A Methodology and a Framework for
Model-Based Testing

Levi Lucio, Luis Pedro and Didier Buchs

University of Geneva, Software Modelling and Verification Group
24, Rue du Général Dufour
CH-1211 Geneve 4, Switzerland

Abstract. In this paper we will present a survey on the test case gen-
eration process and tools we are currently developing. It will reflect the
new ideas that we’re pursuing while keeping in mind our previous work
on formal specification languages and theory of test case generation.
The model based test case generation method we propose is based on a
subset of the Unified Modelling Language (UML) and the Object Con-
straint Language (OCL). It uses UML diagrams in what concerns the
conceptual point of view and, in addition, OCL expressions for the sys-
tem’s behavioral description.

The research builds on past experience of the group while generating test
cases starting from a model of the SUT (System Under Test) described in
the CO-OPN formalism - formal language for system specification that
acts as an intermediary format between the model and the tests.

Our method makes use of well known techniques such as symbolic exe-
cution by means of a logic resolution engine (i.e. Prolog) for state space
exploration of the SUT.

1 Introduction

Testing has always been recognized as a fundamental part of the software de-
velopment process. Despite, during long years testing was considered as an ”an-
noying” task which often was done in an ad-hoc fashion. Nowadays, modern
software development teams recognize the need for systematic testing in order
to produce quality software. Unit-level testing tools allows to begin testing early
in the process and motivates developers to think ahead to what tests they want
to see running.

But, unit-level testing is usually performed at the class level and it only
validates a specific unit of code. Since a system can be composed of many classes
that agglomerate into subsystems, integration tests are also necessary. At the
system level, these tests will reflect use cases that are pertinent and that exercise
the system such that a certain level of confidence in it’s reliability can be gained.

In order to build integration tests development teams usually follow certain
protocols to achieve a good coverage of the SUT (System Under Test). These
protocols are however often informal and the integration tests are built by hand
according to the knowledge of the test engineer. This produces coverages of the

SUT which are hardly qualifiable, much less quantifiable. The problem complex-
ity grows exponentially with the size of the system.

On the other hand the theoretical field has already identified and sometimes
solved many of the problems related to testing. See for example the work by
Doong and Frankl in [2] or by Binder in [1]. However, the gap between theory
and practice is still quite wide — only few tools for test case generation exist that
make use of strong theories and are known/used in the software development
arena. The goal of our research is to try to narrow this gap by wrapping the
power of formal methods. In this paper we explain the methodology and the
framework we are developing for test-case generation, which are fundamentally
based on the work described in [3] by Gaudel and Marre and extended by us [7].

In order to make the description more pragmatic we have adopted a drink
vending machine (DVM) example that we will use throughout the paper as an
illustration of our approach.

The structure of the remaining text is as follows: first we’ll provide the Mo-
tivation and Principles of our work; In second place, section Modelling the
Application, defines model-base testing and we describe the modelling language
that we are using; The next section, Test Case Generation Machinery, goes
into the details and explains the process of generating test cases from a model
of the SUT. We describe both the process and the tools that are already imple-
mented or that we envisage for a near future; In Application of Test Cases
we show how abstract test cases (sequences of operations) can be executed on a
real application by means of a test driver;

2 DMotivation and Principles

In a nutshell the goal of our work is to automate the generation of test cases as
much as possible. To do that, we try to raise the level of abstraction at which
humans have to intervene in the process. The idea is to capture the ”intuition” of
the tester about which aspects of the SUT should be tested, while leaving the job
of translating those high-level intentions into concrete test cases to specialized
machinery.

Since we use the model-based test case generation technique, an initial model
of the application needs to be provided to the test case generation machinery.
We have experience generating test cases from models expressed in the formal
specification language CO-OPN (described by Biberstein, Buchs and Guelfi in
[4]). However, since models of the SUTs have to be redone using CO-OPN, we
found it difficult to apply to general software systems — concepts like abstract
data types imply a construction of a new model for each SUT.

