
A Technique for Automatic Validation of Model
Transformations

Levi Lúcio, Bruno Barroca, Vasco Amaral

Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, Portugal??

{Levi.Lucio,Bruno.Barroca,Vasco.Amaral}@di.fct.unl.pt

Abstract. We present in this paper a technique for proving properties
about model transformations. The properties we are concerned about
relate the structure of an input model with the structure of the trans-
formed model. The main highlight of our approach is that we are able
to prove the properties for all models, i.e. the transformation designer
may be certain about the structural soundness of the results of his/her
transformations. In order to achieve this we have designed and experi-
mented with a transformation model checker, which builds what we call
a state space for a transformation. That state space is then used as in
classical model checking to prove the property or, in case the property
does not hold to produce a counterexample. If the property holds this
information can be used as a certification for the transformation, other-
wise the counterexample can be used as debug information during the
transformation design process.

1 Introduction

Nowadays model transformation tools [9, 11] have become the topic of intensive
research due to their importance in Model Driven Development (MDD). In the
MDD context, these tools are used for several activities such as model refinement,
refactoring, translation, validation or operational semantics. These activities can
turn out to complex and error prone. This said, automatic validation techniques
for model transformations are of the utmost importance.

In our laboratory, we have developed a new tool named DSLTrans [3] to
assist the software engineer while specifying model transformations. DSLTrans
aims at overcoming the flaws of state of the art model transformation tools —
most importantly lack of confluence and termination guarantees — by proposing
a simple visual language with basic primitives. The main idea behind DSLTrans
is that, due to its simplicity, we can assure these features by construction.
?? The presented work has been developed in the context of project BATIC3S partially

funded by the Portuguese foundation FCT/MCTES ref. PTDC/EIA/65798/2006,
the doctoral grant ref. SFRH/BD/38123/2007 and the post doctoral grant ref.
SFRH/BPD/65394/2009. We would also like to thank Vasco Sousa and Carla Fer-
reira for the fruitful discussions.



In this paper, we present a technique for automatic validation of model trans-
formations expressed in DSLTrans. We will describe a symbolic model checker
which was built to guarantee transformation properties expressed in the form
of an implication: ‘if a structural relation between some elements of the source
model holds, then another structural relation between some elements of the tar-
get model should also hold’. Our symbolic model checker computes for each
possible execution of a transformation, an equivalence class representing a set
of source models and their corresponding transformations. We can then validate
that transformation by checking if our transformation property holds for every
computed equivalence class.

1.1 Related Work

In order to aid the construction of the proof of semantic preservation along a
set of transformation rules [2] introduced a language to anotate those rules with
assertions. The idea is to then pass these annotations to a reasoning framework
that will derive, at the meta level, conclusions about the overall transformation.
The work presented in [1] aims at validating a model transformation by using
the Alloy tool. In this case, Alloy simulates the transformation by generating
a model example of the source language and then analyzing the results of the
transformation.

The authors of [5] present a constructive fashion to automatically generate
a valid transformation (the authors refers to transformations as ontology align-
ment) which in principle would preserve the semantic properties of the input
and output models. This generation is done by using the Similarity Flooding
algorithm which is based on the calculus of a distance measurement between
source and target languages.

Similarly to our approach, the authors of [10] enable the declaration of a syn-
tactic structural correspondence between terms in source and target languages.
However, they use this structural correspondence to automatically verify the
results at the end of each transformation. With this approach, the quality engi-
neer will only realize that the transformation is invalid when some pair of models
input/output violates the declared structural correspondence.

1.2 Structure of the paper

This paper is organized as follows. In section 2, we introduce the DSLTrans lan-
guage by providing a transformation which we use as running example through-
out this paper. We then present how the state space is built for the transfor-
mation and how that state space is used to prove some properties; In section 3
we introduce the formalization of our approach with the aim of having a precise
description of the transformation model checker and a base for its implementa-
tion; In section 4, we will describe how we have implemented the transformation
model checker using SWI-Prolog and provide a notion of the space complexity
of our algorithm; finally, in section 5, we finish with some technical directions



on how to improve the space and time complexities of our transformation model
checker.

2 Motivating Example

Fig. 1. Metamodels of a squad of agents(left) and a squad organized by gender(right).

