
Invariant Preservation In Iterative Modeling
Levi LÚCIO‡, Eugene SYRIANI∗, Moussa AMRANI†, Qin ZHANG† and Hans VANGHELUWE‡§

† University of Luxembourg (Luxembourg), {Moussa.Amrani, Qin.Zhang}@uni.lu
‡ McGill University (Canada), {Levi, hv}@cs.mcgill.ca

∗ University of Alabama (Tuscaloosa, AL, USA), esyriani@cs.ua.edu
§ University of Antwerp (Belgium), Hans.Vangheluwe@ua.ac.be

Abstract—In a Model-Driven Development project, models are
typically built iteratively to better satisfy a set of requirements.
Therefore it is crucial to guarantee that one iteration of a model
evolution does not hinder the previous version. In this paper, we
focus on invariant preservation of behavioral models expressed in
Algebraic Petri Nets. The theory developed is applied to a Multi-
Level Security File System modeled iteratively. We also discuss
how this approach can be applied on Domain-Specific Languages
that are translated to Algebraic Petri Nets.

I. INTRODUCTION

Iterative development [12] is often adopted in modern
software projects [4] as it allows for rapid validation of the
developed features at a finer granularity. In Model-Driven
Engineering (MDE), iterative modeling [10] is often witnessed
in model evolution. During the development of a MDE project,
given a fixed set of requirements, the modeler typically pro-
duces a first model that satisfies an initial subset of the re-
quirements. Then at the following iteration, he either produces
a model that satisfies a larger subset of the requirements or
revises the model to more correctly satisfy the previous sub-
set of requirement. The model will therefore undergo several
iterations until all requirements are satisfied correctly.

The problem with this iterative modeling process is that
there is no guarantee that the model Mi+1 resulting after
an iteration i + 1 does not break properties of the previous
model Mi that correctly satisfied requirements. Therefore from
a regression point of view, it is crucial that satisfied and
unchanged properties of an evolving model are preserved at
each iteration.

In this paper we report on ongoing work for building a
framework for iterative development for Domain-Specific Lan-
guages (DSLs). Given a metamodel for describing behavioral
models in the domain of interest and a set of requirements,
a modeler iteratively specifies models (metamodel instances)
until fulfilling those requirements. We aim at assisting the
modeler in the iterative process, by ensuring that each iteration
actually preserves previously satisfied properties. Our proposal
to tackle this problem is based on invariant preservation on Al-
gebraic Petri Nets (APNs). In previous work we have presented
a partial translation from StateCharts into APNs [16], meaning
StateCharts can be used as a front end for our approach.
However, any language for which such a translation exists
could be plugged into our framework. We present in this
paper some illustrated preliminary results demonstrating our
approach’s feasibility.

Fig. 1. Simplified MLS metamodel [3], as a Kermeta Class Diagram [18].

In Section II we present a concrete example together with
desirable requirements that will be addressed along later
iterations. This example starts from a metamodel that is trans-
formed into an APN for performing the necessary verifications.
Section III presents a formalisation of APNs and proves that
the iterations actually preserve invariant properties. Then in
Section IV, we present an iterative modeling process applied
to our example and show how the initial requirements are
gradually and iteratively enforced. Finally, Section V discusses
our approach and related work, and Section VI concludes by
presenting our future work.

II. RUNNING EXAMPLE (NAIVE VERSION)

Our example is inspired from [17]: it is an UNIX-like
operating system that includes a Multi-Level Security (MLS)
File System (FS). We first present the expected requirements
on the file system, then explain its implementation in terms of
APN, and finish with the requirements formalisation in terms
of three properties expressed over the APN. Section IV will
then present two manual evolution that iteratively enforce more
properties on the system.

A. Requirements

In MLS [3], two concepts are essentially relevant: objects
designate system resources or data repositories that must
be protected (e.g., files, directories or terminals); subjects
denote entities capable of requesting services from system
resources (e.g., users, or processors). Both are associated to
an access class: they classify objects and subjects according
to their confidentiality, and responsability degree, respectively.
Intuitively, an object associated with a high access class can
only be seen or manipulated by a highly trusted subject.

For simplification and space limitation purposes, we present
a simplified version of a file system consisting only of files
as possible objects, and users as possible subjects. Files can
either be read or written by an user, or idle (which implies no
simultaneous readings by different users).

An important quality of such file systems is confidentiality,
especially against Trojan horses [1]: they consist in code

Name SL CR
Fi

le
s f1 2 NATO

f2 0 CIA
f3 1 ∅

U
se

rs levi 3 NATO, CIA
eugene 0 NATO, CIA

M0 (files)=[file(f1, ac(s(s(ZERO)),

list(NATO, empty)));
file(f2, ac(ZERO,

list(CIA, empty)));
file(f3, ac(s(ZERO),

empty))]
M0 (users)=[user(levi, ac(s(s(s(ZERO))),

list(NATO, list(CIA, empty)))));
user(levi, ac(ZERO,

list(NATO, list(CIA, empty)))))]

Fig. 2. A simple FS model and the corresponding initial marking.

executed by a trusted user without knowing it or consenting
for it; they can also pass confidential data by copying sensitive
data into files accessible to untrusted users. One common
technique for preventing this attack is data confinement: a
trusted user cannot open simultaneously two files with the
most confidential one in read mode and the less confidential
in write mode, thus preventing data leaks by copy from the
former to the latter.

Therefore in our running example, we aim at enforcing the
two following requirements: (R1) a file can be open, either in
read or in write mode, only by an user with sufficient access
rights; (R2) an user always respects the data confinement
condition.