This said, we have decided to "wrap” our work using the Unified Modelling
Language (UML) as the departure language for modelling the SUT — this will
make our approach more general and easy to follow. Also, UML 2.0 includes
OCL (Object Constraint Language) which allows more precise semantics than
previous versions of this modelling language and enable us the possibility to
use more than just constraints (where constrains stand for restriction on one or

more values of an object oriented system) in order to better specify the system
behavior - by means of OCL expressions in UML 2 it is possible, for example,
to define queries.

Given a sufficiently expressive UML model of the SUT we then process it
in order to generate test cases. The main problem with generating test cases
for a software application is the fact that the exhaustive test set! is, in general,
infinite. This is due to the fact that, for instance, a loop can be executed an
infinite number of times or an input variable may have an infinite domain. We
cope with this by introducing high-level test intentions, called hypotheses.

3 Modelling the Application

In this section we explain the concept of model test case generation. Furthermore,
we discuss the Fondue [5] (object-oriented software development method that
uses UML notations) modelling language we use to model the SUT and from
were the test cases are generated.

3.1 Model-Based Test Case Generation

In model-based testing there are two main participants to the test process: the
specification model and the system under test (SUT). These two are
connected by an implementation relation as shown in Fig. 1. For instance, based
on the idea that the implementation has an observational behavior equivalent
to the specification[7]. The idea behind it all is the following: in order to test a

Specification - - SuT
implementation

relation

Fig. 1. Model-based test case generation

SUT specification model of it must exist. Sequences of pairs (operation,result) are
generated from the specification model. These sequences and respective outputs,
which we call test cases, can then be applied to the SUT. If the SUT reacts to
the stimuli in the same way the model did, the test case is successful. If not, the
implementation relation cannot be established and the SUT does not conform
to the model.

! Exhaustive meaning all the possible test cases over an SUT.

3.2 The Drink Vending Machine (DVM) Example

Throughout the paper we will often make reference to a drink vending machine
(DVM) example as means of exemplifying our ideas. In the next lines we briefly
state the DVM problem.

The controller for the DVM is supposed to coordinate the activities of the
several components of the machine:

— money boz: divided into two parts — the money collector that keeps the
coins inserted to buy one drink; the money repository that holds all the
coins gathered for selling drinks;

— drink shelves: there may exist several shelves, each one of them holding a
particular kind of drink;

— drink selection buttons: one for each available drink type;

— return coins button: to abort a buy operation and return the already inserted
coins;

— display: to display the amount of money already inserted.

A typical use case of the DVM would be the following: a client inserts a
number of coins in the DVM and presses a drink selection button. The DVM
distributes the chosen drink.

3.3 Fondue as Modelling Language

Since UML encompasses many different views over the same model, we have
decided to restrict the number of these views we are effectively using. In partic-
ular, we have adopted the specification language of a methodology to specifying
reactive system behavior. This approach called Fondue has been developed at
the EPFLI5].

In terms of model specification, Fondue provides two main artifacts in order
to describe the problem domain and the functional requirements of the system:
Concept and Behavior Models. The first one is represented as UML class dia-
grams and defines the static structure of the system information. The Behavior
Model defines the input and output communication of the system, and is divided
in three models: Environment, Protocol and Operation - represented respectively
by UML collaboration diagrams, UML state diagrams and OCL operations.

The following items provide a small description of each one of the Fondue
Models illustrates them using the DVM example.

Environment Model: the environment model describes the interaction be-
tween the system and its environment. All possible inputs and outputs of
the system are made explicit. Figure2 depicts the environment model for
the DVM.

