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Abstract. In this paper, we describe our ongoing work on model transformation
chains. Model transformation chains refer to the sequences of model transforma-
tions in Model Driven Engineering (MDE). The transformations represent and
formalise typical model/software engineering activities, and their chaining is the
natural composition of such activities. Model transformation chains found in in-
dustrial practice vary widely, depending on the specific domain they are used in.
By explicitly modelling development activities, these activities can be analysed
and the MDE process may be improved. As a step towards such analyses, we pro-
pose an integrated framework to describe all the artifacts involved in model trans-
formation chains, as well as the means to execute “enact” those chains. We de-
scribe the Formalism Transformation Graph + Process Model (FTG+PM) which
is at the heart of our framework in detail.

1 INTRODUCTION

Model Driven Engineering (MDE) is currently the mainstream top-down approach
to software development. The philosophy behind MDE is that software development
should start by building domain specific structural and behavioral models of the system
under development. By domain specific we mean that initially models of the system
should be described in a language close to the domain being tackled. During the soft-
ware development process those models are then improved, augmented and refined by
the application of model transformations — possibly with the automatic or manual in-
jection of additional information.

Model transformations have been called the heart and soul of MDE [1]. Chaining
model transformations is a natural step in MDE as such chains allow describing the
composition of activities in software construction and provide explicit means for MDE
automation. However, to the best of our knowledge little work is devoted to under-
standing the underlying structure of such chains when they are used in domain specific
software development. This work is crucial for the following (non-exhaustive) list of
reasons:

— Reuse: Model transformation chains are typically devoted to building software
within certain domains. In this paper, we provide an example of the usage of model



transformation chains for building automotive software. As in traditional software
development, the modularity and possibility of reuse of such chains is extremely
relevant from an engineering viewpoint. It seems natural that subsets of a trans-
formation chain developed for a given software engineering purpose can be reused
without much changes for a similar engineering purpose. Moreover, by identify-
ing and classifying subsets of transformation chains responsible for high level ac-
tivities in domain specific software development (e.g. requirements development,
domain-specific design, verification, simulation, analysis, calibration, deployment,
code generation, execution, etc), it is possible to achieve a finer level of under-
standing and control of such activities — in a domain specific or in a more general
context;

Traceability: Traceability is increasingly required in software development at the
stakeholder level (e.g. to ensure a given requirement has been implemented in the
system), but also at the software development level (e.g. to ensure traceability as
high level models are refined along the development process). Because transfor-
mation chains explicitly model the relations between the several steps of an MDE
process, traceability is a natural consequence of using such chains;

Certification: Finally, and possibly most importantly, by having an explicit rep-
resentation of such transformation chains and the models (and metamodels) they
work on, the certification of such processes becomes possible. In certain domains
such as embedded systems, automotive or aerospace, strict norms exist to ensure
each step in software production is performed correctly and is properly documented.
A large effort has been devoted in the last two decades to developing verification
methods for software. The MDE community is now missing studies on how and
when those techniques should be applied, but also how they can be composed in a
meaningful way. Again, model transformation chains are the ideal context to study
the usage and utility of such verification methods for software certification in MDE.

Several studies such as [2-8], among others, have addressed model transformation

chains. However, to perform an investigation on the nature and pragmatic uses of trans-
formation chains we require an environment where all the artifacts involved in such
chains are explicitly formalized, easily accessible and easily manipulated. The major-
ity of the approaches in the literature dealing with transformation chains are concerned
with automated execution. The explicit and integrated representation of all artifacts in-
volved in model transformation chains in a way that makes them amenable to the formal
study of those chains’ characteristics is typically less of a concern. In order to address
this issue and to have a solid basis to study the issues mentioned above, we need a
framework allowing the modelling of model transformation chains that addresses the
following requirements:

1.

2.

An explicit representation of both the languages used in the model transformation
chains and the relations between those languages should be provided;

An explicit representation of the individual model transformations should be avail-
able and the means to execute those transformations should exist;

Explicit process modelling of MDE activities should be possible such that transfor-
mation chains can be built;



4. Automatic execution of transformation chains should be possible. In order to study
the execution of transformation chains and which parts of those chains should be
performed manually, we require that a model transformation chain execution engine
exists.

