
DSLTrans: A Turing Incomplete Transformation
Language

Bruno Barroca†, Levi Lúcio‡, Vasco Amaral†, Roberto Félix†, and Vasco Sousa†

†CITI, Departamento de Informática, Faculdade de Ciencias e Tecnologia
Universidade Nova de Lisboa, Portugal

‡LASSY, University of Luxembourg, Luxembourg
Levi.Lucio@uni.lu

{Bruno.Barroca,Vasco.Amaral,Roberto.Felix,Vasco.Sousa}@di.fct.unl.pt

Abstract. In this paper we present DSLTrans: a visual language and
a tool for model transformations 1. We aim at tackling a couple of im-
portant challenges in model transformation languages — transformation
termination and confluence. The contribution of this paper is the propo-
sition of a transformation language where all possible transformations
are guaranteed to be terminating and confluent by construction. The re-
sulting transformation language is simple, turing incomplete and includes
transformation abstractions to support transformations in a software lan-
guage engineering context. Our explanation of DSLTrans includes a com-
plete formal description of our visual language and its properties.

Keywords: Model Transformations, Turing Incompleteness, Termina-
tion, Confluence.

1 Introduction

A problem in modern model transformation languages that has recently received
some attention is to how to guarantee that a transformation terminates. Because
the semantics of transformation languages are usually based on graph grammars,
the termination problem is in general undecidable [7]. Termination has been de-
scribed in [6] as one of the ’quality requirements for a transformation language
or tool ’. The problem has been approached by several authors [2–4] who have
proposed criteria that can be applied to decide about the termination of transfor-
mations under particular conditions. The EMFTrans tool [1] presents a complete
formalization of all concepts involved in a transformation and it is possible un-
der certain conditions to decide if a given transformation is locally confluent and
terminates.

In this paper we propose an ’egg of Columbus’ approach to the termination
problem by building a visual transformation language called DSLTrans which
1 This work has been developed in the context of project BATIC3S partially funded

by the Portuguese FCT/MCTES ref. PTDC/EIA/65798/2006, the doctoral grant
ref. SFRH/BD/38123/2007, the post doctoral grant ref. SFRH/BPD/65394/2009
and the Luxembourguese FNR/CORE project MOVERE ref. C09/IS/02



guarantees that the number of steps in a model transformation is always finite.
As a consequence, any transformation expressed in our language will always
end. We also guarantee by construction the confluence of any model transforma-
tion written in DSLTrans, which is an important correctness property of model
transformations as mentioned in [3]. DSLTrans is, by construction, a turing in-
complete language. This is due to the fact that our language is free of loop or
recursion constructs. The work presented in this paper provides the basis for the
work we present in [5], where a technique for proving properties of the type ’if a
structural relation between some elements of the source model holds, then another
structural relation between some elements of the target model should also hold ’
is presented. By proposing such a technique we are able to provide additional
’success criteria for a transformation language or tool ’ [6], which is the ability
to verify our model transformations.

The rest of this paper is organized as follows. In section 2, we informally de-
scribe the syntax and semantics of DSLTrans; In section 3 we describe the math-
ematical underpinnings of our transformation language; Section 4 concludes.

2 Language Overview

Let us present the DSLTrans running example we will use throughout this paper.

Fig. 1. Metamodels of a squad of agents(left) and a squad organized by gender(right).

Figure 1 presents two metamodels of languages for describing views over the
organization of a police station. The metamodel annotated with ’Organization
Language’ represents a language for describing the chain of command in a po-
lice station, which includes male (Male class) and female officers (Female class).
The metamodel annotated with ’Gender Language’ represents a language for de-
scribing a different view over the chain of command, where the officers working
at the police station are classified by gender. In figure 2 we present a transfor-
mation written in DSLTrans2 between models of both languages. The purpose of

2 DSLTrans was deployed as an Eclipse plug-in [8]. The example shown in figure 2,
was expressed using a concrete visual syntax of an Eclipse diagrammatic editor.



Fig. 2. A model transformation expressed in DSLTrans.

this transformation is to flatten a chain of command given in language ’Organi-
zation Language’ into two independent sets of male and female officers. Within
each of those sets the command relations are kept, i.e. a female officer will be
directly related to all her female subordinates and likewise for male officers.

An example of an instance of this transformation can be observed in figure
3, where the original model is on the left and the transformed one on the right.
Notice that the elements s, mk and fk in the figure on the left are instances of the
source metamodel elements Station, Male and Female respectively (in figure 1).
The primed elements in the figure on the right are their instance counterparts
in the target metamodel.