Concept Model: To define the system’s state the Fondue approach uses the
Concept Model. This model allows the expression of concepts of the prob-
lem’s domain in terms of classes and associations. The populations of in-
stances of those classes and associations define the system’s state at a given
moment. Figure 3 shows the concept model for the DVM.

i eDrink takeMoney
" R Ll returnhdonay
: releasehoney
_/\ isEmpty %
PhysicalShell jsReplenished -
inserthoney AN
celectDrink boxlsFull IaneyBox
A -~ boxlsh atFull
ejecthone
/N : ’
ShelfSelectBtn
DM (Controller) SN
EjectBtn
displayhoney
insufficientFunds
drinklotAvailable
outdfSerice
~ 00000000 .
% setPrice0fShelf
-
AN
Display N
PricePanel
Fig. 2. Environment model for the DVM
: % CCSVS[Erer 1
! DM (Cantrol|
- outJfService: Boolean e -1_{_{{—1//%\
PhysicalShef wida amountRegistered: Maney =0 ManeyBox
. 1 1
/%\L___‘Wid»kR_ﬁ 1 Sheff ™ 171%
SheffSelectBtn ! isEmpty: Boolean IS
, drinkPrice: Money EjectBin
1 1
1 | nhxnl\\?lF
FAN
DQ}EY PricePanel

Fig. 3. Concept model for the DVM

Protocol Model: with the Protocol model it is possible to specify the dynamic
behavior of the system over logical time. This model is expressed by means
of state machines which capture the way the system responds to requests
depending on its current state.

Operation Model: the Operation model defines the requests that the sys-
tem is able to answer and how these effect on the system’s state. Besides
defining the parameters of an operation, this model defines its pre- and post-
condition. The pre-condition describes assumptions about the state of the
system before the operation is executed. The post-condition describes how
the state of the system evolves after the operation is executed and which

output messages are produced. The next example describes an operation for
the DVM:

Operation: DVM::insertMoney (m: Money);
Description:

Use Cases: buy drink;
Aliases:
Messages: Display::{DisplayMoney; DrinkNotAvailable; InsufficientFunds};
MoneyBox: : {ReleaseMoney;};
Pre:
Post:
self.display~drinkNotAvailable(false) &
self.display insufficientFunds(false) &
if not self.outOfService then -- condition
ensures that money box is not full.
self.amountRegistered = self.amountRegistered@pre + m &
3self.display”displayMoney (self.amountRegistered)
else
self .moneyBox releaseMoney ()
endif;

4 Test Case Generation Machinery

In this section we will describe our approach to the generation of test cases from
a Fondue model. We start by giving an overview picture of the process we are
putting in place and in a second phase we focus on each of the individual parts
of that process.

We can define Test Case as a pair composed of a sequence of requests
on the SUT /expected outputs, and a verdict. The verdict belongs to the set
{true, false} and reflects the validity of the sequence of requests against the
expected behavior of the SUT, as defined in the specification.

This definition allow us to search for test cases that should be both accepted
and not accepted by the SUT. The implementation relation requires strict respect
of the model behavior.

4.1 The Test Case Generation Framework

The activity of test case generation can be seen as the process of finding a set of
test cases which is pertinent and finite. Pertinence means that: the test set will
discard a SUT if it does not fulfill the expectations; the test set will never reject
a correct SUT.

Having in mind that the application under test may allow infinite sequences
of events or an input value may belong to an infinite domain, the process we
are putting in place needs to provide the tools to reduce the initial test set to a
finite one that is pertinent.

In Fig. 4 we depict the full picture of the process of test case generation we are
investigating. In the figure the arrows represent activities and the ellipses/circles
represent artifacts involved in the process. The process is divided in two different
parts: the left side of the figure represents the test case generation process; the
right side, their application, results and the various components that are used.
In this subsection we will focus on the part of the process that concerns how the

tests are generated - this means that all references to Fig. 4 are related to its left
side.

o
/ Tes(\\
| Generation |

Machinery /
\ / suUT
= ‘\ > v Interface
g |:;l\\ \ ~
) _= \\
Test validation + o .s[gl SUT
s /
Spec. hypotheses = - \) fimplementation,
Hypotheses about “\ § 2
SUT behavior Mapping
—
. v
Selection) ———_ Q é
Criteria Obsenes
........ @ -
Qbservability
hypotheses [Tes':
Results

Fig. 4. Test Case generation process

The bent arrow coming from the the Model denote the activities of deriving
from the specification: the signatures® of the possible operations over the SUT
and a behavioral model of the SUT. During the test case generation process the
operation signatures are organized in sequences that form the test cases. On the
other hand, it becomes necessary to validate those sequences, i.e. to find the
verdict for the test case. The behavioral model is an executable model derived
from the specification that allows the automatic manipulation of an abstract
state space of the SUT.