2.1 The transformation language

The transformation language we use as a base for this work is called DSLTrans [3]
and was developed in our laboratory. DSLTrans is a relatively simple transfor-
mation language having a reduced number of primitives. In order to introduce
DSLTrans let us first present the running example we will use throughout this
paper. Fig. 1 presents two metamodels of languages for describing views over the
organization of a police station. The metamodel annotated with ‘Organization
Language’ represents a language for describing the chain of command in a po-
lice station, which includes male officers (Male class), female officers (Female
class), and dogs (K9 class). The officer chain of command is expressed using the
EMF’s containment named ‘supervise’. The metamodel annotated with ‘Gender
Language’ represents a language for describing a different view over the chain of
command, where the officers working at the police station are classified by gen-
der. In Fig. 2 we present a transformation written in DSLTrans between models
of both languages. The purpose of this transformation is to flatten a chain of
command given in language ‘Organization Language’ into two sets of male and
female officers. Within each of those sets the command relations are kept, i.e. a
female officer will be directly related to all her female subordinates and likewise
for male officers. An example of one such transformation can be observed in
Fig. 3, where the original model is on the left and the transformed one on the
right. Notice that in the figure the boxes represent instances of the classes in
the metamodels of Fig. 1. In particular, the elements s, mk and fk in the figure



Fig. 2. A model transformation expressed in DSLTrans.

on the left are instances of the source metamodel elements Station, Male and
Female respectively. The primed elements in the figure on the right are their
instance counterparts in the target metamodel.

We can identify in the transformation in Fig. 2 several components. Firstly,
the transformation is divided into two steps, formally called layers. Each layer de-
fines a set of transformation rules and a transformation rule is a pair 〈match, apply〉,
where both match and apply are patterns holding elements of the metamodel of
language ‘Squad Organization Language’ — the source language — and of lan-
guage ‘Squad Gender Language’ — the target language — respectively. Layer 1
(named ‘Layer Entities’) of the transformation includes three simple transforma-
tion rules to translate elements of a model of language ‘Organization Language’
into their counterparts in language ‘Gender Language’. Layer 2 (named ‘Layer



Fig. 3. Original model (left) and transformed model (right).

Fig. 4. Validation properties over a DSLTrans model.

Relations’) includes four transformations that give structure to the elements built
in the previous layer. The transformation rules in layer 2 reveal two interesting
features of DSLTrans:

– Indirect links: these links can be observed in the match pattern of all the
transformations of layer 2 and are noted as a dashed arrow. A model matches
such an indirect link if there exists a path of containment associations be-
tween instances of the two connected metamodel elements;

– Backward links: backward links connect elements of the match and the apply
patterns and are noted as dashed (vertical) lines. They can also be observed
in all the transformation rules of layer 2. Backward links are used to refer
to elements created in a previous layer in order to use them in the current
one. For example, the leftmost transformation rule of layer 2 in Fig. 2 takes



Fig. 5. Partial state space for the transformation in Fig. 2.

instances of Station and Male (of the ‘Gender Language’ metamodel) which
were created in a previous layer from instances of Station and Male (of
the ‘Organization Language’ metamodel), and creates an association ‘male’
between them.

A particular characteristic of DSLTrans as a transformation language is that
throughout all the layers the source model remains intact as a match source.
The match pattern of a transformation rule can match multiple times the source
model and per each of those matches an instance of the apply pattern is created.
Each layer thus creates a set of target metamodel instances and relations between
those instances. In order to refer to elements created in a previous layer in a
transformation rule, backward links have to be used. A complete description of
the DSLTrans language including its formal syntax and semantics can be found
in [3]. An example of a complex transformation of UML to Java using DSLTrans
can be found in [8].

2.2 Properties and their proof

Now that the transformation language has been defined we can move on to
describe the properties we wish to prove about our transformations. Examples
of these properties can be observed in Fig. 4. In natural language the property
named ‘Satisfiable Property’ reads as follows: ‘Any model which includes a police
station that has both a male and female chief officers will be transformed into
a model where the male chief officer will exist in the male set and the female
chief officer will exist in the female set’. The primary goal of our model checker
is to prove that, given a transformation, such a property will hold for all models
given as inputs to that transformation.