A transformation in DSLTrans is formed by a set of input model sources called
file-ports (’inputSquad.xmi’ in figure 2) and a list of layers (’Basic entities’ and
’Relations’ layers in figure 2). Both layers and file-ports are typed according to
metamodels. DSLTrans executes sequentially the list of layers of a transforma-
tion specification. A layer is a set of transformation rules, which executes in
a non-deterministic fashion. Each transformation rule is a pair (match, apply)
where match is a pattern holding elements from the source metamodel, and
apply is a pattern holding elements of the target metamodel. For example, in
the transformation rule ’Stations’ in the ’Basic entities’ layer (in figure 2) the
match pattern holds one ’Station’ class from the ’Squad Organization Language’
metamodel — the source metamodel; the apply pattern holds one ’Station’ class
from the ’Squad Gender Language’ metamodel — the target metamodel. This
means that all elements in the input source which are of type ’Station’ of the
source metamodel will be transformed into elements of type ’Station’ of the
target metamodel.



Fig. 3. Original model (left) and transformed model (right).

Let us first define the constructs available for building transformation rules’
match patterns. We will illustrate the constructs by referring to the transforma-
tion in figure 2.

– Match Elements: are variables typed by elements of the source metamodel
which can assume as values elements of that type (or subtype) in the input
model. In our example, a match element is the ’Station’ element in the
’Stations’ transformation rule of layer ’Basic Entities’ layer;

– Attribute Conditions: conditions over the attributes of a match element;
– Direct Match Links: are variables typed by labelled relations of the source

metamodel. These variables can assume as values relations having the same
label in the input model. A direct match link is always expressed between
two match elements;

– Indirect Match Links: indirect match links are similar to direct match links,
but there may exist a path of containment associations between the matched
instances3. In our example, indirect match links are represented in all the
transformation rules of layer ’Relations’ as dashed arrows between elements
of the match models;

– Backward Links: backward links connect elements of the match and the
apply models. They exist in our example in all transformation rules in the
’Relations’ layer, depicted as dashed vertical lines. Backward links are used
to refer to elements created in a previous layer in order to use them in the
current one. An important characteristic of DSLTrans is that throughout all
the layers the source model remains intact as a match source. Therefore, the
only possibility to reuse elements created from a previous layer is to reference
them using backward links;

– Negative Conditions: it is possible to express negative conditions over match
elements, backward, direct and indirect match links.

The constructs for building transformation rules’ apply patterns are:
3 In the implementation the notion of indirect links only captures EMF containment

associations in order to avoid cycles.



– Apply Elements and Apply Links: apply elements, as match elements, are
variables typed by elements of the source metamodel. Apply elements in
a given transformation rule that are not connected to backward links will
create elements of the same type in the transformation output. A similar
mechanism is used for apply links. These output elements and links will
be created as many times as the match model of the transformation rule is
instantiated in the input model. In our example, the ’StationwMale’ transfor-
mation rule of layer ’Relations Layer’ takes instances of Station and Male
(of the ’Gender Language’ metamodel) which were created in a previous
layer from instances of Station and Male (of the ’Organization Language’
metamodel), and connects them using a ’male’ relation;

– Apply Attributes: DSLTrans includes a small attribute language allowing the
composition of attributes of apply model elements from references to one or
more match model element attributes.

3 Formal Syntax and Semantics

In this section we build a formal definition of DSLTrans in order to provide a
clear specification of our language and a basis for studying and proving properties
about it. In the mathematical theory we disregard the formalization of: class
attributes; negative conditions; class inheritance at the metamodel level. We
present a light formalization of the relations at the metamodel and model levels
which deals only with the difference between reference and containment relations
between classes. These non formalized — but implemented in [8] — features
of the language do not affect the termination or confluence properties of our
language.

3.1 Transformation Language Syntax

Definition 1. Typed Graph and Indirect Typed Graph
A typed graph is a triple 〈V,E, τ〉 where V is a finite set of vertices, E ⊆ V×V

is a finite set of directed edges connecting the vertices and τ : {V ∪ E} →
Type ∪ {containment, reference} is a typing function for the elements of V
and E such that τ(v) ∈ Type if v ∈ V and τ(e) ∈ {containment, reference}4

if e ∈ E. Edges (v, v′) ∈ E are noted v → v′. We furthermore impose that the
graph 〈V, {v → v′ ∈ E|τ(v → v′) = containment}〉 is acyclic. The set of all
typed graphs is called TG.

An indirect typed graph is a 4-tuple 〈V,E, T, Il〉, where 〈V,E, T 〉 is a typed
graph and Il ⊆ E is a set of edges called indirect links. The set of all indirect
typed graphs is called ITG.