The process we describe in Fig.4 is not fully automatic. The bottom left
matchstick man represents human interactions while providing heuristics that
reduce the initial infinite test set. These heuristics are provided as hypotheses
over the shape of the test cases to be generated. These hypotheses are based on
temporal logic formulas that allow us to express test intentions for COOPN spec-
ifications. The input/output pairs mentioned earlier in this paper, are expressed
by the temporal logic formulas which are the main basis of the test/constraint
language that is under development by our group. In general, we encapsulate the
temporal logic using a language of constraints and the graphs of input/output
pairs that they represent correspond to: operations performed on the system -
input; observable results of the operations - outputs. The hypotheses (bottom
bent arrow in the figure) may be provided either as patterns over the sequence
of operations — path hypotheses; or as constraints over the parameters of those
operations — value hypotheses.

2 The signature of an operation is composed of the operation name and the name and
type of each of the operation’s parameters.

The remaining part of the process that we are analyzing has to do with
the iterative refinement of the test cases: the test engineer expresses hypotheses
about the functioning of the SUT that narrow the initial infinite test set. If the
produced test set is not yet the expected one, another more refined iteration of
the process is done.

4.2 Deriving the Behavioral Model

The behavioral model is the component that allows the automatic exploration
of the state space derivable from the specification of the SUT. However, the
step of turning a Fondue model into a sort of high level prototype of the final
application is not trivial.

We split our test case generation research project in two main areas: model
treatment — meaning extracting from the Fondue model a functional behavioral
model — and generating test cases using that behavioral model. In between,
we have an intermediate format: representation of the SUT using CO-OPN. The
reason why we have chosen CO-OPN is the fact that we have already a translator
that transforms it into Prolog. The Prolog result of this transformation can then
be used to explore operationally the behavior of the specification. This means
that the UML model has to be interpreted into a CO-OPN specification and that
the test case generation engine will pickup from there. We have built a Prolog
runtime engine (described by Buffo and Buchs in [6]) CO-OPN that allows us to
manipulate automatically the state space produced by the UML specification.

The runtime engine is able to simulate the evolution in the state space of
the model as operations are applied to it. In fact, we are able to represent in
Prolog both the model itself — in the CO-OPN — and the state space produced
by it. Since Fondue is an object-oriented approach, the runtime engine has to
know how to deal with such concepts as: object management, polymorphism,
navigation through associations between classes and concurrency®. The next
example shows (a part of) the concept diagram of the DVM (in Fig.3) in our
intermediate format:

Class DVMController;
Interface
Methods
put _ outOfService : Boolean;
get _ amountRegistered : Monmey;
Body
Places
outOfService : Boolean;
amountRegistered : Money = 0;
End DVMController;

3 The work on concurrency is inspired by our research on expressing the operational
semantics of CO-OPN.

Class DMVShelf;
Interface
Methods
isEmpty : Boolean;
drinkPrice : Money;
End DMVShelf;

Class ControllerShelfAssociation;
Morphism

DVMControllerInstance -> DVMShelfInstalce;
End ControllerShelfAssociation;

The two classes in the system — DVM and Shelf — are defined as well as the
composition association between them.

The behavior of the Fondue operations is translated into pre- and post con-
ditions of the intermediate format. Meta rules defined in the runtime kernel
provides rules for: embedding local states of each pre and post condition into
the whole object system; managing the synchronizations between sub-systems;
compute concurrent behaviors as well as sequence of operations. These meta-
rules are inspired by the transactional and concurrent semantics of the CO-OPN
formalism. In the future we expect to be able to deal, using all CO-OPN features,
with composition of Fondue subsystems and with concurrency related behaviors.
A pre or post condition has the form IFprepost(event,pre,post) :- body where:

event = with(operation,emitted events) is the behaviour of the operation
operation described for a given structure of events emitted (emited events).
The emitted events can be structured with sequential, non-determinism and
simultaneity operators. Creation operators can also be included into this
event structure;

pre and post describe the states before and after the operation occurs.

body is a collection of constraint that must be fulfilled by the variables that
can appear into the event, pre and post expressions.