In order to address these requirements, we propose in this paper the FTG+PM
framework. The proposed framework is completely supported by our tool AToMPM,
A Tool for Multi-Paradigm Modelling [9], which allows explicit modelling of and ac-
cess to, all used artifacts.

This paper is organised as follows: Section 2 provides background information on
meta-modelling, model transformation, and our tooling environment. In section 3 we
introduce our running example, the power window case study. Section 4 introduces the
FTG+PM framework. Section 5 presents the the explicit execution semantics of the
FTG+PM. Section 6 describes in detail an automotive power window case study and
by doing so illustrates the artifacts involved in a model transformation chain. Section 7
discusses related work. Finally, section 8 draws some conclusions on how the FTG+PM
addresses the aforementioned requirements and proposes future studies on model trans-
formation chains.

2 Background

Within the context of this paper we have chosen to follow the terminology as presented
in [10]. A model is completely described by its abstract syntax (its structure), concrete
syntax (its visualisation) and semantics (its unique and precise meaning). A language
(also called formalism) is a possibly infinite set of (abstract syntax) models. This set
can be concisely described by means of e.g., a grammar or a metamodel. No semantics
or concrete syntax is given to these models. Several such languages, called metamod-
els, are used to describe families of models of computational artifacts that share the
same abstraction concerns. Each metamodel is a language that may have many model
instantiations.

Domain Specific Modelling (DSM) captures the fact that certain languages or classes
of languages, called Domain Specific Languages (DSLs) are appropriate for expressing
models in certain domains.

Model transformations involve the mapping of source models in one or more for-
malisms to target models in one or more formalisms using a set of transformation rules.

In this work, we use rule-based graph transformation as the means for model trans-
formation [11]. This requires (meta-)models to be stored as graphs, thus allowing model
manipulations to be defined as graph grammars.

In our work, we have used AToMPM [9], A Tool for Multi-Paradigm Modelling, to
build metamodels, transformations, and execution support for the FTG. AToMPM (the
successor of AToM>[12]) rigorously applies the model and conforming meta-model
workflow to all facets of domain specific modelling. It allows modelling of language
syntax (abstract and concrete) and semantics. The tool supports rule-based graph trans-
formations and pre- and post-condition pattern languages to allow specification of model
transformations. ATOMPM runs on a web browser and provides support for real-time,
distributed collaboration.
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Fig. 1: Example FTG+PM Model

3 THE POWER WINDOW CASE STUDY

In order to explain how our FTG+PM framework addresses the requirements stated in
Section 1 we will use a running example. In Fig. 1 we show a slice of the FTG+PM
we have built for developing the power window control software. The power window
FTG+PM was built based on our experiences with developing automotive software.
Further details on this case study can be found in [13, 14].

A power window is basically an electrically powered window. The basic controls
of a power window include lifting and descending the window, but an increasing set
of functionalities is being added to improve the comfort and security of the vehicle’s
passengers. When given the task to build the control system for a power window, a
software engineer will take several variables into consideration: (1) the physical power
window itself, which is composed of the glass window, the mechanical lift, the elec-
trical engine and some sensors for detecting for example window position or window
collision events; (2) the environment with which the system (controller plus power win-
dow) interacts, which will include both human actors as well as other subsystems of the
vehicle — e.g. the central locking system or the ignition system. This idea is along the
same lines as that presented by Mosterman and Vangheluwe in [15]. According to con-
trol theory [16], the control software system acts as the controller, the physical power
window with all its mechanical and electrical components as the process (also called
the plant), and the human actors and other vehicle subsystems as the environment.

The FTG+PM slice in Fig. 1 presents the design and verification part of developing
the power window software. The case study begins with three domain-specific lan-
guages built for the modelling of power windows (PlantDSL, EnvDSL and ControlDSL
in the FTG part of Fig. 1, allowing respectively modeling the plant, environment and



FTG ControlFlow DataFlow V|

*| |*
Node

* *
ransformation) 1 ActionTypedBy Action Object Control
> >
’ *

outputs inputs ObjectTypedBy

A o ), [ | | | [ |

1 [ Iniial ) Final Fork Join [ Merge | ( Decision )
ActivityFinal [ FlowFinal )