B. Model-Checking Algebraic Petri Nets with AlPiNA

AlPiNA (Algebraic Petri Net Analyzer) is a model-checker
developed by the SMV team in Geneva [7]. AlPiNA takes
two inputs: an APN, i.e., a Petri Net (PN) whose tokens
are terms of an equational algebraic specification (i.e., sorts,
associated operations and equations), and whose behaviour is
graphically defined; and a set of first-order formulæ over the
specification terms expressing invariants over the PN. It allows
the verification of such formulæ by exhaustively exploring the
PN state space. If they are not satisfied, AlPiNA returns a
possible marking that violates the formulæ.

In our context, AlPiNA is used at each iteration step to
check that new properties are satisfied. In case of a revision,
the model-checker is run on each previously satisfied proper-
ties to ensure they are still satisfied by the revised model.

C. The Naive File System FS

A running example is used to illustrate the approach. It
consists in a small DSL representing a simplified version of
an MLS File System. We first describe a possible metamodel
describing the necessary data structures for representing File
Systems, then the corresponding algebraic specification, and
finally the behavioural semantics in terms of PNs.

1) An MLS File System Metamodel: Figure 1 presents a
simplified metamodel for MLS File Systems: it contains only
files as objects and only users as subjects. A File and an
User consists in a name and an associated AccessClass.
An AccessClass is composed of an integer representing a
securityLevel and a Category set. A Category is one of the
following credential: CIA, NATO or NUCLEAR (represented
as an enumeration). Access classes can be compared using the
dominates operation: if ac = (s,C) and ac′ = (s′,C′) are two
access classes, where s, s′ ∈ N represent security levels and
C,C′ represent sets of credential categories, then ac dominates
ac′ (noted acBac′) iff ac is “stronger” than ac′, i.e., formally,

if s′ ≤ s and C′ ⊆ C). Note that this notion of access class
domination is different from the one classical in PN, which
operates on markings.

Consider now an MLS FS model corresponding to the naive
FS, as described in Fig. 2: it consists in three files and two
users (SL stands for security level and CR for credential).
Here, the user levi dominates all files whereas eugene only
dominates file f2.

For now, any MLS FS model (like the one depicted in Fig. 2,
left) conforming to the metamodel of Fig. 1 is translated by
hand in two steps into an APN:

• the first step consists of a translation of the data structures
specified by the metamodel into Abstract Data Types
(ADTs);

• the second step takes care of the behavioural semantics.

We detail each step in the following sections, providing an
overview of how the translation is operated, giving further
information about how to automatise it.

2) Algebraic Data Types (ADTs): Classes File and User
both contains an attribute name used to identify a file / user.
Instead of using string, they are translated into sorts: all we
really need is a way to compare such identifiers. In AlPiNA,
we use Generators to specify the initial marking (as described
in Fig. 2 (left).

0 Adt FileName
S o r t s f i l eName ;

2 Generators
f1 : f i l eName ;

4 f2 : f i l eName ;
f3 : f i l eName ;

0 Adt UserName
S o r t s userName ;

2 Generators
l e v i : userName ;

4 eugene : userName ;

This sorts are then used for creating sorts file and user
following the same schema. First, a generator is defined for
building a term of each sort, by combining a name with an
accessClass. Then, two operations name and class return
respectively the name and the class of such a term with the
help of variables prefixed in AlPiNA with $.

0 import ” f i l eName . a d t ”
import ” a c c e s s C l a s s . a d t ”

2 Adt F i l e
S o r t s f i l e ;

4 Generators
f i l e : f i leName , a c c e s s C l a s s−>f i l e ;

6 Operat ions
name : f i l e −> f i l eName ;

8 c l a s s : f i l e −> a c c e s s C l a s s ;
Axioms

10 name (f i l e ($fn , $ a c l)) = $fn ;
c l a s s (f i l e ($fn , $ a c l)) = $ a c l ;

12 V a r i a b l e s
fn : f i l eName ;

14 a c l : a c c e s s C l a s s ;

0 import ” userName . a d t ”
import ” a c c e s s C l a s s . a d t ”

2 Adt User
S o r t s u s e r ;

4 Generators
u s e r : userName , a c c e s s C l a s s−>u s e r ;

6 Operat ions
name : u s e r −> userName ;

8 c l a s s : u s e r −> a c c e s s C l a s s ;
Axioms

10 name (u s e r ($un , $ a c l)) = $un ;
c l a s s (u s e r ($un , $ a c l)) = $ a c l ;

12 V a r i a b l e s
un : userName ;

14 a c l : a c c e s s C l a s s ;

The enumeration Category is translated into a sort containing
only three elements. An ADT CategorySet is defined to take
care of the attribute categorySet in AccessClass: it makes
use of the predefined generic ADT List, and contains only one
operation subset for checking the access class’ domination.

0 Adt C a t e g o r y
S o r t s c a t e g o r y ;

2 Generators
NATO : c a t e g o r y ;

4 CIA : c a t e g o r y ;
NUCLEAR : c a t e g o r y ;

0 import ” b o o l e a n . a d t ”
import ” c a t e g o r y . a d t ”

2 import ” l i s t . g a d t ”
Adt C a t e g o r y S e t I s L i s t [c a t e g o r y]

4 Operat ions
s u b s e t : l i s t [c a t e g o r y] , l i s t [c a t e g o r y] −> boo l ;

6 Axioms
empty s u b s e t $ l = t r u e ;

8 i f c o n t a i n s ($h , $ l) = f a l s e t h e n
l i s t ($h , $ t) s u b s e t $ l = f a l s e ;

10 i f c o n t a i n s ($h , $ l) = t r u e t h e n
l i s t ($h , $ t) s u b s e t $ l = $ t s u b s e t $ l ;

12 V a r i a b l e s
h : c a t e g o r y ;

14 t : l i s t [c a t e g o r y] ;
l : l i s t [c a t e g o r y] ;

In the class AccessClass, the attribute securityLevel is an
Integer on which only an order is necessary for comparison.
Therefore, it is encoded using a Peano-like sort representation,
with ZERO for 0 and s for the successor operation.

