VoLt
Second Workshop on Verification Of Model Transformations, 2013,

Model Transformations to Verify
Model Transformations

Levi Licio® Hans VangheluweP

a. McGill University, Montreal, QC, Canada (levi@cs.mcgill.ca)

b. University of Antwerp, Antwerp, Belgium and
McGill University, Montreal, QC, Canada (hv@cs.mcgill.ca)

Abstract In this paper we present a novel technique and a prototype im-
plementation for proving properties of model transformations expressed
in the DSLTrans language. The approach is based on symbolic execu-
tion and the properties we are interested in concern relations between the
structure of the input and output models. In particular, the properties are
implications of the form ‘if a structural relation between some elements
of the source model holds, then another structural relation between some
elements of the target model must also hold’. Our technique is transfor-
mation dependent but model independent, meaning the proofs we produce
hold for all executions of a given DSLTrans transformation specification
running on any instance of the transformation’s input metamodel. Our
proof technique is based on (i) building the finite symbolic execution for a
given DSLTrans transformation and (ii) on checking whether the property
holds for all elements of the finite symbolic execution execution set. We
explain how to build a symbolic execution and a proof by using model
transformations written in our T-Core framework and finish with some
experimental performance results.

1 INTRODUCTION

Model transformations are one of the main enablers of Model Driven Development
(MDD) [1]. Mens et al. have called for the development of verification, validation
and testing techniques for model transformations in 2006 [2]. Despite the many
publications on this topic since then, the field of analysis of model transformations
seems to be still in its (late) infancy, as evidenced by [3].

The research presented here follows from our proposals in [4] and [5]. In [4] we
introduced the DSLTrans transformation language. DSLTrans is Turing Incomplete,
as it avoids constructs which imply unbounded recursion or non-determinism. De-
spite this expressiveness reduction, we have shown via several examples [6, 7, 8] that
DSLTrans is sufficiently expressive to tackle typical translation problems.

Our verification transformation technique is based on the theory introduced in [5],
where we described how to abstractly build a symbolic execution for DSLTrans trans-
formations. Additionally, in [5], we mathematically proved that such a symbolic
execution is finite, given an abstraction over the number of times the transforma-
tion’s rules match on concrete elements of input models. This finiteness a necessary
condition for our technique to be applicable.

The properties we prove are model syntaz relations [3]. Such properties are ex-
pressed as in the literature as precondition-postcondition axioms involving statements

file:/copyright.html
levi@cs.mcgill.ca
hv@cs.mcgill.ca

about the syntactic structure of the input and output models of a transformation. Sev-
eral authors [9, 10, 11] have explored these properties using techniques distinct from
ours. According to the classification presented in [3], our technique is transformation
dependent and input independent, meaning we can prove properties that hold for all
executions of a given model transformation, irrespective of the input model.

The paper is organised as follows: section 2 introduces the DSLTrans model trans-
formation language; in section 3 we present our property language; sections 4 and 5
describe respectively the algorithms for symbolic execution construction and for prop-
erty proof; section 6 presents the implementation of our technique and performance
results; finally, in section 7 we conclude with our contributions and future work.

2 The DSLTrans Transformation Language

DSLTrans is a graph-based transformation language and as such shares its princi-
ples with transformation languages and tools such as AGG [12], AToM? [13] and
VIATRA2 [14]. The language and transformation engine have been implemented as
an Eclipse plugin [7]. DSLTrans computes transformations of models defined as in-
stances of EMF metamodels. A transformation is composed of a list of layers that
are executed sequentially. A layer is a set of transformation rules, which produces a
deterministic result irrespective of rule execution order. Each transformation rule is a
pair (MatchModel, ApplyModel), where MatchModel is a pattern holding elements
and associations from the source metamodel, and ApplyModel is a pattern holding
elements and associations of the target metamodel. Figure 1 depicts an example
DSLTrans transformation rule. Rule execution implies writing in the output model
one instance of the ApplyM odel pattern per instance of the match pattern found.