Fig. 2: Formalism Transformation Graph and Process Model (FTG+PM) Metamodel

controller for a power window), plus a network language (not shown in Fig. 1) that
allows the connection of the components defined in those DSLs. Those domain specific
components are separately transformed into modular Petri nets (EncapsulatedPetriNet
in the FTG part of Fig. 1). When all the modular Petri nets have been built, they are
composed into a single Petri net (PetriNet in the FTG part of Fig. 1). This Petri net
can then be used to verify that the system cannot enter a non-safe state. While the left
side of Fig. 1 presents the FTG part of the model detailing the required formalisms and
transformations, the right side of Fig. 1 shows how executions of those transformations
are chained. Note also that in Fig. 1 elements in striped orange denote automatic trans-
formations, while elements in solid gray denote manual ones. The following section
elaborates on the syntax of the FTG+PM language.

4 THE FTG+PM LANGUAGE

The FTG+PM language is defined using two sub-languages: the Formalism Transfor-
mation Graph (FTG) language and a Process Model (PM) language. We give a brief
overview of FTG+PM in this section. The formalization of the language along with
further details on the framework can be found in [17]. A unified metamodel of the
FTG+PM language is shown in Fig 2.

The Formalism Transformation Graph (FTG) is a hypergraph with languages as
nodes and transformations as edges. It lays down the relationships among the multi-
tude of languages and transformations used for the development of a particular system
or systems within a domain. The framework takes into account the heterogeneous na-
ture of the MDE process, and integrates the MDE paradigms: multi-abstraction, multi-
formalism, and metamodelling. The languages at each level in the FTG are used to
represent and model knowledge at different levels of abstraction starting from require-
ments to code synthesis. Depending on the activity involved, we build our FTG by
choosing the most appropriate formalism based on the nature of the problem and the



intention: discrete-event formalisms, continuous time formalisms, hybrid formalisms,
or others. All the languages in the FTG are metamodelled, and the transformations are
specified using rule-based graph grammars. Languages in the FTG are denoted by la-
belled rectangles, and transformations are denoted by labelled circles on edges. The in-
coming edges show the source languages of the transformation, and the outgoing edges
point to the target languages. Fig 1 (discussed in detail in Section 6) shows a slice of
a FTG+PM model for the automotive domain (complete model presented in [14]), and
describes a part of the artifacts and the process necessary to build software to control
power windows of automobiles. The FTG model may include self loops to languages
(for example, when a transformation is endogenous in nature).

The Process Model (PM) (see sample PM in Fig 1 highlighted in gray) is used in
conjunction with the FTG to model the MDE process. Having a process model inte-
grated with the FTG allows us to precisely and in detail model the MDE process we
follow, and to provide execution support for it when needed. The PM exhaustively de-
scribes the control flow and data flow in the MDE process. Our process model is a
subset of the UML 2.0 activity diagram metamodel. In the PM language, the labelled
roundtangles (actions) in the Activity Diagram correspond to executions of the transfor-
mations declared within the FTG. This typing relation is made explicit in the FTG+PM
model by the thin horizontal links connecting the action nodes in the PM to the transfor-
mation elements in the FTG. Labelled rectangles (object nodes) in the PM correspond
to models that are consumed or produced by actions. A model is an instance of a lan-
guage declared in the FTG part of the model with the same label. This typing relation
is again made explicit by horizontal links connecting the object nodes to the language
elements in the FTG. Notice that in a PM model thin edges denote data flow, while thick
edges denote control flow. Notice also that for each model input and output edge of a
PM action a corresponding edge exists for the transformation typing it on the FTG side.
The input and output models of an action are typed according to the input and output
languages of the FTG transformation that types that action. Finally, the join and fork
Activity Diagram flow constructs represented as horizontal bars, allow us to represent
concurrent activities.

The FTG defines a set of transformations and the PM describes the chaining of
the transformations and the execution order for a particular intent. The FTG+PM can
thus be considered to be a model transformation chaining language for describing the
composition of transformations by defining their order of execution, source and target
model types, and the relationships and dependencies among them.

Various business process modelling or workflow languages exist in the literature.
Our intention is to model the MDE process as a chain of model transformations rather
than a business process with models as first class artifacts and with model transfor-
mations as the core of the approach, hence we have chosen to use UML 2.0 activity
diagrams for our purpose. In addition, UML 2.0 is a standard in the MDE commu-
nity, and our tool, AToOMPM (A Tool for Multi Paradigm Modelling) [9] also provides
support for UML. Our framework is supported by AToMPM for creating metamodels,
describing graph transformations, and for building execution support for the FTG.