0 import ” b o o l e a n . a d t ”
Adt s e c u r i t y L e v e l

2 S o r t s s e c u r i t y L e v e l ;
Generators

4 ZERO: s e c u r i t y L e v e l ;
s : s e c u r i t y L e v e l −> s e c u r i t y L e v e l ;

6 Operat ions
l e : s e c u r i t y L e v e l , s e c u r i t y L e v e l −> boo l

;
8 Axioms

ZERO l e ZERO = t r u e ;
10 ZERO l e s ($x) = t r u e ;

s ($x) l e ZERO = f a l s e ;
12 s ($x) l e s ($y) = $x l e $y ;

V a r i a b l e s
14 x : s e c u r i t y L e v e l ;

y : s e c u r i t y L e v e l ;

Now, only the AccessClass class needs to be translated into
an ADT. A generator ac is defined to build accessClass’s
terms from terms of securityLevel and Category list. Then,
the dominates operation is defined according to the specifi-
cation of Section II-C2.

0 import ” b o o l e a n . a d t ”
import ” c a t e g o r y S e t . a d t ”

2 import ” s e c u r i t y L e v e l . a d t ”
import ” l i s t . g a d t ”

4 import ” c a t e g o r y . a d t ”
Adt a c c e s s C l a s s i s l i s t [c a t e g o r y]

6 S o r t s a c c e s s C l a s s ;
Generators

8 ac : s e c u r i t y L e v e l , C a t e g o r y S e t −> a c c e s s C l a s s ;
Operat ions

10 d o m i n a t e s : a c c e s s C l a s s , a c c e s s C l a s s −> boo l ;
Axioms

12 i f ($s2 l e $s1) = t r u e & ($c2 s u b s e t $c1) = t r u e t h e n
ac ($s1 , $c1) d o m i n a t e s ac ($s2 , $c2) = t r u e ;

14 i f ($s2 l e $s1) = f a l s e & ($c2 s u b s e t $c1) = t r u e t h e n
ac ($s1 , $c1) d o m i n a t e s ac ($s2 , $c2) = f a l s e ;

16 i f ($s2 l e $s1) = t r u e & ($c2 s u b s e t $c1) = f a l s e t h e n
ac ($s1 , $c1) d o m i n a t e s ac ($s2 , $c2) = f a l s e ;

18 i f ($s2 l e $s1) = f a l s e & ($c2 s u b s e t $c1) = f a l s e t h e n
ac ($s1 , $c1) d o m i n a t e s ac ($s2 , $c2) = f a l s e ;

20 V a r i a b l e s
s1 : s e c u r i t y L e v e l ;

22 s2 : s e c u r i t y L e v e l ;
c1 : C a t e g o r y S e t ;

24 c2 : C a t e g o r y S e t ;

An extra ADT is defined for the purpose of the behavioural
semantics. Named FileUserPair, it uses the generic ADT
Pair to build a pair with a file and an user, and introduces
an operation userHasPermissionForFile that checks if the
user’s access class dominates the file’s access class.

0 import ” b o o l e a n . a d t ”
import ” p a i r . g a d t ”

2 import ” f i l e . a d t ”
import ” u s e r . a d t ”

4 Adt F i l e U s e r P a i r i s p a i r [f i l e , u s e r]
Operat ions

6 u s e r H a s P e r m i s s i o n F o r F i l e : p a i r [f i l e , u s e r] −> boo l ;
Axioms

8 u s e r H a s P e r m i s s i o n F o r F i l e (p a i r ($f , $u)) =
g e t A c c e s s C l a s s ($u) d o m i n a t e s g e t A c c e s s C l a s s ($ f) ;

10 V a r i a b l e s
f : f i l e ;

12 u : u s e r ;

3) Behavioural Semantics: In the second step, we define the
naive translational semantics of MLS systems i.e., opening/-
closing files without credential checkings. The resulting APN
contains four places and four transitions. Places files and
users contain files and users tokens, representing respectively
the files and users objects corresponding to the initial marking
of Fig. 2. When an user wants to read or write a file, the
corresponding transition (openR or openW, respectively) is
fired and consumes tokens $f from place files and $u from
place users; then produces a pair $p = ($f, $u) stored in the
corresponding place. When $u closes $f, the corresponding
close transition is fired, which checks that $f was actually
opened by the user that opened it, and produces back tokens
$f and $u into their respective places. Consuming file tokens
every time a file is opened prevents another user from opening
the same file.

Figure 3 depicts the PN that corresponds to the naive FS.
The marking of places reading and writing is empty (and
denoted by empty brackets [], and the marking for the two
other places follows the initial marking of Fig. 2 (right).

Fig. 3. The naive File System FS with its initial marking M.
D. Requirements Properties

The requirements of Section II-A can now be formally ex-
pressed on the previous PN as invariant formulæ. Requirement
R1, concerned with file opening by a sufficiently trusted user,
is split into two properties P1 and P2, corresponding to each
opening mode (resp. write / read mode).
P1

4
= ∀ $p = ($f, $u) ∈ write · acu B acf

P2
4
= ∀ $p = ($f, $u) ∈ read · acu B acf

Here, requirement R1 holds if for any pair $p = ($f, $u) ∈
File × User in the write or read place, $u’s access class
dominates $f’s access class. Written in AlPiNA, these two
properties lead to the following expressions:

P1 P2 P3

FS 7 7 7
FSs X X 7
FSc X X X

TABLE I
PROPERTY SATISFACTION FOR THE THREE File System VERSIONS.

