
A Test Selection Language for CO-OPN Specifications

Levi Lúcio, Luis Pedro, Didier Buchs
University of Geneva

Centre Universitaire d’Informatique
24, rue du Ǵeńeral-Dufour CH-1211 Geǹeve 4, Switzerland

Levi.Lucio,Luis.Pedro,Didier.Buchs@cui.unige.ch

Abstract

In this paper we propose a test language that allows ex-
pressing test intentions for CO-OPN (Concurrent Object-
Oriented Petri Nets) specifications - a formal specification
language designed to handle large complex concurrent sys-
tems.

Our test language is based on temporal logic formu-
las for expressing graphs of input/output pairs - the inputs
correspond to operations performed on the system and the
outputs to the observable results of those operations. We
encapsulate the temporal logic using a language of con-
straints, which purpose is to shape the tests that are to be
produced. In this paper we discuss the syntax and provide
the semantics of this test language. One of our main worries
while designing the test language were to keep it modular
in order to promote reusability. Another worry was to be
able to cope with non-determinism coming from the system
under test. We illustrate managing non-determinism as well
as other features of our language by showing how we can
generate tests for the login part of an e-banking system.

A framework for editing CO-OPN specifications exists
and one of its features is the possibility of automatically
generating high level Java prototypes that can be com-
pleted/extended by human developers. We discuss the appli-
cability and the usefulness of our test language while veri-
fying systems built using this methodology.

1. Introduction

CO-OPN (Concurrent Object-Oriented Petri Nets) is a
formal specification language built to allow the expression
of models of complex concurrent systems. Its semantics is
formally defined in [1], making it a precise tool not only
for modeling, but also for prototyping and test generation.
CO-OPN’s richness gives us the possibility to specify in a
formal fashion models of the systems we will further use
as the System Under Test (SUT). It groups a set of object-

based concepts such as the notion of class (and object), con-
currency, sub-typing and inheritance that we use to define
the system specification coherently regarding notions used
by other standard modeling approaches.

Our development approach encompasses three steps:
Analysis− Prototyping− Implementation. After the first
phase of analysis we get a specification model in CO-OPN.
This model will be used to test (meaning test generation and
verification) the fruit of the implementation period - what
we call the System Under Test (SUT).

Using CO-OPN we can profit from the advantages of
having the system specified in a formal language: the un-
ambiguous representation of the system; the easy reusabil-
ity based on the fact that, usually, formal expressions are
mathematically based and by definition independent of the
time; also the fact that testability and verification are more
precise as more independent of the context. As such, CO-
OPN is the basis for our test selection language.

1.1. The test generation process

Our test generation process is based on the fact that we
assume having a correct specification of the SUT. This spec-
ification can be compared with the SUT in order to track
discrepancies which will indicate errors (see [6] for details
on the subject). This comparison can be achieved by means
of tests, which consist of graphs of input/output pairs vali-
dated by the specification. If a test is a valid behavior of the
specification, it should also be a valid behavior of the SUT.
Conversely, a test that describes an invalid behavior of the
specification should not be validated by the SUT. An ade-
quate formalism must be chosen in order to guarantee the
correctness of the test process w.r.t. the implementation re-
lation. However this subject is out if the scope of this paper
and we direct the interested reader to [7].

The main problem to cope with, while following this ap-
proach, lies in the fact that, in the general case, it is impos-
sible to test all the possible behaviors of an SUT. Imagine
an operation over the SUT that takes in a parameter from

Figure 1. Test set reduction by hypotheses’
application

an infinite domain (e.g. natural numbers): a set of tests
that would try all possible calls to that operation would be
infinite. The same could be said about trying all the possi-
ble behaviors of an operation that loops. For example, how
does one know if after 100 deposits using an e-banking sys-
tem, one’s account will not be emptied? It is impossible to
assume with complete certainty the operation is correctly
implemented unless the loop is executed an infinite amount
of times.

Given the above, in the general case the test set that
would cover all the possible behaviors of an SUT – theex-
haustive test set– would be infinite. Since it is impossible
to apply an infinite test set to an SUT in finite time, it is
necessary to reduce the exhaustive test set to a finite one,
while keeping pertinence. A pertinent test set is one that is:
valid, meaning all correct SUTs satisfy the test set;unbi-
ased, meaning only correct SUTs satisfy the test set.