Practically, this proof is achieved by building what we call the state space of
a transformation. Each state of the transformation state space corresponds to a



possible combination of the transformation rules of a given layer, combined with
all states of the previous layer. Using the example of the transformation given in
Fig. 2 we can build a rough sketch of such a state space which we present in Fig.5.
In the figure we identify each transformation rule in each layer by a number with
an index. For example transformation 11 corresponds to the first transformation
— e.g. left to right in Fig. 2 — in layer one. The state space starts with the initial
state— which in the figure belongs to layer 0 — where no transformation has
been applied. The initial state then connects to all possibilities of combinations
of transformation rules in layer 1. Each of the states produced by layer 1 is then
connected to all possibilities of combinations of transformation rules in layer 2
— in the figure we only exemplify with the state 31. The states in layer 2 include
not only the combinations of transformation rules from that layer, but also the
transformation rules coming from a state produced by the previous layer. In such
a way each state accumulates all transformation rules leading to it and thus a
describes pattern(s) that should exist in the source model. As such, each state
symbolically describes an equivalence class of input models.

Fig. 6. Original transformations rules (left) and a possible collapse of those rules
(right).

We can be more precise while building such equivalence classes. In Fig. 6 we
exemplify what we call the collapse of two of the rules of the transformation
in Fig. 2. Due to the semantics of DSLTrans it may occur that, for example, if
we have the two transformations on the left of Fig. 6 applied to a model, the
instance of Station used by the match pattern of the two rules is the same. This
comes from the fact that, in DSLTrans, the same input can consumed by several
transformation rules within the same layer. In this case we can collapse the
two classes in one in the state we are building. In fact, we can even go further
and collapse the Station classes in the apply pattern of the two rules which
would mean that both Station instances previously created in layer 1 (notice
the backward link) are actually the same. This leads to the state shown in Fig. 6
on the right. In fact this state is required to prove the ‘Satisfiable Property’ in
Fig. 4.

More generally, collapsing transformation rules is used to add more defini-
tion to the equivalence classes represented by each state than the simple union



of transformations as can be seen in Fig. 2. In this union, all elements of the
same type in the disjoint graphs of the united transformation are seen as refer-
ring to different objects in the input model — i.e. several elements of the same
type within a transformation necessarily refer to different objects in a model.
By adding the collapsed transformation rule states to the state space, the proofs
of our properties become complete given we are covering more models in our
symbolic states.

The proof of a property is then achieved by walking through the state space
and checking every complete transformation state space path (starting from the
initial state): if there is a state that satisfies the match pattern of the property,
then there must exist a subsequent state for which the apply pattern satisfies
the apply pattern of the property.

In Fig.4, the property named ‘Unsatisfiable Property’ represents a property
that is not true for the transformation in Fig. 2. In natural language the property
states the following: ‘If a male officer commands a female officer in the original
model, then that relation will be preserved in the transformed mode’. In our
simple example, this is clearly not true given that the point of our transformation
is to build separate lists of male and female officers. That said, in order to be
proved, the property should hold on all paths of the state space, therefore it
is sufficient to find one path where the property does not hold to render the
property false. Such a path can then be used as a counterexample and may
be useful for the transformation designer in the sense that it may point out a
sequence of transformation rules leading to a wrong transformation result.

It may also happen that a property is non provable. In Fig. 4, the property
named ‘Non Provable’ refers to dogs in the match pattern, a situation which
is never contemplated by the transformation rules in Fig. 2. As such, the only
possible statement about this property is that, although the source metamodel
would allow such match patterns, the transformation does not implement them.
This situation may point out to the transformation designer that (s)he is missing
transformation rules to address certain patterns of the input models.

3 Formalization

In this section we will present the detailed theory for our transformation sym-
bolic model checker. The theory is introduced incrementally and it formalizes
the informal description given in section 2. The goal of such a formalization is
to provide a precise definition of our symbolic model checker, to abstractly build
the algorithms to perform the proofs and to provide a base for the study of the
complexity of such algorithms. The formalization we provide tackles the core
syntax and semantics of our symbolic model checker, but for tractability rea-
sons leaves out: negative conditions in transformation rules; dealing with class
attributes; inheritance and other complex relations in metamodels and their in-
stances. Moreover, the proofs for the propositions stated during the formalization
can be found at [6].



3.1 Graph definitions

Definition 1. Typed Graph
A typed graph is a triple 〈V ,E, τ〉 where V is a finite set of vertices, E ⊆ V ×

V is a set of edges connecting the vertices and τ : V → Type is a typing function
for the elements of V, where Type is a set of type names. Edges (v, v′) ∈ E are
noted v → v′. The set of all typed graphs is called TG.