0 Expres s ions
P1 : f o r a l l ($p in w r i t e : u s e r H a s P e r m i s s i o n F o r F i l e ($p) = t r u e) ;

2 P2 : f o r a l l ($p in r e a d : u s e r H a s P e r m i s s i o n F o r F i l e ($p) = t r u e) ;
V a r i a b l e s

4 p : p a i r [f i l e , u s e r] ;

Requirement R2 is implemented by a third property P3 that
ensures the confinement property on the PN.

P3
4
=

∀ $p = ($f, $u) ∈ read,∀ $p′ = ($f′, $u′) ∈ write ·
$un = $un′ =⇒ $acf B $ac′f

This property says that for all pairs of files simultaneously
opened by the same user, when one is on read mode and the
other on write mode, the read file’s access class dominates
the write file’s one. Written in AlPiNA, it gives the following
expression:

0 Expres s ions
P3 : f o r a l l ($p in r e a d :

2 f o r a l l ($p1 in w r i t e :
(name (second ($p1)) = name (second ($p)))

4 =>
! ((c l a s s (f i r s t ($p)) d o m i n a t e s c l a s s (f i r s t ($p1)) = t r u e) &

6 ! (name (f i r s t ($p)) = name (f i r s t ($p1))))
)

8) ;
V a r i a b l e s

10 p : p a i r [f i l e , u s e r] ;
p1 : p a i r [f i l e , u s e r] ;

Running AlPiNA on the naive FS shows, as summarised in
Tab. I, that none of these properties are satisfied: this FS only
implements as simple FS mechanism without access control.

III. INVARIANTS PRESERVATION ALONG EVOLUTION

This Section establishes sufficient conditions for evolving
an APN model while preserving invariant properties. The
theoretical result and its rationale is explained in terms of
APNs’ iterations, illustrated on our running example.

Let us consider a set of properties P holding on a model
Mi, noted Mi |= P . We want to check that an evolution Mi+1

still ensures the same properties (transposed to Mi+1), and
eventually satisfies new properties Q, namely Mi+1 |= τ̄(P)∧Q
(where τ̄ applies sequentially to each formula of P an adequate
formulæ transformation τ w.r.t. the iteration). A naive solution
would be to perform again all the checkings with all properties
on Mi+1. In the case of arbitrary changes on M are permitted,
three situations can occur: (i) in a lucky situation, the iteration
is safe: P is still satisfied on Mi+1; (ii) some (or all) of the
properties within P are not satisfied anymore on Mi+1; (iii)
some (or all) of the properties cannot be checked, because
the evolution changed so deeply Mi’s structure that these
properties become meaningless on Mi+1. Furthermore, the
model-checking costs can sometimes become an important
issue, and running again and again these analysis can be time
consuming.

A better solution consists in identifying sufficient conditions
under which those properties are preserved by construction,

by restraining the kinds of iterations allowed on a model. In
[19], [20], Padberg, Gajewski and Ermel proposed a mecha-
nism for preserving safety properties on Algebraic Petri-Nets
based on place preserving morphisms. However, this result
does not allow changes on the transitions guards, which is
required in order to deal with the kind of iterations we are
targeting. Therefore, we propose here to extend this result by
extending the property preserving morphisms in a way that it
becomes possible to stregthen guards without loosing previous
behaviours.

In the two following definitions, we formalise the notion
of APN and formulæ for expressing (invariants) requirements,
and illustrate with our naive FS.

Definition 1 (APN & Marking). An Algebraic Petri Net N =
(Σ, P, T, pre, post, cond,A) ∈ N consists of an algebraic
specification Σ = (S, O, E) with S a set of sorts, O a set
of many-sorted operations and E a set of equations defining
the meaning of O’s operations, and a Σ-algebra A; two sets P
and T of places and transitions; two functions pre, post : T →
[TΣ()× P] labeling resp. input and output arcs of transitions
with terms over Σ; a function cond : T → ℘(E(Σ)) assigning
to each transition a finite set of equational conditions.

For N ∈ N , a N -marking M ∈ M(N) is a function
associating to each place a multiset of elements of A. The set
of all M-follower markings M>(N, M) contains all markings
obtained after firing all possible transitions from M. �

Notationally, different APNs will be noted with superscripts,
which are reflected componentwise: e.g., if N ′ ∈ N , then
simply N ′ = (Σ′, P ′, T ′, pre′, post′, cond′, A′).

Example 1 (Naive FS). We define the APN FS ∈ N for
the naive FS, explaining how the mathematical structures are
derived from AlPiNA’s syntax, as depicted in Fig. 3 and the
ADTs of Section II-C2. We detail each component of FS’s
structure:

• ΣFS is defined according to the ADTs, where S, O and
E correspond respectively to Sorts, Operations and
Axioms;

• A = (As)s∈S is an indexed (initial) algebra over each
sort of S;

• Obviously from Fig. 3,

PFS = {files, users, writing, reading}
TFS = {openR, openW, closeR, closeW}

• the transitions labelling and the place guards are defined
as follows:

preFS =

8<: openR, openW 7→ [($f, files); ($u, users)];
closeR 7→ [($p, read); ($u, users)];
closeW 7→ [($p, write); ($u, users)]

9=;
postFS =

8<: openR 7→ [(pair($f, $u), read); ($u, users)];
openW 7→ [(pair($f, $u), write); ($u, users)];

closeR, closeW 7→ [(first($p), files); ($u, users)]