Our reduction technique consists of stating hypotheses
about the functioning of the SUT (inspired from the work
of [4] and [3]. These hypotheses are generalizations of the
behavior of the SUT. A possible generalization would be”if
the e-banking system logs in correctly a set of three different
users, then it logs in correctly all users”. Another would
be”if the e-banking system performs 10 deposits correctly,
then all deposits are performed correctly”.

Figure 1 is meant to be read from top to bottom and de-
picts the reduction of the exhaustive test setT0 to aTk one
that is finite and pertinent. This is done by stating hypothe-
sesH0 throughHk about the SUT. The assumption that the
test setTk is pertinent only holds if the hypotheses stated
are actually satisfied by the SUT.

In [5] we have discussed extensively the problem of de-
ciding whether a test generated using this approach is valid
or invalid according to the specification. We have also dis-
cussed how we apply valid or invalid tests to an SUT and
check their satisfaction. In the present paper our interest is
focused on the syntactic generation of tests that obey the
constraints posed by hypotheses on the SUT. We will thus
describe a constraint language for CO-OPN specifications
that allows a test engineer to express these hypotheses.

2. Requirements

In order to define the test selection language that will
allow expressing hypotheses about the SUT we need to es-
tablish the requirements for this language.

Given we want to test CO-OPN specifications, one of the
requirements is that the structure of the language follows
closely the philosophy of the CO-OPN specification lan-
guage. Another significant issue is the fact that we should
be able to integrate the test language in a development envi-
ronment and in particular to be able to easily interface with
development tools that allow fast iterations in theprototyp-
ing − testing− prototypingprocess. Since CO-OPN pro-
vides an infrastructure for automatic code generation [2]
(e.g. Java), it will allow us to integration out test generation
language in a development environment.

We would also like to be able to cope with a certain de-
gree of non-determinism coming from the SUT, as well as
to promote reusability of tests we express in our language.

2.1. Philosophy of the CO-OPN specification lan-
guage

CO-OPN is a specification language suitable to specify
complex reactive software which proprieties and interaction
with the environment need to be captured. The CO-OPN
object oriented modeling language is based on Algebraic
Data Types (ADT) and Petri Nets. It provides a syntax and
semantics that allow using object oriented concepts for sys-
tem specification. The specifications are then a collection of
ADT, classes and context modules. The interaction with the
environment is produced by CO-OPN coordination modules
which are in fact the classes and context.

Generally, each module encompasses, syntactically
speaking, the following structure:Name- which represents
the name of the module;Interface- that mainly comprises
the types and elements accessible to the outside;Bodythat
includes the internal (private) information of the module. In
addition, theBodysection includes different parts likeAx-
ioms - operations’ proprieties expressed by means of equa-
tions;Usefield that indicates the list of dependencies from
other modules.

2.2. Test reusability

We need a way to define for each specification module
basic constraints that can be reused in other constraint mod-
ules - that can be associated to the composition of specifi-
cation modules. Naturally, constraints can be glued using
a conjunctive semantics (constraint refinements) and also
a kind of shuffle semantics (for union specification com-
position). The hierarchy of constraints will not follow the
specification module hierarchy but mainly reflect the testing

2

Constraints

HML

CO-OPN

Figure 2. The three layers of the test selection
language

process strategy. It thus seems important to be able to de-
velop some kind of ”design for testing” and consequently to
provide testing modules during the specification design pro-
cess. Integration testing will provide modules that glue ba-
sic test patterns in order to form an adapted testing strategy.
This is why basic constraints must reflect not only usable
tests but pattern of properties that will serve in the elabora-
tion of integration testing selection.

2.3. Dealing with non-deterministic SUTs

An SUT may respond non-deterministically to a given
input. Let us introduce an example: it is common practice
for banks to provide their e-banking clients paper cards dis-
playing a grid of strings indexed by a coordinate. These
cards are used for authentication while logging into the e-
banking service since at some point the system asks for the
string corresponding to a randomly generated coordinate.