4 By using containment and reference as types for edges we allow modeling the dif-
ferent types of associations between the elements of a metamodel or a model. In
particular, the fact that the subgraph of containment relations in a typed graph is
acyclic models EMF containment associations.



Definition 2. Typed Graph Union
Let 〈V,E, τ〉, 〈V ′, E′τ ′〉 ∈ TG be typed graphs. The typed graph union is the

function t : TG× TG → TG defined as:

〈V,E, τ〉 t 〈V ′, E′, τ ′〉 = 〈V ∪ V ′, E ∪ E′, τ ∪ τ ′〉

Definition 3. Typed Subgraph and Indirect Typed Subgraph
Let 〈V,E, τ〉 = g, 〈V ′, E′, τ ′〉 = g′ ∈ TG be typed graphs. g′ is a typed subgraph

of g, written g′ J g, iff V ′ ⊆ V , E′ ⊆ E and τ ′ = τ |V ′ .
An indirect typed graph 〈V ′, E′, τ ′, Il〉 ∈ ITG is an indirect typed subgraph

of a typed graph 〈V,E, τ〉 ∈ TG, written 〈V ′, E′, τ ′, Il〉C 〈V,E, τ〉 iff:

1. 〈V ′, E′ \ Il, τ ′〉 J 〈V,E, τ〉
2. if vi → v′i ∈ Il then there exists v → v′ ∈ E∗

c where τ(vi) = τ(v), τ(v′i) =
τ(v′) and E∗

c is obtained by the transitive closure of Ec = {v → v′ ∈ E|τ(v →
v′) = containment}.

Definition 4. Typed Graph Equivalence
Let 〈V,E, τ〉 = g, 〈V ′, E′, τ ′〉 = g′ ∈ TG be typed graphs. g and g′ are

equivalent, written g ∼= g′, iff there is a graph isomorphism f : V → V ′

of graphs 〈V,E〉 and 〈V ′, E′〉 such that ∀x ∈ V ∪ E . τ(x) = τ ′(f(x)) and
∀x′ ∈ V ′ ∪ E′ . τ ′(x′) = τ(f−1(x′))

More informally, two typed graphs are defined equivalent if they have the
same shape and related vertices and edges have the same type.

Definition 5. Typed Graph Instance
Let 〈V,E, τ〉 = g, 〈V ′, E′, τ〉 = g′ ∈ TG be typed graphs. g′ is a typed graph

instance of g, written g′ 
 g, iff for all v′1 → v′2 ∈ E′ there is a v1 → v2 ∈ E
such that τ(v′1) = τ(v1), τ(v′2) = τ(v2) and τ(v′1 → v′2) = τ(v1 → v2).

Notice that we only enforce that connections between vertices of g′ must
exist also in g and have the same type.

Definition 6. Metamodel and Model
A metamodel 〈V,E, τ〉 ∈ TG is a typed graph where τ is a bijective typing

function. The set of all metamodels is called META.
A model is a 4-tuple 〈V,E, τ, M〉 where 〈V,E, τ〉 is a typed graph. Moreover

M = 〈V ′, E′, τ ′〉 ∈ META is a Metamodel and the codomain of τ equals the
codomain of τ ′. Finally 〈V,E, τ〉 
 M , which means 〈V,E, τ〉 is an instance of
a metamodel M . The set of all models for a metamodel M is called MODELM .

Definition 7. Match-Apply Model
A Match-Apply Model is a 6-tuple 〈V,E, τ, Match, Apply, Bl〉, where Match =

〈V ′, E′, τ ′, s〉 and Apply = 〈V ′′, E′′, τ ′′, t〉 are models and 〈V,E, τ〉 = 〈V ′, E′, τ ′〉t
〈V ′′, E′′, τ ′′〉. Edges Bl ⊆ V ′×V ′′ ⊆ E are called backward links. s is called the
source metamodel and t the target metamodel. The set of all Match-Apply models
for a source metamodel s and a target metamodel t is called MAMs

t . Vertices in



the Apply model which are not connected to backward links are called free ver-
tices. The back : MAMs

t → MAMs
t function connects all vertices in the Match

model to all free vertices with backward link edges.

The Match part of a match-apply model is used to hold the immutable source
model during a transformation. The Apply part is used to hold the intermediate
results of the transformation.