9=;
condFS =

openR, openW 7→ ∅
closeR, closeW 7→ {name($u) = name(second($f))}

ff
The initial marking M0 corresponds to Fig. 2. �

Definition 2 (Formulæ). Static formulæ are syntactically built
with atomic formulæ denoting the marking of one place p ∈ P
with the data element a ∈ A and the usual boolean connectors.
If φ is such a formula, then �φ is an invariant formula. For
a marking M defined on N ∈ N , φ holds if it is included in M,
and �φ holds if φ holds in each state reachable from M. We
note M |=N �φ. �

Example 2. Let M′0 be the marking M0 without user eugene.
Then M′0 |=FS P1 (i.e., P1 holds under M′0) but M0 6|=FS P1,
because eugene’s security level is lower than f2’s. �

Definition 3 (Guard Strenghtening). Let N,N ′ ∈ N be
componentwise equal APNs except for transitions conditions
cond and cond′ respectively. N ′ strengthens N if for all
transitions t ∈ T , cond′(t) =⇒ cond(t). �

Note that from an MDE point of view, guards are strengthened
by adding new guards in conjunction to the previous ones,
which makes the implication trivially holding.

Relating successive iterations in such a way that struc-
ture is not completely lost is an important feature for val-
idating iterations’ correctness. This is achieved with APN
morphisms: an APN morphism from N to N ′ is a tuple
f = (fΣ, fP , fT , fA) ∈ M(N,N ′) of functions between the
algebraic specifications fΣ : Σ → Σ′, the places fP : P → P ′,
the transitions fT : T → T ′ and the algebræ fA : A → A′.

The following definitions specify two different morphisms:
the first one is the classical place preserving (PP) morphism
used in [20]; the second takes care of guards streghtening (GS).

Definition 4 (Place Preserving / Guard Strengthening Mor-
phisms). A morphism f ∈ M(N,N ′) is place preserving
(noted f ∈MPP(N,N ′)) if:

• Firing conditions are preserved;
• Places are preserved, meaning no new arcs are added to

mapped places;
• fT , fP and fΣ are injections, and fΣ is persistent,

meaning Σ′ is a correct extension of Σ;
• N ′ embeds N , meaning all arcs are mapped, more

precisely, there can be more places in the pre and post
domains of a mapped transition than in the corresponding
domains of the original transition;

• A′ is merely extended for new parts in A by fA, or it is
merely renamed.

Precise (mathematical) definitions can be found in [13].
f is a place preserving guard strengthening (noted f ∈

MPPGS(N,N ′)) if there exists N ′′ ∈ N and fPP ∈
MPP(N,N ′′) and N ′ strengthens N ′′. �

Notice that because in Def. 3, we require implication of
conditions, a place preserving guard strengthening iteration
is still place preserving, since only the firing conditions are
affected by the strengthening (first condition).

We will note fM : M(N) → M(N ′) the extension of f
to markings of these nets; and τf (φ) the transformation of
invariant formulæ w.r.t. f .

We now extend the classical result for invariant preser-
vations under PP morphisms to the case where guards are
also strengthened. This allows to better reflect iterative de-
velopment practices by also changing transitions guards in a
controlled way.

Theorem 1 (Invariant preservation under PP morphisms). Let
N,N ′ ∈ N , f ∈ MPP(N,N ′), and M ∈ M(N), M′ ∈ M(N ′)
be markings such that M = M′|f (meaning M is the restriction of
M′. to fM(M)). The following implication holds for any invariant
formula �φ:

M |=
N

�φ =⇒ M′ |=
N′ τf (�φ)

Proof: The proof is given in [13, Theorem 3.17].

Proposition 1 (Marking Inclusion under GS). Let N,N ′ ∈ N
such that N ′ strengthens N . Then, N ′-markings are included
in N -markings. More formally,

M′ ∈ M(N ′) ⊆ M ∈ M(N) =⇒ M>(N ′, M′) ⊆ M>(N, M)

Proof: By induction on the transitions firings. The base
case is trivial: starting from the same initial marking M0 ∈
M(N) and also M0 ∈ M(N ′), because N ′ is strengthened,
less transitions are enabled, producing a included follower
markings set. Let assume now that we have M ∈ M(N) and
M′ ∈ M(N ′) such that M′ ⊆ M. What happens for each follower
markings? Follower markings sets are built by considering all
fireable transitions (non-fireable ones do not play any role).
We prove that the markings resulting from each such transition
are included, making the global marking corresponding to the
follower marking set is included. For such a transition t ∈ T ,
there is two possibilities: (i) if t is enabled in N and also in
N ′, then the follower marking for t just propagates; (ii) if t
is enabled in N but not in N ′, then a new marking Mnew is
produced for N , and the follower marking for t is indeed
included because it already was and the new N -marking
contains one new marking.

Proposition 2 (Invariant preservation under PP-GS mor-
phisms). Implication of Thm. 1 holds if f ∈MPPGS(N,N ′).

Proof: By Def. 4, there exists N ′′ ∈ N and fPP ∈
MPP(N,N ′′) and N ′ strengthens N ′′. Then successively
applying Thm. 1 and Prop. 1 finishes the proof.

IV. EVOLVING SYSTEMS

The File System of Fig. 3 was not ensuring any property
we were interested in. This Section presents two interesting
iterations: the first step leads to a simple File System FSs that
matches Requirement R1, i.e., files can be opened only by
users with sufficient access rights; the second iteration leads
to a Confined File System FSc that matches Requirement R2,
i.e., it further ensures the confinement property on file opening.

A. Simple File System FSs

The FS of Fig. 2 was naive in the sense that it simply
implements the basic mechanisms for opening / reading and
closing files, without access control. We make FS evolve into

Fig. 4. Simple security filesystem. Same initial marking as Fig. 3.

FSs to meet Requirement R1 by guarding each file use (either
reading or writing) by a condition that checks the access rights:
in Fig. 4, each transition (openR, openW, closeR or closeW)
is now guarded to prevent the firing if the $u’s access class
does not dominate $f’s access class.