Imagine one would like to generate a test that would ver-
ify that by introducing the string corresponding to the pro-
posed coordinate the user would succeed that login step. If
a SUT always responds deterministically to inputs, it is pos-
sible to calculate in advance the full graph of input/output
pairs that make up a test. In the present e-banking login ex-
ample, we do not know which pair of coordinates the sys-
tem is going to propose. To make the login step succeed
we would then have to calculate the reply to the proposed
coordinate not during test generation time, but rather in test-
ing time – while the test is being applied to the SUT. This
implies building partially instantiated tests.

3. Syntax and Semantics

The test selection language we propose is composed
of three layers, namelyCO-OPN, HML (Hennessy-Milner
Logic) andConstraints(see figure 2). Informally, the pur-
pose of each layer is the following:

• CO-OPN: to describe input/output pairs over a CO-
OPN specification of the SUT. In an input/output pair

the input corresponds to a CO-OPN method call and
the output corresponds to the message resulting from
that method call;

• HML: this elementary temporal logic allows the ex-
pression of graphs of events. For our testing purposes
these events will consist of input/output pairs over a
CO-OPN specification. A test can be seen as a ground
HML formula;

• Constraints: using the Constraints layer we are able
to specify high level hypotheses about the functioning
of the SUT. These hypotheses are expressed as con-
straints over HML formulas.

In the following paragraphs we will describe the abstract
syntax and the semantics ofHML andConstraints. These
semantics will be provided in an informal fashion.

In what concerns theCO-OPN level we will also men-
tion that method calls as well as the results produced by
them can include parameters. Our language includes vari-
ables over an events’ input, output or their respective pa-
rameters.

3.1. HML

HMLSP stands for the language of HML formulas over
a given CO-OPN specificationSP . In the following defi-
nition of the abstract syntax ofHMLSP , T represents the
always true constant andEvent(SP) is the set containing
all the input/output pairs overSP .

• T ∈ HMLSP

• f ∈ HMLSP ⇒ (¬f) ∈ HMLSP

• f ∈ HMLSP ⇒ (f ∧ g) ∈ HMLSP

• f ∈ HMLSP ⇒ (< e > f) ∈ HMLSP

wheree ∈ EventSP

The semantics ofHMLSP can be defined in terms of
the satisfaction relation betweenHMLSP formulas and the
transition system denoted by specificationSP . This transi-
tion system is a quadruple〈Q,Event(SP),→, i〉 whereQ
is the set of all states inSP , → is a function1with signa-
tureQ × EventSP → Q andi is an the initial state of the
transition system. Given a stateq ∈ Q:

• T is always satisfied by specificationSP starting from
stateq;

• (¬f) is satisfied by specificationSP starting from
stateq, if f is not satisfied bySP starting from stateq;

1We define→ as a function in order to avoid internal non-determinism
not directly observable through the events.

3

• f∧g is satisfied by specificationSP starting from state
q if f is satisfied bySP starting from stateq andg is
satisfied bySP starting from stateq;

• < e > f (read evente followed by HML formulaf)
is satisfied bySP if starting for a stateq ∈ Q there
is an evente ∈ EventSP leading toq′ ∈ Q andf is
satisfied bySP starting from stateq′.

In the concrete syntax all HML formulas will be pre-
ceded by the keyword ”HML” and the symbols ”¬” and
”∧” will be replaced by ”not” and ”and”, respectively. An
example of an HML formula over an hypothetical CO-OPN
specification for an e-banking SUT would be:

HML <userName("smith"),loginOK>
<password("my_pass"),passOK> T

This HML formula is a test that consists of a simple se-
quence of two events. In the first one the user inserts a login
”smith” and gets a message saying the login is correct. In
the second the user introduces a password”my pass” and
the system replies saying it is the correct password.

Operators¬ and∧ are used for discriminating differ-
ences in non-deterministic SUTs, although we will not ex-
plore this topic in this paper. Again, the interested reader is
pointed to [7].

3.2. Constraints

In our theory of testing, hypotheses about the func-
tioning of the SUT may be described as constraints over
the exaustive test set. Since we describe tests in terms of
HML formulas we need a language with which we can
constraint HML formulas. From here on in this paper we
will employ the termconstraintto mean a constraint over
HML formulas.