Definition 2. Typed Graph Union
Let 〈V ,E, τ〉, 〈V ′,E′, τ ′〉 ∈ TG be typed graphs. The typed graph union is the

function t : TG× TG → TG defined as:

〈V ,E, τ〉 t 〈V ′,E′, τ ′〉 = 〈V ∪ V ′,E ∪ E′, τ ∪ τ ′〉

Definition 3. Typed Subgraph
Let 〈V ,E, τ〉 = g, 〈V ′,E′, τ ′〉 = g′ ∈ TG be typed graphs. g′ is a typed sub-

graph of g, written g′ J g iff for all v′1 → v′2 ∈ E′ there is a v1 → v2 ∈ E such
that τ ′(v′1) = τ(v1) and τ ′(v′2) = τ(v2).

Notice that the notion of subgraph in the context of typed graphs is not
directly concerned with the topology of the involved graphs, but rather with the
topology of the nodes having the same type.

3.2 Metamodel, Model and Transformation definitions

We start by defining the notion of metamodel. A couple of metamodels were
introduced in Fig. 1 and can be seen as typed graphs where the nodes are classes
and the edges are associations.

Definition 4. Metamodel
A metamodel 〈V ,E, τ〉 ∈ TG is a typed graph where τ is a bijective typing

function. The set of all metamodels is called META.

Formally, a metamodel corresponds to a graph of typed elements where only
one element for each type is represented.

Let us now define the notion of model. Two models can be observed in Fig. 3
and can also be seen as typed graphs, instances of a given metamodel. Only, as
can be observed in Fig. 3, models can have several instances of the same type.

Definition 5. Model
A model is a 4-tuple 〈V ,E, τ ,M〉 where 〈V ,E, τ〉 is a typed graph. Moreover

M = 〈V ′,E′, τ ′〉 ∈ META is a Metamodel and the codomain of τ equals the
codomain of τ ′. Finally 〈V ,E, τ〉 J M , which means 〈V ,E, τ〉 is an instance of
a metamodel M . The set of all models for a metamodel M is called MODELM .

Definition 6. Match-Apply Model
A Match-Apply Model is a 6-tuple 〈V ,E, τ ,Match,Apply,Bl〉, where Match =

〈V ′,E′, τ ′, s〉 and Apply = 〈V ′′,E′′, τ ′′, t〉 are models, V = V ′ ∪ V ′′, E =



E′ ∪ E′′ ∪ Bl and τ = τ ′ ∪ τ ′′. Edges Bl ⊆ V ′ × V ′′ are called backward links.
s is called the source metamodel and t the target metamodel. The set of all
Match-Apply models for a source metamodel s and a target metamodel t is called
MAMs

t .

A match-apply model is an extended definition of a model which is suited to
define the semantics of a model transformation. Given the semantics of DSLTrans
which keeps the source model unchanged and modifies the apply model as several
transformations are applied, a match-apply model is a suitable formalism to store
the intermediate steps of a transformation. In particular, the backward links allow
keeping a history of which elements in the match model created which elements
in the apply model.

Definition 7. Transformation Rule
A Transformation Rule is a 7-tuple 〈V ,E∪Il, τ ,Match,Apply,Bl, Il〉, where

〈V ,E, τ ,Match,Apply,Bl〉 ∈ MAMs
t is a match-apply model. Match = 〈V ′,E′,

τ ′, s〉 and the edges Il ⊆ V ′×V ′ are called indirect links. The set of all transfor-
mation rules having source metamodel s and target metamodel t is called TRs

t .

We define a transformation rule as a particular kind of match-apply model
which allows indirect links in the match pattern, but not in the apply one. The
reason for this is that match patterns can be more abstract than models, but
apply patterns define — in fact build — instances of models. In Fig. 2, we have
presented several examples of transformation rules.

Definition 8. Property
A Property is a 7-tuple 〈V ,E ∪ Il, τ ,Match,Apply,Bl, Il〉,

where 〈V ,E, τ ,Match,Apply,Bl〉 ∈ MAMs
t is a match-apply model. Match =

〈V ′,E′, τ ′, s〉, Apply = 〈V ′′,E′′, τ ′′, t〉 and the edges Il ⊆ (V ′ × V ′)∪ (V ′′ × V ′′)
are called indirect links. The set of all properties having source metamodel s and
target metamodel t is called Propertys

t .