From a specification point of view, the corresponding APN
FSs ∈ N is componentwise identical to FS ∈ N , except for
the guards. More formally, we have:

condFSS =

reading, writing 7→ {dominates(class($u), class($f)) = true}
closeR, closeW 7→ {name($u) = name(second($f))}

ff

In this iteration, the PN’s structure does not change: no
places are added or removed; therefore the morphism is
simply the identity: fPP = id. Nevetheless, the transitions are
strengthened by new guards that straightforwardly imply the
previous empty guards (condFSS =⇒ condFS). Table I (Row 2)
summarises the iteration when model-checking all properties
on FSs: P1 and P2 now hold.

B. Confined File System FSc

We now make FSs evolve into FSc to prevent Trojan horses
attacks happening, thus meeting Requirement R2. Two new
places logRead and logWrite are added: they log a list of
pairs ($f, $u), adding an element each time $u opens $f and
deleting it when closed, for each opening mode. Every time
a new file is opened in read mode, openRead checks from
logWrite if no file with smaller access rights is open by
the same user in write mode. We introduce a new function
min($lfu) that computes the minimum access class (for the
domination) in the list $lfu of pairs ($f, $u). The new guard
for the openRead transition is now a conjunction of the
previous guard with a new condition stating that the minimal
access class in logWrite dominates the newly opened file.
The reverse principle is applied for openWrite with a function
max retrieving the maximal access class logged in logRead.
The corresponding ADT is defined as follows:

0 import ” f i l e . a d t ”
import ” u s e r . a d t ”

2 import ” a c c e s s C l a s s . a d t ”
import ” p a i r . g a d t ”

4 import ” l i s t . g a d t ”
import ” f i l e U s e r P a i r ”

6 Adt l i s t O f F i l e s i s l i s t [F i l e U s e r P a i r]
Operat ions

8 maxAccess : l i s t [F i l e U s e r P a i r] −> a c c e s s C l a s s ;
ca lcMaxAccess : a c c e s s C l a s s , l i s t [F i l e U s e r P a i r] −> a c c e s s C l a s s ;

10
minAccess : l i s t [F i l e U s e r P a i r] −> a c c e s s C l a s s ;

12 ca lcMinAccess : a c c e s s C l a s s , l i s t [F i l e U s e r P a i r] −> a c c e s s C l a s s ;
Axioms

14 maxAccess ($ l) = ca lcMaxAccess (f i r s t ($ l) , $ l) ;

16 ca lcMaxAccess ($ac l , empty) = $ a c l ;
i f (c l a s s (f i r s t ($p)) d o m i n a t e s $ a c l) = t r u e t h e n

18 calcMaxAccess ($ac l , l i s t ($p , $ l)) = ca lcMaxAccess (c l a s s (f i r s t ($p)) , $ l) ;
i f ($ a c l d o m i n a t e s g e t A c c e s s C l a s s (f i r s t ($p))) = t r u e t h e n

20 calcMaxAccess ($ac l , l i s t ($p , $ l)) = ca lcMaxAccess ($ac l , $ l) ;

22 minAccess ($ l) = ca lcMinAccess (f i r s t ($ l) , $ l) ;

24 ca l cMinAccess ($ac l , empty) = $ a c l ;
i f (c l a s s (f i r s t ($p)) d o m i n a t e s $ a c l) = t r u e t h e n

26 ca lcMinAccess ($ac l , l i s t ($p , $ l)) = ca l cMinAccess ($ac l , $ l) ;
i f ($ a c l d o m i n a t e s c l a s s (f i r s t ($p))) = t r u e t h e n

28 ca lcMinAccess ($ac l , l i s t ($p , $ l)) = ca l cMinAccess (c l a s s (f i r s t ($p)) , $ l) ;
V a r i a b l e s

30 l : l i s t [F i l e U s e r P a i r] ;
p : F i l e U s e r P a i r ;

32 a c l : a c c e s s C l a s s ;

The APN FSc ∈ N is defined as follows:
• ΣFSC is the same as ΣFS with the additional ADT listOf-

Files, and AFSC the corresponding initial algebra;
• From Fig. 5, we have

PFSC = PFS ∪ {logRead, logWrite}
TFSC = TFS

• the input/output arcs for each transition are those previ-
ously defined for FS, plus those coming from respectively
logWrite and logRead:

preFSC =

8><>:
openR 7→ preFS(openR)⊕ [($lpw, logWrite)];
openW 7→ preFS(openW)⊕ [($lpw, logRead)];
closeR 7→ preFS(closeR)⊕ [($lpr, logRead)];
closeW 7→ preFS(closeW)⊕ [($lpr, logWrite)];

9>=>;

postFSC =

8><>:
openR 7→ postFS(openR)⊕ [(list(pair($f, $u), $lpr), logRead)];
openW 7→ postFS(openW)⊕ [(list(pair($f, $u), $lpw), logWrite)];
closeR 7→ postFS(closeR)⊕ [(delete($p, $lpr), logRead)]
closeW 7→ postFS(closeW)⊕ [(delete($p, $lpr), logWrite)]

9>=>;
• The guards for transitions closeR and closeW are the

same as previously; those for the added transitions
logRead and logWrite are empty; and the guards for
openR and openR are enforced accordingly:

condFSC =

8>>>>>>>>><>>>>>>>>>:

logRead 7→ ∅
logWrite 7→ ∅

openR 7→

dominates(class($u), class($f)) = true &
dominates(minAccess($lpw), class($f)) = true

ff
openW 7→

dominates(class($u), class($f)) = true &
dominates(class($f), maxAccess($lpr)) = true

ff
closeR 7→ condFS(closeR)
closeW 7→ condFS(closeW)

9>>>>>>>>>=>>>>>>>>>;
We now define the morphism f ∈ M(FSs, FSc) for this

iteration. Since FSc had been defined by extending FSs, the
morphism only consists of mapping the previous structure into
the extended ones:

• fΣ maps sorts, operations and equations to the syntacti-
cally corresponding ones: sort fileName in FSs is mapped
to sort fileName in FSc and so one, and the same for
operations and equations;

• fA naturally maps terms syntactically;

Fig. 5. Confined filesystem. Same initial marking as Fig. 3.