DSLTrans’ transformations are strictly
outplace, meaning no changes are al- _
lowed to the input model. The out- * Stationwale
put metamodel for a DSLTrans trans- MatchMode!
formation can however be the same as e T
the input metamodel. Also, elements "’
cannot be removed from the output : :
metamodel as the result of applying a —
DSLTrans rule. This restriction is con- paem v
sistent with the usage of model trans-
formations as translations, as no dele-
tion of output elements is strictly re-
quired. Such restriction is however not
compatible with expressing simulations Figure 1: DSLTrans Rule Example
of reactive systems as model transformations. This illustrates the boundaries of the
applicability of DSLTrans and that expressiveness reduction entails a compromise
with the class of problems that can be tackled.

In addition to the source and target metamodel patterns used respectively on the
MatchModel and ApplyModel of a transformation rule, DSLTrans also allows indirect
links on the match part of a rule. Indirect links match transitively over acyclic EMF
containment associations. An example of the concrete syntax of indirect links can be
seen in figure 1 as the dashed horizontal line connecting the MatchModel elements.

A distinctive feature of DSLTrans is the use of backward links. Backward links
connect elements of the match and the apply patterns of a DSLTrans’ rule and allow
referring to the traces of the execution of rules in a previous layer. They can be seen in

figure 1 as the dashed vertical lines connecting MatchModel to ApplyModel elements
in the rule. As the input model always remains intact, elements created by rules of a
previous layer can only be referred to using backward links. Finally, DSLTrans allows
negative conditions over match pattern elements, match associations, indirect links
and backward patterns. Also, a small language exists for building attributes of apply
model elements from references to one or more MatchModel element attributes.

Given DSLTrans’ expressiveness, we can mathematically guarantee that all trans-
formations expressible in DSLTrans are both terminating and confluent [4]. DSLTrans
is, to the best of our knowledge, the only graph based transformation language where
termination and confluence are enforced by construction.

3 DSLTrans Model Syntax Relation Properties

As mentioned previously, the properties we are interested in proving about DSLTrans
model transformations are in the form of precondition-postcondition axioms. The
preconditions and postconditions are syntactic constraints on the input and output
models of the DSLTrans transformation being analysed. Preconditions and postcon-
dition constraints are expressed as patterns, primarily as is done respectively in the
MatchModel and ApplyModel patterns of DSLTrans transformation rules. Precon-
ditions use the same pattern language as the MatchModel part of DSLTrans rules,
involving the possibility of expressing several occurrences of the same metamodel el-
ement and indirect links. Indirect links in properties have the same meaning as in
the MatchModel part of DSLTrans rules — they involve patterns over the transitive
closure of containment links in input models. Postconditions also use the same pat-
tern language as the ApplyModel patterns of DSLTrans transformation rules, with the
additional possibility of also expressing indirect links for patterns including the tran-
sitive closure of containment links in output models. Backward links can also be used
in properties to impose traceability relations between precondition and postcondition
elements. A formal definition of our property language can be found in [5].

4 Symbolic Execution Construction

In order to explain the concept of symbolic execution of a DSLTrans transformation,
let us make an analogy with program symbolic execution as introduced by King in
his seminal work “Symbolic Execution and Program Testing” [15]. According to
King, a symbolic execution of a program is a set of constraints on that program’s
input variables called path conditions. Each path condition describes a traversal of
the conditional branching commands of that program. A path condition is symbolic
in the sense it abstracts as many concrete executions as there are instantiations of
the path condition’s variables that render the path condition’s constrains true. The
correspondence between the symbolic execution concepts for programs and model
transformations is shown in table 1.

The construction of a symbolic execution for a DSLTrans transformation begins
by building the powerset of all the rules in the first layer of a transformation. This
means that we are building all the possible combinations of applications of rules in
the first layer. Each such rule combination represents a symbolic execution of the first
layer. To continue the analogy with program symbolic execution we will henceforth
refer to any combination of rules of a DSLTrans transformation as a path condition.
The fact that in DSLTrans the rules within a layer can be executed in any order with
a deterministic result allows us to consider only a fraction of the path conditions that
would be necessary than if order would be relevant.