S FTG+PM SEMANTICS: TRANSFORMATION AND TOOL
SUPPORT

The proposed FTG+PM language is implemented in our AToMPM tool. AToMPM con-
tains its own transformation language. Transformations and transformation rules, in
AToMPM, are treated as normal models conforming to an appropriate meta-model.
Transformation rules, consisting of a left hand side (LHS), a right hand side (RHS)
and a set of negative application conditions (NAC), are tried in an order given by a
rule scheduling model, in this case described in a finite state automaton-like formal-
ism. Since transformation rules and their scheduling are explicitly modelled within
AToMPM using appropriate meta-models, defining higher-order transformations is
straightforward.

To execute a FTG+PM model, we transform the PM to the native transformation
scheduling language of ATOMPM. The result of the transformation of the power win-
dow FTG+PM shown in Fig. 1 to the native AToOMPM transformation language is de-
picted in Fig. 4. A PM action which is mapped to a transformation can be either au-
tomatic (shown as striped orange rectangular nodes) or manual (shown as rectangular
nodes in solid tray color). Manual transformations are not implemented using graph
transformations, but involve actions in which the output models need to be created by
the user(s).

The transformation schedule is created as follows: (1) a PM Action node tagged as
automatic corresponds to the execution of a transformation defined in the FTG Trans-
formation node typing it; (2) transformations are scheduled according to the control-
flow defined in the PM. An example rule of this transformation from FTG+PM into
AToMPM’s transformation scheduling language is shown in Figure 3. Note that the
LHS of a rule matches a pattern in the input model including a PM Action (round-
tangle) typed by a FTG Transformation (circle), while the RHS rewrites it by building
the scheduling of the transformation execution as a double round-tangle (a composite
transformation application in AToMPM’s rule scheduling language). The double round-
tangle is then used to execute this transformation within the AToMPM environment. For
example, the Plant2PN action in 1 is mapped to the transformation 7_PlantToPN (in-
side the double round-tangle node) in Fig. 4.

The scheduling language additionally includes rectangular nodes corresponding to
the execution of a single transformation step to handle opening of input models (shown
in light tray in Fig. 4) or writing (includes editing and saving, in dark tray in Fig. 4) of
output models, and control flow arrows (gray links in Fig. 4) to impose the ordering of
the scheduling of the transformations.

When executing a FTG+PM model, the input of a scheduled transformation depends
on whether there are incoming dataflow arrows: (a) if there are incoming dataflow ar-
rows into the action node, for each of these dataflow arrows a transformation step is
created that opens the specified input model in the appropriate formalism in the current
canvas. The transformation rules that open the specified models are scheduled before
the execution of the transformation defined by the action node; (b) If there is no incom-
ing data flow arrow, the result of the previous transformation (present on AToMPM’s
modelling canvas) is used as the input.
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Fig. 3: Transformation Rule to Map an Action Node to a Transformation

A similar solution is used for the output of an action: (a) when a dataflow arrow
emanates from an action node, a transformation step is created to save the target model
(specified in the location by the object node) and clears the modelling canvas. The
transformation step is scheduled after the transformation defined by the action node;
(b) If no dataflow arrow exits the node, the canvas is not cleared.

Manual transformations (such as ModelPlant highlighted in solid gray in Fig 1)
are not mapped to a transformation, i.e. a double round-tangle node, in the resulting
schedule. They are mapped to transformation steps that first open the input models and
then to transformation steps that write/save the output models. One transformation step
corresponds to one open/save model and one or more associated formalisms. For in-
stance, the ModelPlant action is mapped to a pair of transformation steps in Fig. 4: (1)
a step that opens the input requirements model, /Models/PW/PWReq.model, which is
a model instance of TextualReq; (2) a step that writes the output plant configuration
model, /Models/PW/PWConfig.model, which is an instance of PlantDSL. In case of
multiple input and output models, a transformation step is created in the schedule cor-
responding to each open and write step. When output model(s) are produced by manual
transformations, a new AToMPM window is spawned for each output model which
loads the model if it already exists (to allow for further editing) or opens an empty
canvas with the formalism toolbars loaded otherwise. Once the user is done creating or
modifying the model, a button needs to be pressed to save the model and to return to
the parent AToOMPM window where automatic transformation resumes.