• fP and fT map places and transitions using name corre-
spondance: place files in FSs is mapped to place files in
FSc, and so on.

We still have to check that conditions from Def. 4 hold for f .
We briefly comment on each of these conditions:

• w.r.t. the note following Def. 4, firing conditions are
preserved due to the guard strengthening;

• comparing Fig. 4 and Fig. 5 and their formal specifica-
tions, no new arcs are added to the places already present
in FSs;

• Obviously from their definition, fT , fP and fΣ are
injections and fΣ is persistent since ΣFSS ⊆ ΣFSC;

• FSc is an embedding of FSC according to the definition
of FSc by extension of FSs for pre and post;

• AFSC is a correct extension of AFSS with no renaming.
These constitute a safe iteration from FSs to FSc because the
corresponding morphisms match the conditions of Section III.
Table I (Row 3) summarises the model-checking of all prop-
erties on FSc: P1 and P2 still hold; P3 is now satisfied.

V. RELATED WORK

Petri Nets and their declinations like Colored PN (CPNs),
are widely used for formalising systems’ behaviour and
analysing their relevant properties. However from an MDE
point of view, translating complex models into APNs is easier,
because the gap for encoding the necessary data structures
a engineer is working with is smaller due to the richness
of algebraic specifications. However, a very restricted list of
contributions investigated invariant preservation in PNs.

Padberg, together with several other co-authors, published
extensively on invariant preservation of APNs, building a full
categorical framework for APNs rule-based refinements. Our
contribution extends Padberg’s result published in [19], [20]
but as already mentioned, this result does not consider guard
strenghtening. To the best of our knowledge, Padberg’s work
on this topic has been discontinued after a last survey paper [9]
has been published on the topic in 2003.

Around 2000, Cheung and Lu [2] studied five classes of
invariant-preserving transformations in CPNs, namely Inser-
tion, Elimination, Replacement, Composition and Decomposi-
tion. Most closer to our work are the Insertion and Replace-
ment (of transitions) transformations: for the former, they ob-

tain full preservation but at the price restraining the markings
and preserving guards, instead of our strengthening; while the
latter is directly related to our guard strengthening, although
their result also consider removing adjacent transitions’ arcs.
Nevertheless, guard strengthening, a necessary iterative pro-
cess for tackling iterative MDE development, is not explicitly
considered. The authors later concentrated in Place/Transition
PNs rather than CPNs [5], [8]. Lewis’ Ph.D [14] studied
morphisms allowing behaviour-preserving refinements, and in
particular refinements through bisimulation.

In the MDE community, iterative development is widely
used and adopted, with several case studies demonstrating its
relevance (cf. e.g., Grau, Joseph, and Sagesser’s work on an
iterative lifecycle model completing the classical waterfall one
[4]). Himsl et al. [6] proposed an iterative (meta-) modeling
process for enterprise engineering, dealing with metamodels
migrations with reflection back on previously designed in-
stances. This is directly related to our engineering process,
although their contribution is strictly syntactic, whereas our
iterations concern also the behaviour. Konrad et al. [10]
proposed i2MAP, an UML-based framework for incremental
and iterative modeling and analysis process dedicated to
embedded systems. Very close to our approach, they derive
temporal logic formulæ from natural language specifications
to express goals, against which syntactic and behavioural
consistencies are checked. Kumazawa and Tamai studied in
[11] an interesting semi-automated iterative development case
called model fixing: it consists in using counterexamples of a
model-checker to enhance a model in order to make it satisfy
a property, by only using previously checked properties, the
original model and counterexamples, without sacrificing too
much the original model’s integrity. It however would require
some additional work to adapt this technique for APNs, which
is richer than the labeled transitions systems extension they are
using. Uzam and Zhou proposed in [21] an iterative and ”easy-
to-use deadlock prevention policy” for Flexible Manufacturing
Systems, based on reachability analysis on Petri Nets. At
each iteration, supposing that an effective solution to deadlock
prevention exists, they detect a bad marking that is further used
to prevent its reachability of the system, by modifying the Net
accordingly. Our work contrasts with theirs in the fact that we
deal with APNs, which are more expressive from an MDE
perspective, and that our iterations are mathematically proven,
whereas their methodology was proved not to be sound (cf.
[15] for counterexamples).

VI. CONCLUSION

In this paper, we presented a preliminary study on invariant
preservation of behavioral models expressed in Algebraic Petri
Nets, in the context of an iterative modeling process. Given
a set of requirements and a metamodel for a Multi-Level
Security File System, we developed a first APN model. We also
mapped the set of requirements from onto properties expressed
as APN invariants. For each property that is not satisfied after
running a model checker, we iteratively evolve the model to a
next version in order to eventually satisfy that property while

translate

evolveDSM

represent

Requirements

Prop
DSM

DSMi DSMi+1

PropAPN

APNi APNi+1

satisfy

evolveAPN

Fig. 6. Generalisation of our approach.

preserving properties that were already implemented. We also
provide a formal mathematical proof of our proposed model
evolution theory based on invariant preservation. Our case
study shows the feasibility of our approach and, to a certain
extent, that the evolution constraints we consider are not too
restrictive but in fact usable to solve engineering problems.