Program Transformation

Symbolic Execution Symbolic Execution
Abstraction Over | Sets of data values Sets of models (graphs)
Input Variables Programming language variables Metamodel classes,
(int, string, float, etc) relations and attributes
Constraints Predicates on variables imposed by Metamodel patterns imposed
assignment or conditional statements | by transformation rules
Path Conditions Conjunction of predicates Conjunction of metamodel
on variables patterns

Table 1: Program and Model Transformation Symbolic Execution

Having produced the symbolic execution for the first layer, or for the layers 1
through [, we can now proceed to layer [+ 1. As before, we calculate the powerset of
the rules in layer [+ 1. However, we now need to understand how each one of these
newly built path conditions affects each partial path condition built for layer I. When
we analyse a path condition belonging to the powerset of layer [+ 1 (noted in what
follows PCj41) against a path condition belonging to the symbolic execution built by
the rules of layer 1 through ! (noted in what follows PC;_;), several cases may occur:

1) if none of the rules in the PCj;1 contains backward links, a new path condition
is added to the symbolic execution by extending PC;. ; with the union of PCy ; and
PC41. This union is built adding the rules in PCjy; to the rules in PC4_;

2) if the rules in PC}1; include backward links, we need to analyse if those back-
ward links correspond to traces between match and apply elements generated by rules
in PCy ;. If this is not the case the conditions for at least one of the rules from PCj 14
to execute are satisfied and PCj41 cannot be added to the symbolic execution;

3) if the rules in PCjy; include backward links and all those backward links
correspond to traces between match and apply elements generated by rules in PCy_;
then, as in case 1, a new path condition can be added to the symbolic execution.
This new path condition is formed differently than in case 1: all rules from PCji4
containing backward links are merged with the rules from PCj;; where the traces
corresponding to the backward links were generated. Additionally, PCy . ; is removed
from the symbolic execution. As all elements necessary for rules of PCjy; including
backward links were generated by the rules of PCy ;, the rules from PCjy; with
backward links necessarily execute. As such, PC_; can no longer exist on its own in
the symbolic execution;

4) a slight variation of case 3 is where more than one backward link from the
same rule in PCj4 1 is matched over the same trace of a rule from PC4 ;. In this case,
in addition to what happens in case 3, PC7. ; also needs to be kept in the symbolic
execution. This is because the instantiation relation does not distinguish the number
of instances of a metamodel element.

The full description of the symbolic execution construction algorithm is in [16].

5 Property Proof
After the symbolic execution is built, the property proof is performed as follows:

1) A path condition is taken from the symbolic execution. If no more path con-
ditions exist, the property holds. A first check is done to decide if the path condition
under consideration has all the metamodel match classes expressed in the property.
If so, point 2) is executed, otherwise point 1) is executed with a new path condition;

2) Because we do not know whether two match elements of the same type occur-
ring in two different rules in the same path condition consume the same or different
instances in a concrete input model, we need to consider two cases: (i) the case where
those two distinct match elements from different rules consume two different instances
of that type in the input model; and (ii) the case where those two match elements
consume the same instance in the input model. This is achieved by building for a
given path condition all the possibilities of collapsed elements of the same type be-
longing to different rules. A thorough description of the collapsing algorithm can be
found in [16]. We then iterate over the path conditions resulting from the collapse
operation. For each of those path conditions we check whether the match part of the
property is a subgraph of the path condition, in which case point 3) is executed for
the collapsed path condition under analysis. Finally, we go back to point 1);

3) We check if the whole property is a subgraph of the collapsed path condition.
If this is not the case then the property does not hold and the path condition itself
serves as a counterexample for the property. Otherwise, we go back to point 2).

6 Implementation and Results

We have built a prototype implementation of the algorithms presented in sections 4
and 5 using our T-Core model transformation framework [17]. The implementation
can be found under [18] as a Python package. All the operations in our algorithms in-
volving DSLTrans’ rule and property manipulations were built as T-Core model trans-
formations. Rules and properties were metamodeled and modeled using AToM? [13].
Python was used as a scheduling language such that the control flow in the sym-
bolic execution construction and property proof algorithms presented in sections 4
and 5 can be achieved. Given that many similar situations have to be investigated
during symbolic execution construction and property proof, memoisation was used
whenever possible to avoid isomorphic graph matching and rewrite operations. The
T-Core transformations required to build the symbolic execution for a DSLTrans
transformation and to prove a given property need to be rebuilt for each DSLTrans
transformation and each property. This step can be automatically executed using
T-Core’s higher order transformation capabilities. A description of the higher order
transformations required for our technique can be found in [16].