We use the runtime engine to: verify whether a concrete test case (in other
words, an execution trace) exists? in the state space of the model; find test cases
that obey to certain criteria (e.g. if the criteria is ¢rue, then Prolog would return
all successful test cases, meaning all the possible execution traces of the specifi-
cation).

Although the runtime engine for the intermediate format already exists and
the intermediate format itself is nearly stable, all the interpretation machinery
that will convert the Fondue model into a CO-OPN model is under development.
We are counting on doing this by expressing the model in a tool for representing

4 Prolog replies yes or no depending on whether the test case is executable or not.

UML/Fondue diagrams®. The tool provides the functionality that allow us to
export the diagrams using the XML Meta Data Interchange (XMI). This XMI
can then be loaded by any implementation of the Meta Data Repository (MDR)
and the navigation within the exported model is enabled by means of Java
Metadata Interface (JMI). A set of well defined transformation rules provide
the functionality to map a Fondue model into a COOPN one. This part of
the work is being developed at the time that this paper is being written and
the general approach is to use Model Driven Architecture (MDA) technics and
Meta-Model levels both to concretize a transformation definitions between the
two models. It is also our objective to use standard approaches to implement a
transformation tool that will allow to systematize and automatize this part of
the Test Generation framework.

4.3 Applying hypotheses

To express the heuristics that help excluding from the final test set the ones
that aren’t relevant, we have defined a language to express hypotheses about the
functioning of the SUT. The rationale behind the approach is that the stronger
the hypotheses, the more important the reduction in the exhaustive test set. We
have built a theory[7] behind the concept of applying hypotheses that reduce
the exhaustive test set without losing pertinence.

As was previously mentioned in the paper and shown in Fig. 4 there are two
main variables over which it is possible to express hypotheses: paths, meaning
the form of the sequences of operations; values, meaning the parameters of those
operations. In what concerns paths, the hypotheses are given by regular expres-
sions that allow the definition of sequences of operations. The language makes
use of the operators: * for zero or more repetitions; + and one or more repeti-
tions; AN D and OR for connecting sequences of operations. For convenience we
have also defined a lowerT operator that bounds the upper limit of repetitions
of an operation. As an example assume we have operations z and y in our SUT.
With the hypotheses z*y OR z, possible test cases would be yz, xy or zzzyz.
In what concerns values, we can apply two types of hypotheses:

Uniformity: if a test case containing a variable v is valid for one value of v,
then it is valid for all of v’s domain. This type of hypotheses can be compared
to random testing;

Regularity:: if a test case containing a variable v is valid for a subdomain of v
satisfying a given complexity criteria, then it is valid for all of v’s subdomains
of greater complexity.

Uniformity hypotheses can be seen as a particular case of the regularity
hypotheses where the subdomain under test only contains one element.
The next example shows a Prolog goal that calculates a test set for the DVM:

® Any CASE tool that could provide the possibility to endorse a Fondue Mod-
ule can be used. For the moment, we’re using a module of Fondue for Together
(http://www.borland.com/together/)

solve([pattern(_,and(star(ev(insertMoney(1),_),N),ev(selectDrink(S),_)),L),
lowerT(nat,N,5)]) ,uniform(L),valid(L,true).

The goal can be splited into three parts:

1. prefixed by the predicate solve® states an hypotheses over the path that
reduces the focus to sequences of five insertMoney operations followed by
one select Drink operation”;

2. prefixed by the predicate uniform chooses randomly one value for all the
variables that remain uninstantiated in the test set. In this case the only
uninstantiated variable is the type of drink (denoted by S).