Figure 3 depicts the high level concrete syntax of our
constraint language. Following the philosophy of the CO-
OPN specification language, we have decided to define the
constraint language at two syntactic levels: a high level
including all the sections necessary to define a constraint
module – aConstraintSet; a low level where the constraints
themselves are built. We start by describing the purpose of
the sections of the high level syntax:

• Interface: the interface defines the constraints that are
exported from the module and that can be used (com-
posed with others) to build test sets. It includes only
one sectionConstraintswhere the names of the ex-
ported constraints are declared;

• Body: the body declares the properties necessary to the
construction of constraints. It includes five sections:

ConstraintSet Name;
 Interface
 Constraints
 ...
 Body
 Constraints
 ...
 Use
 ...
 Axioms
 ...
 Variables
 ...
 External
 ...
End Name;

Figure 3. High level structure of a Con-
straintSet module

– Contraints: declares the constraints defined lo-
cally to help in the construction of the exported
constraints. They are not exported from the mod-
ule;

– Use: declares constraints that are imported from
otherConstraintSetmodules;

– Axioms:declares axioms and rules that establish
constraints as sets of HML formulas;

– Variables: establishes the type of the variables
used in the definitions of theAxiomssection;

– External: declares functions used in HML for-
mulas during testing time (as opposed to test gen-
eration time). The purpose of these functions is
to calculate values over of non-deterministic out-
puts of the SUT.

In figure 4 we present the grammar that produces the ab-
stract syntax of theAxiomssubsection of aConstraintSet
module. Non-terminal symbols are written in normal font
and terminal ones are written in bold face.

From the remaining sections of aConstraintSetmodule
all but theVariablesone are composed of lists of names.
TheVariablessection consists of a set of variable declara-
tions of the form:

v1, v2, ... vn : type

The language in figure 4 allows us to express sets of
axioms or rules (production axiomSetof the grammar)
which define constraints – in other words, sets of HML
formulas. Each axiom or rule has the form:

4

axiomSet ::= axiom axiomSet
 | axiom
 | ε

axiom ::= condition => assignement
 | assignement

assignement ::= name in formulaSet
 | [] in formulaSet

formulaSet ::= hmlFormula . formulaSet
 | name . formulaSet
 | hmlFormula
 | name

condition ::= atom & condition
 | atom
 | ε

atom ::= assignement
 | logicalOperation
 | uniformity(name)
 | subuniformity(name)

logicalOperation ::= expression = expression
 | expression != expression
 | ... repeated for <,>,<=,>=

expression ::= term + expression
 | term - expression
 | ... repeated for *,/
 | term

term ::= boolean
 | name
 | nbEvent(formulaSet)
 | depth(formulaSet)
 | nbOccurence(formulaSet,name)
 | onlyConstructor(formulaSet)
 | onlyMutator(formulaSet)
 | onlyObserver(formulaSet)
 | sequence(formulaSet)
 | positive(formulaSet)
 | trace(formulaSet)

boolean ::= true | false

name ::= ... any alphanumeric string started
 by a letter ...

Figure 4. Abstract syntax of subsection Ax-
ioms

[condition =>] assignment

An axiom corresponds to anassignment. An assignment
allows including an HML formula into a constraint. For
example, assumingf is declared in theVariablessection as
being of type HML andEnterLogin is declared as a con-
straint is theConstraintssection, the following assignment
(or axiom) would be valid:

f in EnterLogin

A rule includes acondition and anassignment. The
condition consists of a conjunction ofatomswhich shape
the HML formulas that are used on theassignmentpart of
the rule. Axioms and rules allow recursive definitions of
constraints. Consider for example:

[] in LoginWrong

f in LoginWrong =>

f.HML 〈login("undef user"),LoginError 〉T ∈ LoginFail

With the axiom in the first line of the definition and
the rule spanning over the second and third lines we
are able to establish recursively theLoginWrong set of
all HML formulas which are sequences of the event
〈login("undef user"),LoginError 〉. The [] symbol
represents the empty HML formula.