Definition 8. Transformation Rule
A Transformation Rule is a 7-tuple 〈V,E, τ, Match, Apply, Bl, Il〉, where 〈V,

E, τ,Match,Apply,Bl〉 ∈ MAMs
t is a match-apply model. Match = 〈V,E, τ, M〉

and the edges Il ⊆ E are called indirect links (see definition 3). The set of all
transformation rules is called TRs

t . The strip : TRs
t → TRs

t function removes
from a transformation rule all free vertices and associated edges.

We define a transformation rule as a kind of match-apply model which allows
indirect links in the match pattern.

Definition 9. Layer, Transformation
A layer is a finite set of transformation rules tr ⊆ TRs

t . The set of all
layers for a source metamodel s and a target metamodel t is called Layers

t . A
transformation is a finite list of layers denoted [l1 :: l2 :: . . . :: ln] where lk ∈
Layers

t and 1 ≤ k ≤ n. The set of all transformations for a source metamodel s
and a target metamodel t is called Transformations

t .

We naturally extend the notion of union (definition 2) to models (defini-
tion 6), match-apply models (definition 7) and transformation rules (defini-
tion 8). We also extend the notion of indirect typed subgraph (definition 3)
to transformation rules (definition 8) and match-apply models (definition 7).
Finally, we extend the notion of typed graph equivalence (definition 4) to trans-
formation rules (definition 8).

3.2 Transformation Language Semantics

Definition 10. Match Function
Let m ∈ MAMs

t be a model and tr ∈ TRs
t be a transformation rule. The

match : MAMs
t × TRs

t → P(TRs
t ) is defined as follows:

matchtr(m) = remove
({

g | g C m ∧ g ∼= strip(tr)
})

Due to the fact that the ∼= relation is based on the notion of graph isomor-
phism, permutations of the same match result may exist in the

{
g | g C m∧ g ∼=

strip(tr)
}

set. The — undefined — remove : P(TRs
t ) → P(TRs

t ) function is
such that it removes such undesired permutations.

Definition 11. Apply Function
Let m ∈ MAMs

t be a match-apply model and tr ∈ TRs
t a transformation.

The apply : MAMs
t × TRs

t → MAMs
t is defined as follows:



applytr(m) =
⊔

g∈matchtr(m)

back(g t g∆)

where g∆ is such that g t g∆
∼= tr

The freshly created vertices of g∆ in the flattened applytr(m) set are disjoint.

Definitions 10 and 11 are complementary: the former gathers all subgraphs
of a match-apply graph which match a transformation rule; the latter builds
the new instances which are created by applying that transformation rule as
many times as the number of subgraphs found by the match function. The strip
function is used to enable matching over backward links but not elements to be
created by the transformation rule. The back function connects all newly created
vertices to the elements of the source model that originated them.

Definition 12. Layer Step Semantics
Let l ∈ Layer be a Layer. The layer step relation

layerstep→ ⊆ MAMs
t ×TRs

t ×
MAMs

t is defined as follows:

〈m,m′, ∅〉 layerstep−−−−−−→ m tm′

tr ∈ l, applytr(m) = m′′′,

〈m,m′′ tm′′′, l\{tr}〉 layerstep−−−−−−→ m′

〈m,m′′, l〉 layerstep−−−−−−→ m′

where {m,m′,m′′} ⊆ MAMs
t are match-apply models.

The freshly created vertices in m′′′ are disjoint from those in m′′.

For each layer we go through all the transformation rules and build for each
one of them the set of new instances created by their application. These instances
are built using the apply function in the second rule of definition 12. The new in-
stance results of the apply function for each transformation rule are accumulated
until all transformation rules are treated. Then, the first rule of definition 12 will
merge all the new instances with the starting match-apply model. The merge
is performed by uniting (using the non-disjoint t union) match-apply graphs
including the new instances with the starting match-apply model.

Definition 13. Transformation Step Semantics
Let [l :: R] ∈ Transformations

t be a Transformation, where l ∈ Layers
t is a

Layer and R a list. The transformation step relation
trstep→ ⊆ MAMs

t × TRs
t ×

MAMs
t is defined as follows:

Let [l :: R] ∈ Transformations
t be a Transformation, where l ∈ Layers

t is a
Layer and R a list. The transformation step relation

trstep→ ⊆ MAMs
t × TRs

t ×
MAMs

t is defined as follows:

〈m, []〉 trstep−−−−→ m



〈
m, 〈∅, ∅, ∅, ∅, ∅, ∅〉, l

〉 layerstep−−−−−−→ m′′, 〈m′′, R〉 trstep−−−−→ m′

〈m, [l :: R]〉 trstep−−−−→ m′

where {m,m′,m′′} ⊆ MAMs
t are match-apply models.