The language to describe properties is in fact very similar to the language
to express transformations, with the additional possibility of expressing indirect
links in the apply pattern — thus allowing more abstract patterns than the
ones expressed in transformations. This is natural given that the properties of a
transformation can be more abstract than the rules implementing them.

Finally, we define layers as sets of transformation rules and transformations
as lists of layers.

Definition 9. Layer, Transformation
A layer is a finite set of transformation rules tr ⊆ TRs

t . The set of all
layers for a source metamodel s and a target metamodel t is called Layers

t . A
transformation is a finite list of layers denoted [l1 :: l2 :: . . . :: ln] where lk ∈
Layers

t and 1 ≤ k ≤ n. The set of all transformations for a source metamodel s
and a target metamodel t is called Transformations

t .

We naturally extend the notion of union in definition 2 to models (defi-
nition 5), match-apply models (definition 6) and transformation rules (defini-
tion 7).



3.3 Transformation collapse definitions

Let us now define some useful functions for the construction of a transformation’s
state space. The Graph Node Collapse function allows merging two nodes of a
graph having the same type. This function is subsequently used by the Graph
Collapse Function that recursively builds a set of all the possible collapsed graphs
from a graph.

Definition 10. Graph Node Collapse
Let 〈V ,E, τ〉 ∈ TG be a typed graph. A graph node collapse is a function

χ : TG → P(TG) such that:

χ〈V ,E,τ〉 =
{
〈V \{y},E′, τ\(y, τ(y))〉 |
x, y ∈ V ∧ τ(x) = τ(y) ∧
E′ = {(x, z) | (y, z) ∈ E} ∪

{(z,x) | (z, y) ∈ E} ∪
{(w, z) | (w, z) ∈ E ∧ w 6= y ∧ z 6= y}

}
This definition is naturally extended to transformations TRs

t by limiting the
two elements x and y that are collapsed to be either members of the Match
pattern of the transformation or elements that are connected by a backward
link.

Definition 11. Graph Collapse Function
Let g ∈ TG be a typed graph. The graph collapse function collapse : TG →

P(TG) is recursively defined as:

collapse(g) =

{
{g} if χg = ∅
χg ∪ {g} ∪

⋃
g′∈χg

collapse(g′) if χg 6= ∅

This definition is also naturally extended to transformation rules TRs
t .

Proposition 1. Finiteness of the result of the graph collapse function
Let 〈V ,E, τ〉 ∈ TG be a typed graph. The collapsed graph set collapse(〈V ,E, τ〉)

is a finite set of graphs, each graph in that set having a finite set of nodes.

3.4 State space

In order to define the state space for a transformation let us start by defining
the possible combinations of transformations within a layer. More than that,
we also define a label for each of those combinations of transformation which is
used as label for the transitions in the transformation state space we build. These
labels hold the identifiers of the transformations leading to a state and will be
subsequently used to build counterexamples for properties that are unsatisfiable.



Definition 12. Layer combinations
Let l ∈ Layers

t be a layer. The set of layer combinations CLl is obtained as
follows:

CLl =
⋃

tc∈P(l)

(
tc,

⊔
t∈tc

t
)

Definition 13. Transformation state space
Let tr = [l1 :: . . . :: ln] ∈ Transformations

t be a transformation. The trans-
formation state space SPtr ⊆ TRs

t × (P(TRs
t ) × N) × TRs

t is the least set that
satisfies the following rules:

(tc,ut) ∈ CLl1, tr = [l1 :: R] ∈ Transformations
t , st ∈ collapse(ut)

〈∅, ∅, ∅, ∅, ∅, ∅〉 tc1−−→ st ∈ SPtr

tr = [H :: lk :: lk+1 :: R] ∈ Transformations
t , st

tck−−→ st′ ∈ SPtr

tc ∈ P(lk), (tc′,ut) ∈ CLlk+1 , st
′′ ∈ collapse(st′ t ut) | st′

st′
tc′

k+1−−−−→ st′′ ∈ SPtr

Notice that H and R are lists. We also define SP ∗
tr as the transitive closure of

SPtr. The | : P(TRs
t )×TRs

t → P(TRs
t ) operator enforces that the backward links

existing in the second parameter transformation also exist in the transformations
of the first parameter.