3. prefixed by the predicate valid validates the previously obtained test sets
against the behavioral model in order to find their verdict. In this case we are
only interested in tests that are accepted stated here by the true parameter.

Since the mechanism for automatically generating the behavioral model is
not implemented, we have coded by hand a behavioral model of the DVM. This
allowed us to run the Prolog goal stated above and to obtain the test set:

with(selectDrink(Water), [insufficientFunds])

with(insertMoney(1),[]), with(selectDrink(Fanta), [insufficientFunds])

with(insertMoney(1),[]), with(insertMoney(1),[]), with(selectDrink(Fanta),
[giveDrink(Fanta)])

In fact, five test cases are generated by the engine but due to their size we
only present three. It is possible to see that the mechanism generates sequences
of operations along with their expected outputs.

4.4 Subdomain Decomposition

While discussing the application of uniformity hypotheses we mentioned that it
can be compared to random testing. In fact, applying uniformity over a variable
with a given domain will yield a single value from that domain, picked at chance.
Although this hypotheses is useful, it can be refined.

Consider for example that in the application of the hypotheses in Sec. 4.3,
Pag. 11, we have not a sequence of insertMoney(1) operations but rather one
single insertMoney(N) operation — where N represents the number of coins to
insert — followed by the selectDrink(S) one. In this case, a uniformity hypotheses
applied over NV and S would produce one single test case with IV and .S instan-
tiated to random values. The interest of this test set is arguable.

To improve the situation, one can reason about the interesting values that
N can assume. There are three situations that can be induced by values of N:

5 The solve predicate is related to the fact that we have substituted Prolog’s SLD by
another resolution mechanism to better fit our needs

" In our Prolog representation, the % operator is expressed by the predicate star and
the + operator by the predicate plus.

— it N €{0,..,priceof drink S — 1} drink S is not distributed;

— if N € {priceof drink S} drink S is distributed,;

— if N € {priceof drink S + 1..00} drink S is distributed and the excess money
is given back to the client;

Ideally, a uniformity hypotheses over N would produce not only one but three
values, corresponding to each one of the three situations stated above. This can
be done by searching the behavioral model of the specification symbolically in the
sense that the points of decision are explored for both true and false conditions.
At the end of this exploration, each possible execution path will be represented
by a set of constraints on variables (operation parameters) produced by the
accumulation of conditions at each of the points of decision. The final step will
be to instantiate the variables participating in the set of constraints that denotes
each execution path. The implementation of this mechanism is done in Prolog
with resolution stopping at the decision points.

5 Application of Test Cases

Finally, it is necessary to apply to the SUT the tests produced by the process
described in the previous section. In Fig. 4 this step is expressed on the right
side of the picture. As can be seen, a piece of machinery called the test driver is
needed in order to apply the sequence of operations to the SUT must to observe
if the outputs correspond to the expected ones. The top matchstick man acts
as an intermediary between the Model, SUT interface and the test driver. The
signatures of the operations are derived from the Model and, since there is a
relation of 1 to 1 between the specification and the SUT connect, we can then
interface the test driver to the SUT interface by means of mapping rules.

Coupled with the test driver is the oracle, which is a decision procedure that
decides whether a test case should pass or fail. The user (bottom matchstick
man) provides observation hypotheses that will be used by the oracle to decide
wether the test is accepted or not. A test case accepted by the model should be
accepted by the SUT and vice-versa for one that is not accepted. If this is the
case the SUT passes the test, otherwise an error is detected.

We have implemented a very simple DVM on the web that allows all the main
interactions described by the problem statement in Sect. 3.2. The user is capable
of (virtually) buying a drink by clicking on an insert money link a number of
times and then clicking a link corresponding to name of the drink to choose it.
We have put online two DVMs, one functioning correctly and one that takes the
money but does not distribute the drink.