A model transformation is a sequential application of transformation layers
to a match-apply model containing the source model and an empty apply model.
The transformation output is the apply part of the resulting match-apply model.

Definition 14. Model Transformation
Let ms ∈ MODELs and mt ∈ MODELt be models and

tr ∈ Transformations
t be a transformation. A model transformation

transf→ ⊆
MODELs × Transformations

t ×MODELt is defined as follows:

ms, tr
transf−−−−→ mt ⇔ 〈V,E, τ, ms, ∅, ∅〉, tr

trstep−−−−→ 〈V,E, τ, ms,mt, Bl〉

We now prove two important properties about DSLTrans’ transformations.

Proposition 1. Confluence
Every model transformation is confluent regarding typed graph equivalence.

Proof. (Sketch) We want to prove that for every model transformation tr ∈
Transformations

t having as input a model ms ∈ MODELs, if ms, tr
transf−−−−→ mt

and ms, tr
transf−−−−→ m′

t then mt
∼= m′

t. Note that we only have to prove typed
graph equivalence between mt and m′

t because the identifiers of the objects pro-
duced by a model transformation are irrelevant.
If we assume ¬(mt

∼= m′
t) then this should happen because of non-determinism

points in the rules defining the semantics of a transformation: 1) in definition 11
g∆ is non-deterministic up to typed graph equivalence, which does not contra-
dict the proposition; 2) in definition 12 transformation rule tr is chosen non-
deterministically from layer l. Thus, the order in which the transformation rules
are treated is non-deterministic. However, the increments to the transformation
by each rule of a layer are united using t, which is commutative and thus renders
the transformation result of each layer deterministic. Since there are no other
possibilities of non-determinism points in the semantics of a transformation,
¬(mt

∼= m′
t) provokes a contradiction and thus the proposition is proved. �

Proposition 2. Termination
Every model transformation terminates.

Proof. (Sketch) Let us assume that there is a transformation which does not ter-
minate. In order for this to happen there must exist a section of the semantics
of that transformation which induces an algorithm with an infinite amount of
steps. We identify three points of a transformation’s semantics where this can
happen: 1) if definition 13 induces an infinite amount of steps. The only possi-
bility for this to happen is if the transformation has an infinite amount of layers,



which is a contradiction with definition 9; 2) if definition 12 induces an infinite
amount of steps. The only possibility for this to happen is if a layer has an infi-
nite amount of transformation rules, which is a contradiction with definition 8;
3) if the result of the matchtr(m) function in definition 10 is an infinite set of
match-apply graphs. The match-apply graph m is by definition finite, thus the
number of isomorphic subgraphs of m is infinite only if the transitive closure of
containment edges of m is infinite. The only possibility for this to happen is if
the graph induced by the containment edges of m has cycles, which contradicts
definition 1. Since there are no more points in the semantics of a transformation
that can induce an infinite amount of steps, the proposition is proved. �

4 Conclusions

We have presented DSLTrans, a turing incomplete transformation language with
a mathematical underpinning which guarantees transformation termination and
confluence by construction. With this language, we have introduced interesting
abstractions such as layers, backward and indirect links. An important side effect
of DSLTrans not being a turing complete language is the fact that verification
of properties about our transformations are possible.

References

1. Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Precise Semantics of EMF
Model Transformations by Graph Transformation. In MODELS’08: Proceedings of
ACM/IEEE 11th International Conference on Model Driven Engineering Languages
and Systems, pages 53–67, Berlin, Germany, 2008. Springer.

2. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, 2006.

3. Hartmut Ehrig, Karsten Ehrig, Juan De Lara, Gabriele Taentzer, Dniel Varr, and
Szilvia Varr-gyapay. Termination criteria for model transformation. In Proc. Fun-
damental Approaches to Software Engineering (FASE, pages 49–63. Springer, 2005.

4. Tihamér Levendovszky, Ulrike Prange, and Hartmut Ehrig. Termination criteria for
dpo transformations with injective matches. Electron. Notes Theor. Comput. Sci.,
175(4):87–100, 2007.

5. Levi Lúcio, Bruno Barroca, and Vasco Amaral. A technique for automatic valida-
tion of model transformations. In To appear in the Proceedings of MODELS 2010.
Springer, 2010.

6. Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electr.
Notes Theor. Comput. Sci., 152:125–142, 2006.

7. D. Plumpf. Termination of graph rewriting is undecidable. Fundam. Inf., 33(2):201–
209, 1998.

8. Solar Group. Dsltrans plug-in. http://solar.di.fct.unl.pt/twiki/pub/

BATICCCS/ReleaseFiles/dsltrans.october.2010.zip.