We have experimented with our symbolic execution and proof algorithms by prov-
ing properties of the Police Station transformation, described in [16]. The Police
Station transformation is composed of 7 rules, including rules with at most 4 meta-
model elements, indirect links and backward links. In order to test the performance
of our approach we replicated the 7 rules by using different metamodel elements, up
to 28 rules divided in 5 layers. The results of our experiments are shown in table 2!.
Our technique scales well up to 21 rules for our example. We stopped our experiments
at 28 rules when running time became excessive, but we believe further optimizations
and sophisticated encodings will increase the number of rules that can be handled.

From table 2 we can see that memory consumption is very modest, even when
the symbolic execution is composed of more than one million path conditions. This
is due to the fact that the actual number of DSLTrans rules used for path condition
construction is very low and we only use pointers to the actual rules in memory. We
can also see that the time to prove the property that holds (Prop. 1) increases with

IThe results were obtained using a 2.2 GHz Intel Core i7 machine with 8GB of DDR3 memory
running Ubuntu 11.10. For each measurement involving time we repeated the given experiment three
times and calculated the final result as the average of the three experiment results.

| # of rules \ 7 14 21 28

of path conditions 31 1051 35641 1208641
symbolic execution

construction time (sec) 0.25 0.93 53.27 30513.64
used memory (Kb) 0.17 4.40 139.35 4777.00
Prop. 1, holds (sec) 0.68 6.97 320.00 -
Prop. 2, does not hold (sec) | 1.8 x 1073 | 1.6 x 107% | 1.6 x 1073 -

Table 2: Performance Results

the number of rules. This is due to the fact that if a property holds, then, for the
time being, the whole set of path conditions needs to be explored. However, for a
property that does not hold (Prop. 2) proof time is constant as proof can stop as
soon as the property fails. More detailed performance results for the Police Station
Transformation can be found in [16].

We are very optimistic as to the applicability of our verification approach to real
world model transformations. A good indication of this fact is that by looking at
several transformations we built using DSLTrans (UML to Java, Turing Machine
simulation, Statecharts to Algebraic Petri Nets [6, 7, 8]), we see that the maximum
number of used rules is well under 28. It is clear however that it is necessary to
further experiment with variations of: the size of the rules in the considered model
transformation; rule distribution among layers; number of backward links within a
rule; and the number of elements of the same type scattered among different rules of
the same transformation.

7 Contributions and Conclusions

In this paper we have proposed the analysis of syntactic model relation properties of
model transformation via symbolic execution. We implemented our approach using
model transformations written in T-Core. We have also presented early performance
results. Several contributions can be identified in our work: (i) we have provided the
algorithms for our original proposal of symbolic execution of model transformations
in [5]. To the best of our knowledge our work provides the first attempt at explicitly
building symbolic executions for a model transformation language; (ii) we show that
our symbolic execution technique scales well in our experimental setting and has the
potential to scale for real world problems; (iii) we demonstrate that expressiveness
reduction of a model transformation language can be very beneficial to the design and
construction of a model transformation verification tool; and (iv) we demonstrate that
model transformations are themselves a useful tool for the proof of properties of model
transformations. More generally, we provide tangible evidence that MDD principles
and tools can be employed throughout the construction of MDD tools not only as mere
data translators, but also at the algorithmic core of those tools. This is an indication
that model transformations can indeed be used to verify model transformations.

For the future, besides exploring performance issues, we will enhance the expres-
siveness of our property language. Constraints on object attributes will be incorpo-
rated in the language, as will negative associations, indirect links and backward links.
We are now working on applying our proof technique to model transformation prop-
erties relevant to our industrial partners, in the context of the NECSIS (Network on
Engineering Complex Software Intensive Systems for Automotive Systems) project.

References

1]
2]

3]

[10]

[11]

12)
13)
14]
15)

[16]

[17]

[18]

S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of
model-driven software development. IEEE Software, 20:42-45, Sept 2003.

T. Mens and P. Van Gorp. A Taxonomy of Model Transformations. Flectronic
Notes in Theoretical Computer Science, 152:125-142, March 2006.