In order to find the error we applied the test cases that were found in
Sect.4.3. To apply the tests we have used a trial version of a tool called As-
tra QuickTest”™ . The tool provides facilities to test web pages by providing
unitary actions that can be assembled into test cases. A small translator script
was written to pass from the abstract test case format (see ?7?) to the language
of Astra QuickTest”™ . An example of a test case translated into the driver’s
language is shown in the following lines:

Browser ("The Drink Vending").Page("The Drink Vending").Link("Reset DVM").Click
Browser ("The Drink Vending") .Page("The Drink Vending").Link("Insert 1 coin").Click
Browser ("The Drink Vending") .Page("The Drink Vending").Link("Insert 1 coin").Click
Browser("The Drink Vending").Page("The Drink Vending").Link("Choose 1 Fanta").Click
Browser ("The Drink Vending").Page("The Drink Vending").Check CheckPoint("Heres your")

In this specific case the test driver tool is coupled with the oracle since Astra
QuickTest 7™ decides automatically whether a test case passes or not.

6 Related Work

A large number of papers on model-based test case generation exists in the liter-
ature. However, not many deal with models expressed in semi-formal languages
such as UML.

At the university of Franche-Comté an approach to test case generation sim-
ilar to ours is being developed. Legeard and Peureux explain in [8] their method
which consists in: translating a UML specification into a program in an adapted
logic programming language similar to Prolog; explore symbolically the state
space of the model searching for values for parameters of operations that are in-
teresting to test. The procedure is an evolution of what we described in Sect. 4.4.

Pretschner et al explain in [9] their approach which starts from a model de-
scribed in AUTOFOCUST™ | a tool based on UML-RT (for Real-Time systems).
The framework also makes use of a logic programming language to explore sym-
bolically the state space.

7 Future Work

This paper describes work that is in progress. In the agenda for the next steps
the coding of the algorithms that will translate a Fondue model into the CO-
OPN and the operational implementation of full sub-domain decomposition. At
the same time we are re-evaluating our hypotheses language with the goal of
specializing it — a catalog of domain-dependent hypotheses is something we are
looking into — and also to develop a graphical user interface for the expression
of hypotheses based in a formalized test/constraint language.

8 Acknowledgements

The present work is part of the VeDiSS project which is partially funded by
HaslerStiftung, DICS initiative.

References

1. Binder, R. V.: Testing object-oriented software: a survey. Journal of Testing, Veri-
fication and Reliability, 6:125252, 1996.

. Doong, R.-K. and Frankl, P. G.: The ASTOOT approach to testing object-
oriented programs. ACM Transactions on Software Engineering and Methodology,
3(2):101130, 1994.

. Bernot, G., Gaudel, M.-C., and Marre, B.: Software testing based on formal spec-
ifications: a theory and a tool. IEEE Software Engineering Journal, 6(6):387405,
1991.

. Biberstein, O., Buchs, D. and Guelfi, N.: Object-oriented nets with algebraic specifi-
cations: The CO-OPN /2 formalism. In G. Agha and F. De Cindio, editors, Advances
in Petri Nets on Object-Orientation, Lecture Notes in Computer Science. Springer-
Verlag, 1998.

. Strohmeier, A.: Fondue: An Object-Oriented Development Method based on the
UML Notation. In X Jornada Técnica de Ada-Spain, Documentacién, Lunes 12 de
Noviembre 2001, ETSI de Telecommunicacién, Universidad Politécnica de Madrid,
Madrid, Spain, November 2001.

. Buffo, M. and Buchs, D.: Symbolic simulation of coordinated algebraic petri nets
using logic programming. To be published: internal note, University of Geneva, 2004.
. Péraire, C., Barbey, S. and Buchs D.: Test selection for object-oriented software
based on formal specifications. In Proc. of Programming Concepts and Methods
(PROCOMET) 98, pages 385-403, 1998.

. Legeard, B. and Peureux, F.: Génération de séquences de tests a partir d’une
spécification B en PLC ensembliste. In Proc. Approches Formelles dans 1’ Assistance
au Développement de Logiciels, pages 113-130, June 2001.

. Pretschner, A. et al: Model-based test case generation for smart cards. In Proc.
Formal Methods for Industria Critical Systems, 2003.