We now build the state space for a transformation by gathering all the com-
binations of transformations for each layer, the result of collapsing them, and
building the state space as shown in Fig. 5. Notice in particular that the second
inference rule in definition 13 merges the states from a previous layer k and from
the current layer k + 1. Notice also that all transitions in the transition state
space are labeled with the transformations tck from the previous k layer that
caused it.

Proposition 2. Finiteness of the transformation state space
Let [l1 . . . ln] ∈ Transformations

t be a transformation. The transformation
state space SP[l1...ln] is finite.

The result in proposition 2 is crucial since by definition model checking can
only be performed on finite state spaces.



3.5 Property semantics

Let us now proceed to formally define the semantics of our properties in the state
space generated by the rules of definition 13. As we have stated in section 2, a
property can be satisfiable, unsatisfiable or non provable. We start with the
definition of a state in a state space (formally defined as a transformation) being
model of a property. As a reminder, each state of the state space is a symbolic
representation of a set of models given as input to the transformation being
validated and their corresponding transformations. In fact, a state holds a set
of patterns that should be instantiated in the input model — the match part of
the state — as well as in the output model — the apply part of the state. By
validating a property at the level of the symbolic states, we validate it for the
whole set of input and output models of a given transformation.

Definition 14. Model of a Property
A transformation rule 〈Vr,Er, τr,Matchr,Applyr, Ilr〉 = T ∈ TRs

t is a model
of a property 〈Vp,Ep, τp,Matchp,Applyp, Ilp〉 = P ∈ Propertys

t , written T �s P
if:

1. 〈Vp,Ep \ Ilp, τp〉 is a typed subgraph of 〈Vr,Er, τr〉
2. if vp → v′p ∈ Ilp then there exists vr → v′r ∈ E∗

r where τ(vp) = τ(vr),
τ(v′p) = τ(v′r) and E∗

r is obtained by the transitive closure of Er.

Definition 15. Satisfiable Property
Let tr = [l1 :: . . . :: ln] ∈ Transformations

t be a transformation. tr satisfies
property P ∈ Propertys

t , written tr � P , where:

tr � P ⇔ ∀s0
lb0−−→ . . .

lbn−−→ sn ∈ SP ∗
tr . (∃i . si �s match(P )) ⇒ (∃j ≥ i . sj �s P )

where s0 = 〈∅, ∅, ∅, ∅, ∅, ∅〉 and 0 ≤ i ≤ j ≤ n.

Informally, for all paths belonging to tr’s state space, if the property’s match
pattern is found in a given state, then a subsequent state in that path is model of
the property. Note that the projection function match returns the match pattern
of a property.

Definition 16. Unsatisfiable Property
Let tr = [l1 :: . . . :: ln] ∈ Transformations

t be a transformation. tr ∈ TR
does not satisfy property P ∈ Propertys

t , written tr 2 P , where:

tr 2 P ⇔ ∃s0
lb0−−→ . . .

lbn−−→ sn ∈ SP ∗
tr . (∃i . si �s match(P )) ⇒ (@j ≥ i . sj �s P )

where s0 = 〈∅, ∅, ∅, ∅, ∅, ∅〉 and 0 ≤ i ≤ j ≤ n.

The sequence lb0, . . . , lbn is called a counterexample for property P in transfor-
mation tr.

Informally, there exists a path belonging to tr’s state space where the prop-
erty’s match pattern is found in a given state, but no subsequent state in that
path is model of the property.



Definition 17. Non Provable Property
Let tr = [l1 :: . . . :: ln] ∈ Transformations

t be a transformation. A property
P ∈ Propertys

t is not provable for tr, written tr 3 P , where:

tr 3 P ⇔ ∀s0
lb0−−→ . . .

lbn−−→ sn ∈ SP ∗
tr . (@i . si) �s match(P )

where s0 = 〈∅, ∅, ∅, ∅, ∅, ∅〉 and 0 ≤ i ≤ n.

Again informally, the match pattern can never be found in any state of the
state space of tr.

