R3R4]}}, containing only 7 rule combinations. This implies a drastic
reduction of more than half of the number of path conditions to be considered
for verification for this layer.

Note that, unlike the case where rules totally overlap, partially overlapping
rules cannot be processed by statically altering the rules of a transformation.
As we have shown above, partially overlapping rules require dynamic treatment
during the generation of the path conditions for each layer.