M. Amrani, L. Licio, G. Selim, B. Combemale, J. Dingel, H. Vangheluwe,

Y. Le Traon, and J.R. Cordy. A Tridimensional Approach for Studying the
Formal Verification of Model Transformations. In ICST, pages 921-928. IEEE,
2012.

B. Barroca, L. Licio, V. Amaral, R. Félix, and V. Sousa. DSLTrans: A Turing
Incomplete Transformation Language. In SLE, pages 296-305. Springer, 2010.
L. Licio, B. Barroca, and V. Amaral. A Technique for Automatic Validation
of Model Transformations. In MoDFELS, pages 136-150. Springer, 2010.

R. Félix, B. Barroca, V. Amaral, and V. Sousa. Technical report, UNL-DI-
1-2010, UNL, Portugal, 2010. http://solar.di.fct.unl.pt/twiki5/pub/
Projects/BATIC3S/ModelTransformationPapers/UML2Java.1l.zip.
DSLTrans User Manual. http://msdl.cs.mcgill.ca/people/levi/files/
DSLTransManual.pdf.

Q. Zhang and V. Sousa. Practical Model Transformation from Secured UML
Statechart into Algebraic Petri Net. Technical Report TR-LASSY-11-08,

U. Luxembourg, 2011. http://msdl.cs.mcgill.ca/people/levi/files/
Statecharts2APN.pdf.

D. Akehurst and S. Kent. A Relational Approach to Defining Transformations
in a Metamodel. pages 243-258. Springer, 2002.

A. Narayanan and G. Karsai. Verifying Model Transformations by Structural
Correspondence. Electronic Communications of the FASST, 10, 2008.

F. Biittner, M. Egea, J. Cabot, and M. Gogolla. Verification of ATL Transfor-
mations Using Transformation Models and Model Finders. In ICFEM, pages
198-213. Springer, 2012.

G. Taentzer. AGG: A Tool Environment for Algebraic Graph Transformation.
In AGTIVE, pages 333-341. Springer, 2000.

J. De Lara and H. Vangheluwe. Atom3: A Tool for Multi-formalism and Meta-
modelling. In FASE, pages 174-188. Springer, 2002.

D. Varré and A. Pataricza. Generic and meta-transformations for model trans-
formation engineering. In UML, pages 290-304. Springer, 2004.

J.C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385-394, 1976.

L. Licio and H. Vangheluwe. Symbolic execution for the verification of model

transformations. Technical Report SOCS-TR-2013.2, McGill U., 2013. http:
//msdl.cs.mcgill.ca/people/levi/files/MTSymbExec.pdf.

E. Syriani and H. Vangheluwe. De-/re-constructing model transformation lan-
guages. EFCEASST, 29, 2010.

L. Luicio. DSLTransVerif: A Prototype Implementation, 2013. http://msdl.
cs.mcgill.ca/people/levi/files/DSLTransVerif.zip.

http://solar.di.fct.unl.pt/twiki5/pub/Projects/BATIC3S/ModelTransformationPapers/UML2Java.1.zip
http://solar.di.fct.unl.pt/twiki5/pub/Projects/BATIC3S/ModelTransformationPapers/UML2Java.1.zip
http://msdl.cs.mcgill.ca/people/levi/files/DSLTransManual.pdf
http://msdl.cs.mcgill.ca/people/levi/files/DSLTransManual.pdf
http://msdl.cs.mcgill.ca/people/levi/files/Statecharts2APN.pdf
http://msdl.cs.mcgill.ca/people/levi/files/Statecharts2APN.pdf
http://msdl.cs.mcgill.ca/people/levi/files/MTSymbExec.pdf
http://msdl.cs.mcgill.ca/people/levi/files/MTSymbExec.pdf
http://msdl.cs.mcgill.ca/people/levi/files/DSLTransVerif.zip
http://msdl.cs.mcgill.ca/people/levi/files/DSLTransVerif.zip

	Introduction
	The DSLTrans Transformation Language
	DSLTrans Model Syntax Relation Properties
	Symbolic Execution Construction
	Property Proof
	Implementation and Results
	Contributions and Conclusions
	References