4 Experimentation and Results

Using our implementation — downloadable at [7] — in SWI-Prolog, we have
generated a state space for the the presented police station transformation, re-
sulting in a state space with an order of magnitude of 104 states. Our implemen-
tation reflects the formalization in section 3. The transformation description
in DSLTrans is represented as a set of facts in a entity/relationship schema,
and the generated state space is represented as a list of transition predicates
t(LayerId,SquareGraphComb, Label, SquareGraphComb’). The layer identifier
LayerId precisely identifies the depth position of each of the transition’s states,
in the overall state space. Each state SquareGraphComb and SquareGraphComb’
is represented as predicate graph(match(Match),apply(Apply),
blinks(BLinks)), where Match, Apply and BLinks are lists of entities and rela-
tions which were merged and combined from the given transformation descrip-
tion.

5 Conclusions and Future Work

In this paper we have presented a model checker for model transformations ex-
pressed in the DSLTrans language. The transformations in DSLTrans are by
construction confluent and terminating [3]. We have added to the language the
possibility to establish syntactic structural correspondences between patterns
in the source language and patterns in the target language of the transforma-
tion. This correspondence, which we call properties, is checked in a finite state
space which is generated by all the possible combinations of applications of the
rules specified in the transformation. Once one such property is validated for
the transformation at the meta level, we can certify that it holds for all input
instances of that transformation. As future work, we will perform experiments
on larger transformation and address spatial and time complexities in our state
space generation algorithm. Given that, on average, many states for a given
state space share the same structure, we are considering using BDD-like struc-
tures [4] to compact space and accelerate state space calculation and property
proof. Another possibility is to use available model checkers as interpreters for
our algorithm. In this fashion we could benefit from already studied state space



explosion control mechanisms. Finally, the study presented in this paper needs
to be extended to structures with more semantic content than the one that can
be represented by plain typed graphs. With this work we have made significant
progress in understanding the fundamental issues in building a model checker for
model transformations. However, a more detailed understanding and formaliza-
tion of the semantics of metamodels, models and properties is needed in order to
build proofs at the level of abstraction a transformation engineer would require.

References

1. Kyriakos Anastasakis, Behzad Bordbar, and Jochen Küster. Analysis of model
transformations via alloy. In B. Baudry, A. Faivre, S. Ghosh, and A. Pretschner,
editors, Proceedings of the workshop on Model-Driven Engineering, Verifica-
tion and Validation (MoDeVVA 2007), Nashville, TN (USA), pages 47–56,
Berlin/Heidelberg, October 2007. Springer.

2. Mark Asztalos, Laszlo Lengyel, and Tihamer Levendovszky. Towards automated,
formal verification of model transformations. In ICST 2010: Proceedings of the 3rd
International Conference on Software Testing, Verification and Validation, pages
15–24. IEEE Computer Society, 2010.

3. Bruno Barroca, Levi Lucio, Vasco Amaral, Roberto Felix, and Vasco Sousa. A
visual language for model transformations. Technical report, UNL-DI-2-2010, Uni-
versity Nova de Lisboa, Portugal, 2010. http://solar.di.fct.unl.pt/twiki/

pub/BATICCCS/ModelTransformationPapers/vltechrep.pdf.
4. Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Trans. Computers, 35(8):677–691, 1986.
5. Jean-Rémy Falleri, Marianne Huchard, Mathieu Lafourcade, and Clémentine

Nebut. Metamodel matching for automatic model transformation generation.
In Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus
Volter, editors, Model Driven Engineering Languages and Systems, 11th Interna-
tional Conference, MoDELS 2008, Toulouse, France, September 28 - October 3,
2008. Proceedings, volume 5301 of Lecture Notes in Computer Science, pages 326–
340. Springer, 2008.

6. SOLAR Group. Detailed proofs for the paper: ”a technique for automatic val-
idation of model transformations”. http://solar.di.fct.unl.pt/twiki/pub/

BATICCCS/ModelTransformationPapers/detailed proofs.pdf.
7. SOLAR Group. Transformation model checker. http://solar.di.fct.unl.pt/

twiki/pub/BATICCCS/ReleaseFiles/transmc.zip.
8. SOLAR Group. Transforming uml to java using dsltrans. http://solar.di.fct.

unl.pt/twiki/pub/BATICCCS/ModelTransformationPapers/UML2Java.zip.
9. Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In Proceedings

of the Model Transformations in Practice Workshop at MoDELS 2005, Montego
Bay, Jamaica, 2005.

10. Anantha Narayanan and Gabor Karsai. Verifying model transformations by struc-
tural correspondence. ECEASST, 10, 2008.

11. Object Management Group. Query/view/specification, December 2005. http:

//www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf.