In the current implementation, there is no support for the (semi-) parallel execution
of fork and join nodes since the current transformation language in AToMPM does not
allow this. Instead, the transformation towards the AToOMPM transformation language
makes sequential the different branches between the joins and the forks. This is done
in the same way as described in [18] where a marker is made at the top of the fork.
Another marker is used to follow the chain until the join node is found. Afterwards the
full branch is scheduled before the join node. This is done until all branches are made
sequential.

When nesting occurs, the inner fork/join pairs are made sequential first.

Since the canvas can be used as the input for the next action node, the state of the
canvas has to be saved before the fork node. This is done by inserting an object node,
connected to the action node before the fork node. The output goes to the first actions
of each of the branches after the fork. At the last action of each branch, a similar object
node is inserted that is connected to the first action after join node.
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Fig. 4: The resulting transformation model of the example FTG+PM

Because all models are saved and closed after the action node has executed and
reloaded before starting a new action, the sequential process model preserves the origi-
nal semantics.

6 LANGUAGES AND TRANSFORMATIONS IN THE POWER
WINDOW CASE STUDY

In this section, we present some of the languages and transformations that allow build-
ing and executing the transformation chains in the power window FTG+PM. Note that
all the metamodels, models and transformations we present in Sections 6.1 and 6.2
have been built and are readable and/or executable using the AToOMPM modelling envi-
ronment. Note also that in the sections that follow the metamodels, models and trans-
formations are not explained in complete details as the goal of their presentation in this
paper is to illustrate the usage of the FTG+PM, rather than the case study itself. Again,
for further details on the models presented in the sections that follow we refer the reader
to [13].

6.1 Building the Domain Specific Languages

The design and verification part of the power window FTG+PM in Fig. 1 makes use
of several domain specific languages (DSLs) for defining controller, the plant and the
environment models.

Due to space reasons, we only present in this text the plant DSL which allows the
specification of the hardware necessary for a given power window configuration.

In Fig. 5, the metamodel of the plant DSL can be observed. The main class of the
language is the PowerWindow class, which is abstract and can be instantiated as a Side
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window or a Roof window. A physical power window includes a set of switches of two
kinds: Lockout switches allow removing control from other power windows in the car
(as specified by the controls association); Rocker or PushPull switches allow controlling
window movement. Finally, a power window may also have sensors of types Infrared
or ForceDetecting for detecting if an object is blocking the window from going up.

In Fig. 6, we present a model instance of the Plant DSL, where a configuration of
two power windows of an automobile is described. The model includes a driver and a
passenger power window, where the driver’s window has three buttons: a pushpull but-
ton for controlling the driver’s window, a pushpull button for controlling the passenger’s
window, and a lockout switch for disabling/enabling the control of the passenger’s win-
dow. The passenger’s window includes a rocker button and a infrared sensor meaning
the window automatically stops rolling up when an object obstructs its path.

6.2 Transformations

From Domain Specific Models To Modular Petri Nets. Two types of modular Petri
nets are generated from the Plant DSL model by the PlantToPN transformation in Fig. 1,
depending on the power window configuration. In Fig. 7, the Petri net modelling the dis-
crete behavior of a power window with an obstacle detecting sensor can be observed.
During operation the window can either be at the bottom of the frame (bot place, mean-
ing the window is completely open), somewhere in the middle of the frame (mid place,
meaning the window is partially open), or at the top of the frame (fop place, meaning
the window is closed). Additional places in Fig. 7 (midDetObj, topDetFrame and dan-
ger) are used to model object detection during window operation. The modular Petri net
in Fig. 7 also includes ports (having as concrete syntax black squares) for synchronisa-
tion with other modular Petri nets. An example rule of the PlantToPN transformation
in Fig. 1 is shown in Fig. 8. This particular rule builds the behavior of a power window
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without obstacle detection. Notice that the negative application condition of the rule
(inside the dashed square) prevents the power window that is matched by the LHS of
the rule from having a sensor.