Our future research is concerned with an extension to en-
hance our theory to preserve other kinds of properties besides
invariants, for example liveness properties [9], temporal prop-
erties, etc by using existing work in the literature. Furthermore,
we would like to support the integration of modeling language
with higher level of abstraction than APN, namely Domain-
Specific Languages in general. This generalisation of our
approach is illustrated in Fig. 6.

The preservation of the properties at the DSM level can be
achieved by making use of the commuting diagram in Fig. 6.
In order to verify that an iteration at the DSM level is property
preserving (formally, evolveDSM ◦ translate), we check that
it’s counterpart at the APN level is also property preserving
(formally, translate ◦ evolveAPN). Of course, in order to do
this we have to be sure that the translations of both the DSLs
models into APNs models and properties at the DSL level into
properties at the APN level are formally verified. Finally, larger
case studies are necessary to validate the usability of our work
in engineering environments.

We think the theory presented in this paper contributes to
simplifying the complexity of model evolution and can be
used as a fundamental “infrastructure” for the safe evolution
of behavioral models tackling different domains.

REFERENCES

[1] Marshall D. Abrams, Sushil G. Jajodia, and H. J. Podell, editors. Infor-
mation Security: An Integrated Collection of Essays. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1995.

[2] To-Yat Cheung and Yiqin Lu. Five Classes of Invariant-Preserving
Transformations on Colored Petri Nets. In Application and Theory of
Petri Nets, volume 1639 of LNCS, pages 692–692. Springer, 1999.

[3] David Elliot Bell and Leonard LaPadula. Secure Computer Systems:
Mathematical Foundations. Technical report, The MITRE Corp., 1973.

[4] R. Grau, B. Joseph, and K. Sagesser. Introducing an Iterative Lifecycle
Model at Credit Suisse IT Switzerland. IEEE Software, 99, 2012.

[5] Hejiao Huang, To-yat Cheung, and Wai Ming Mak. Structure and Be-
havior Preservation by Petri Net-Based Refinements in System Design.
Theoretical Computer Science, 328(3):245–269, 2004.

[6] M. Himsl, D. Jabornig, W. Leithner, P. Regner, T. Wiesinger, J. Küng,
and D. Draheim. An Iterative Process for Adaptive Meta- and Instance
Modeling. In Database and Expert Systems Applications, volume 4653
of LNCS, pages 519–528. Springer, 2007.

[7] Steve Hostettler, Alexis Marechal, Alban Linard, Matteo Risoldi, and
Didier Buchs. High-Level Petri Net Model Checking with AlPiNA.
Fundamenta Informaticæ, 113(3–4):229–264, 2011.

[8] H. Huang and L. Jiao. Property-Preserving Petri Net Process Algebra
in Software Engineering. World Scientific Pub., 2012.

[9] Julia Padberg and Milan Urbásek. Rule-Based Refinement of Petri Nets:
A Survey. In Petri Net Technology for Communication-Based Systems,
pages 161–196, 2003.

[10] Sascha Konrad, Heather Goldsby, and Betty Cheng. i2MAP: An
Incremental and Iterative Modeling and Analysis Process. In Model
Driven Languages and Systems, volume 4735, pages 451–466, 2007.

[11] T. Kumazawa and T. Tamai. Iterative Model Fixing with Counterexam-
ples. In Software Engineering Conference, pages 369 –376, 2008.

[12] Craig Larman and Victor R. Basili. Iterative and Incremental Develop-
ment: A Brief History. Computer, 36(6):47–56, June 2003.

[13] Levi Lúcio, Eugene Syriani, Moussa Amrani, Qin Zhang, and Hans
Vangheluwe. Technical details for the paper: Invariant preservation in it-
erative modeling, 2011. http://msdl.cs.mcgill.ca/people/levi/me/material.

[14] G.A. Lewis. Incremental Specification and Analysis in the Context of
Coloured Petri Nets. U. of Tasmania, 2002.

[15] Zhi Wu Li and Gai Yun Liu. Comments on ”An Iterative Synthesis
Approach to Petri Net Based Deadlock Prevention Policy for Flexible
Manufacturing Systems”. In IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, page 692, 2009.

[16] Levi Lúcio, Qin Zhang, Vasco Sousa, and Tejeddine Mouelhi. Veri-
fying Access Control in Statecharts. In Journal of ECASST, MPM’11
workshop, Wellington, October 2011.

[17] Maximiliano Cristiá, Gisela Giusti, and Felipe Manzano. The Imple-
mentation of Lisex, a MLS Linux Prototype. In ASSE, 2005.

[18] P.-A. Muller, F. Fleurey, and J.-M. Jzquel. Weaving Executability into
Object-Oriented Meta-Languages. In Proc. of MODELS/UML’2005,
volume 3713 of LNCS, pages 264–278, Montego Bay, Jamaica, October
2005. Springer.

[19] J. Padberg, M. Gajewsky, and C. Ermel. Refinement versus Verification:
Compatibility of Net Invariants and Stepwise Development of High-
Level Petri Nets. Technical report, Technische Universitat Berlin, 1997.

[20] Julia Padberg, Magdalena Gajewsky, and Claudia Ermel. Rule-Based
Refinement of High-Level Nets Preserving Safety Properties. Science
of Computer Programming, 40(1):97–118, 2001.

[21] Murat Uzam and Meng Chu Zhou. An Iterative Synthesis Approach to
Petri Net-Based Deadlock Prevention Policy for Flexible Manufacturing
Systems. IEEE Transactions on Systems, Man and Cybernetics – Part
A: Systems and Humans, 37(3):362–371, 2007.