As can be seen in figure 4 acondition is made out of
atoms which can beassignements, logicalOperations ,
emphuniformity orsubuniformitypredicates. Uniformity
predicates act on variables defined at the CO-OPN level,
as parameters of the input part of an event. Consider the
following rule:

uniformity(x) => 〈login(x),LoginOK 〉 in TestLogin

x is a variable defined at the CO-OPN level and corre-
sponds to any username that is available in the specification
while generating tests. Theuniformity predicate selects
only one value from the domain of the variable, which
means that theTestLoginconstraint will contain only one
HML formula where the value forx is chosen randomly
from the available values in the specification. In terms of
hypotheses about the SUT this means that we rely on the
fact that testing the success of thelogin operation with only
one user is enough. Consider now the rule:

subuniformity(x) => 〈login(x), y〉 in TestLogin

The rule is similar to the one before, but we have
also defined a new CO-OPN variabley corresponding to
any output of the login operation (in our specification either
LoginOK or LoginWrong). In this case thesubuniformity
predicate will decompose the behavior of thelogin opera-
tion according to its possible outputs and will instantiate
x to a set of values, one (randomly chosen) per possible
output. This said, the rule would put in theTestLogin
constraint two HML formulas, one with a username that
exists and aLoginOK output and a second one with a
username that does not exist and aLoginError output.

Regarding logicalOperations, they allow imposing
additional constraints on HML formulas. For example, the
following:

[] in LoginWrong

f in LoginWrong & nbEvent(f) <= 5 =>

f.HML 〈login("undef user"),LoginError 〉T ∈ LoginFail

5

would generate in LoginWrong all sequences of
〈login("undef user"),LoginError 〉 events with
at most five events.

An expressioncan be of typeNatural (set of all num-
bers) orBoolean(true or false). For example:

f in OldConstraint & positive(f)=false =>

f in NewConstraint

chooses only formulas from the previously defined
constraintOldConstraintwhich are negative (meaning they
contain ”not”). The following predicates are also available
in our language:

• depth: number of levels of imbricated ”and” or ”not”
operators in an HML formula;

• nbOcurrence:number of ocurrences of a given event
in an HML formula;

• onlyConstructor: true if all method calls in an HML
formula are class constructors;

• onlyMutator: true if all methods calls in an HML for-
mula modify classes attributes;

• onlyObserver:true if all method calls in an HML for-
mula do not modify classes attributes;

• sequence:true if there are no ”and” operators in an
HML formula;

• trace: true if there are no ”and” and ”or” operators in
an HML formula.

As we have mentioned previously, theVariablessection
of aConstraintSetdefines the types of the variables used in
the declarations of theAxiomssection. The following types
are available:

• Boolean:true or false;

• Natural: set of natural numbers;

• CO-OPN:generic type meaning either a parameter or
an output of a method call;

• HML: HML formulas.

When calculating a constraint defined in aConstraintSet
module, all variables in the axioms and rules are instanti-
ated to their possible values so that all HML formulas cor-
responding to that constraint can be calculated. However,
variables of type CO-OPN that are parameters of functions
declaredexternalare not instantiated and remain free in the
produced constraints. The purpose of these semantics is
made clear by the example in section 4 of this paper.

4. Case study - the e-banking login system

Again, consider as an example SUT a system that allows
a user to login into an e-banking system. The login will be
performed in three steps:

1. the user inserts his/her username that is validated
against a user database. If the username is correct the
system asks for the password;

2. the user inserts his/her password. If correct the system
asks for a challenge which is a coordinate in a card the
bank has provided the user;

3. the user inserts the string corresponding to the re-
quested challenge and becomes logged into the system.

If a user fails three times the password step or five times the
challenge step the e-banking system becomes blocked for
24 hours for that user.

eBanking
Context

sendChallenge(-) error
UserName

error
Passwd

error
Challenge

eUser

loginUser(-) loginPass(-) loginChallenge(-)

ChallengeCard error
UserBlocked

Figure 5. CO-OPN specification for the eBank-
ing sytem

Figure 5 depicts a CO-OPN specification of the SUT.
Three methods (the small black boxes on top) are avail-
able from the maine-bankingcontext – loginUser with
a username parameter,loginPass with a password pa-
rameter andloginChallengewith a challenge parameter.
The system outputs five possible answers though gates
(the four small white boxes below):errorUserName,
errorPasswd, errorChallenge, errorUserBlocked or a
sendChallengemessage with a random challenge param-
eter. The internal contextsChallengeCardand eUser
are not used by the test generation mechanism, although
they represent components that could be tested individually.