Due to space constraints, we are unable to present here the similar transformations
into modular Petri nets defined for both the control and environment models (called
EnvToPN and ControlToPN in Fig. 1).

Composition of the Modular Petri Nets. Once the environment, plant, and control
models are transformed to the modular Petri nets, it is necessary to compose those
models. This last transformation, called CombinePN in Fig. 1, allows to manually'
build the complete Petri net of the power window example using the produced modular
Petri nets and an additional network model (not shown here). This composed Petri net

! We are currently building the transformation to automatically execute this composition.
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is an instance of the PetriNet formalism in the FTG part of Fig. 1. An example of
such a model (produced from our example models in figures 6 and 7) can be (partially)
observed in Fig. 9. This composed Petri net is used for the validation of the safety
requirements of the power window. In particular we have used it to automatically check
that a state where an object obstructing the window has been detected and the window
is still going up is never reached. In this state a token exists in the “danger” place in
the EncapsulatedPetriNet model in Fig. 7. This place can be found in the rightmost
subnet of the composed model in Fig. 9, highlighted by a red ellipse. Note additionally
that in the transformation chain found in the complete power window FTG+PM defined
in [14], the Petri net verification step is itself built as a transformation.

7 Related Work

We consider different approaches for the composition of model transformation chains.
We have looked at work which have applied mega-modelling concepts and/or process
modelling concepts in their approach. A megamodel is a conceptual framework used
to reason about MDE and represents the global view of the considered artifacts (mod-
els, metamodels, and other global entities) in a system and the relationships between
them [19]. Key in their approach is that not only models, but also tools and the services
and operations they provide are also represented as models, with all sorts of relations in
between.

The approaches are compared on a number of properties. The first criteria is whether
the approach uses mega-modelling and therefore has an explicit representation of the



modelling languages and relations between the languages by means of transformation
definitions. The second is whether the approach allows the composition of chains by
means of an explicit representation of the process. Finally, we consider both automatic
transformations where the execution of the transformation is completely automated and
manual transformations where a modelling environment is setup in the defined lan-
guage(s). Table 1 shows the comparison of the different approaches.

Table 1: Comparison of the approaches
(supports (v"), does not support (x) , unknown/unclear (~))

Tool Explicit Megamodel| Explicit Process Model | Transformations

Control Flow[Data Flow Automatic[Manual
Oldevik et al. [2] v X v v ~
Vanhooff et al. [3] v X v v X
UniTI [4] v X v v X
TraCo [5] v X v v X
Wagelaar [6] X X v v X
MoTCoF [7] ~ X v v X
Wires* [20] X X v v X
transML [22] v ~ v v X
Epsilon [23] ~ X v v ~
MCC [8] X X X v X
Aldazabal et al. [24] X v v v ~
Diaw et al. [25] v X v v ~

FIG+PM | v v | v [ v T v ]

Most approaches allow for the data-flow composition of model transformations
where input and output relations of the transformations are used to chain different trans-
formations. The control-flow of these approaches is inferred from this data-flow compo-
sition. Oldevik proposes a framework for the data-flow composition of transformations
in [2]. It uses UML activities like our FTG+PM to model these relations, though con-
trol flow is not taken into account. A definition for manual transformations is present,
though it is not described how the framework copes with these transformation types.
In [3], a data-flow composition of transformation framework is presented similar to the
UniTI framework [4]. The concepts of these frameworks are extended by the TraCo
framework [5] where additional validation checks are performed on the composition of
the transformations. Wagelaar [6] presents a DSL for the composition of transforma-
tions. The models are transformed to ANT scripts for execution. Seibel et al. present
the MoTCoF framework [7] for the data-flow and context composition of model trans-
formations. The meta-model of the approach is not shown, but most likely an explicit
megamodel is present. Wires* [20] provides a graphical language for the orchestration
of ATL model transformations. It has modelling elements for complex data-flow for
example decision nodes, parallel execution and support for loops. It does not however
take manual activities into account. The transML framework [22] is created for transfor-



mations in the ‘large’. It provides meta-models for requirements, analysis, architecture
and testing of transformations. The tool supports data-flow chaining of transformations
by transforming to ANT-tasks. The Epsilon Framework, presented in [23], provides a
model management framework where ANT-tasks can be used to build chains of trans-
formations. It is not clear if the Generic Model Manipulation Task can be used for the
loading of a modelling environment though models can be loaded and stored using ANT
tasks. Finally, Kleppe proposes a scripting language MDA Control Center (MCC) [8]
for combining multiple transformations in sequence and in parallel.

In the process modelling community, frameworks for MDE are proposed as well,
though these usually do not focus on transformation chaining, for example [26, 21]. Two
examples however do take transformation chaining into account. In [24], Aldazabal et
al. present a framework for tool integration where transformations can be chained. The
process is modelled in SPEM or BPMN (Business Process Modelling Notation) and is
transformed to BPEL (Business Process Execution Language) for execution support.
They do not however have a megamodel to validate input-output relations. In [25],
Diaw et al. present an adaptation of SPEM [27] for the use in an MDE context. The
composition is a data-flow composition like most transformation chaining approaches
discussed above. Both frameworks allow the modelling of manual activities, though it
is not clear how the frameworks handle these manual activities.

Our approach, combines the explicit modelling of the languages and transforma-
tions (megamodel) together with a process model that supports complex control-flow
constructs. This allows the modelling of non-linear transformation chains for building
complex applications. Transformations can either be executed automatically or require
manual intervention. In the manual case the framework opens a modelling environment
for the activity and continues the process when the activity is finished. The explicit
modelling of all the components allows to reason about these complex chains of trans-
formations.

8 CONCLUSION AND FUTURE WORK

In this paper, we have presented a framework for explicitly describing model transfor-
mation chains within MDE. We have introduced the FTG+PM language, composed of
the Formalism Transformation Graph (FTG) and its complement, the Process Model
(PM). The building blocks of the FTG are formalisms (nodes in the graph) and trans-
formations (edges in the graph). The FTG describes the different languages that can
be used at each stage of model development. The transformations model development
activities, and the control flow and data flow between each transformation action are
explicitly modelled in the PM.

In its current form, the FTG+PM framework satisfies the requirements stated in Sec-
tion 1. We have explicitly described the abstract and concrete syntax of the FTG+PM
language by metamodelling them in our tool, AToOMPM. In addition, the syntax of each
of the languages appearing as a node in the FTG is also explicitly modelled. The trans-
formations defined as activities in the PM are all modelled as rule-based graph trans-
formations using AToOMPM’s transformation language (which was itself modelled ex-
plicitly). The FTG+PM language allows transformations to be defined as automatic



or manual. Our framework allows user interventions in the MDE process, and pro-
vides means for creating artifacts using manual activities. The process model connects
the transformations using control flow and data flow links. UML 2.0 activity diagrams
were chosen as the language to describe the PM. This allows us to model the chaining
of transformations as a process model and to build execution support for it. For exe-
cution, we map the process model to the native transformation scheduling language of
AToMPM. The mapping takes into consideration whether a transformation is automatic
or manual. In case of manual activities, the users can complete the task at hand and re-
sume the execution of the process model which continues with the execution of the next
scheduled transformation. The FTG+PM approach was applied to a concrete problem
in the automotive domain: the power window case study.

As mentioned in section 1, the goal of having a framework that allows us to thor-
oughly describe and automate model transformation chains is to give use the means to
study and optimize such chains. As such we are currently developing the following:

— We currently use the power window case FTG+PM to study the notion of intent in
model transformations. In our work in [28], the intent of a model transformation is
defined as “a description of the goal behind the model transformation and the reason
for using it”. The FTG+PM model of the power window model transformation
chain helped us to construct a transformation intent language. We are currently
building a catalogue of model transformation intents (akin to design patterns in the
OO world) and are formalising the properties of such intents. As mentioned in [29],
the study of the formal properties of model transformations is in its infancy;

— As aresult of our transformation intent work, we are now attaching intent-related
annotations to the transformations described in the PM part of an FTG+PM model.
Such annotations may serve to identify formal properties that should be proved for
a model transformation. As transformation chaining is a form of relational compo-
sition, the formal composition of the properties of individual transformations in the
chain is of great importance;

— Using the concrete power window case, we are also investigating the multi-paradigm
modelling aspects of the FTG+PM [14]. We expect the study to help in identifying
methodological and reusability concerns when developing model transformation
chains for the automotive domain, that can hopefully be extrapolated to other do-
mains.
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