There are several tests we would like to perform on the
e-banking login system:

• Is theloginUseroperation implemented correctly?

6

• Does the SUT propose a challenge when the password
is correct? Does it block after three unsuccessfullogin-
Passoperations?

• Does the SUT allow the user access to the e-banking
system when the reply to the proposed challenge is cor-
rect? Does it block after five unsuccessfulloginChal-
lengeoperations?

ConstraintSet e-banking;
 Interface
 Constraints
 login
 badPass

 badChal

 challenge

 Body
 Constraints
 nWrongPass
 nWrongChal

 Axioms
1 HML<loginUser(u),r>T in login;
2 []in nWrongPass;

3 f in nWrongPass & nb_event(f)<5 =>

 HML<loginPass("wrong",r)>T in nWrongPass;
4 []in nWrongChal;

5 f in nWrongChal & nb_event(f)<7 =>

 HML<loginChal("wrong",r)>T in nWrongChal;
6 f in login & g in nWrongPass => f.g in badPass

7 f in login & g in nWrongPass

 & h in nWrongChal =>

 f.g.HML<(loginPass(p),sendChallenge(c)>T in badChal;
8 f in login & g in nWrongPass

 & h in nWrongChal =>

 f.g.HML<(loginPass(p),sendChallenge(c)>T.
 HML<(loginChal(calc_challenge(c),r> in challenge;
 Variables
 u,r,c,p : CO-OPN
 f,g,h : HML

 External
 calc_challenge

End Name;

Figure 6. ConstraintSet module for the e-
banking system

Figure 6 shows an e-bankingConstraintSet. We have
defined four constraints that this module exports:

• login: test all behaviors of theloginUseroperation;

• badPass: test behaviors of theloginPassoperation
when wrong passwords are introduced after a correct
username. Eventually, the user may become blocked;

• badChal: test behaviors of theloginChallengeopera-
tion when wrong challenges are introduced after a cor-
rect username and a correct password. Here also the
user may become blocked;

• challenge: test the success behavior of aloginChal-
lengeoperation after a correct username and a correct
password. Notice that thecalc challengefunction is

declared as external, which means that its parameters
will not be instantiated in the HML formulas produced
by the constraint. Since it is not possible to calcu-
late in advance the challenge that the SUT is going to
propose, we keep the variable holding it uninstantiated
(variablec in rule 8 of figure 6). We can then apply in
testing time thecalc challengefunction the the actual
challenge we find.

5. Conclusions

We have presented a test selection language for CO-OPN
specifications by defining its syntax and semantics. We
think the language is expressive enough to cope with the
main test intentions of a test engineer, while remaining at a
level of abstraction that makes it applicable to a wide range
of SUTs.

This paper represents a first step in developing this lan-
guage and we are aware more work needs to done to bring
it to a mature state. In particular the problem of test selec-
tion reusability needs to be further addressed as well as the
connection between our language and the activity of proto-
typing. Also, we envisage applying our test selection lan-
guage to more extensive SUTs in order to better understand
the language’s advantages and limits.

References

[1] Olivier Biberstein. CO-OPN/2: An Object-Oriented
Formalism for the Specification of Concurrent Systems.
PhD thesis, University of Geneva, 1997.

[2] S. Chachkov and D. Buchs. From formal specifications
to ready-to-use software components: The concurrent
object oriented petri net approach. pages 99–110, New-
castle, 2001.

[3] R.-K. Doong and P. G. Frankl. The astoot approach to
testing object-oriented programs. volume 3(2), pages
101–130, 1994.

[4] M.-C. Gaudel G. Bernot and B. Marre. Software test-
ing based on formal specifications: a theory and a tool.
volume 6(6), pages 387–405, 1991.

[5] L.Pedro L.Lucio and D. Buchs. A methodology an a
framework for model-based testing. pages 52–63, Lux-
embourg, 2004.

[6] Levi Lucio and Marko Samer. Technology of test case
generation. To be published in LNCS.

[7] Cecile Peraire.Formal testing of object-oriented soft-
ware: from the method to the tool. PhD thesis, EPFL -
Switzerland, 1998.

7

