
DRAFT

Model Transformations
for the Verification of Model Transformations

Levi Lúcio†, Hans Vangheluwe†‡

† McGill University, Canada
‡University of Antwerp, Belgium

r

Introduction

In this work we apply the program verification concept of symbolic execution to the verification of model transformations written in the Turing-incomplete
DSLTrans language. Current state of the art model transformation verification techniques rely on SMT solvers or theorem proving to deal with the complexity of
model transformations [1, 2, 3]. Our symbolic execution construction algorithms leverage on DSLTrans’ reduced expressiveness in order to cope with the
classical state space explosion problem typical to symbolic execution. As a result our verification technique [4, 5] is simple, relies on an in-house model
transformation symbolic execution engine, is fully axiomatized, can be mathematically proved and has the potential to scale to real size GM transformations.

DSLTrans Model Transformations and Properties

"a model which includes a police station that has
 both a male and female chief officers will be

transformed into a model where the male
 chief officer will exist in the male set and the female

chief officer will exist in the female set "

Properties to be Proved
Police Station

Organisation Language

Police Station
Gender Language

Organisation Language to Gender Language DSLTrans Transformation

MatchModel

Station Male

ApplyModel

Station Male

male

Station2Male

MatchModel

Station Female

ApplyModel

Station Female

female

Station2Female

MatchModel

Female Female

ApplyModel

Female Female

supervisesFemale

Female2Female

MatchModel

Male Male

ApplyModel

Male Male

supervisesMale

Male2Male

Layer Relations

Gender Language

Layer Entities

Gender Language

MatchModel

Male

ApplyModel

Male

Males

MatchModel

Station

ApplyModel

Station

Stations

MatchModel

Female

ApplyModel

Female

Females

Organisation Language

inputSquad.xmi

Precondition

Female

Postcondition

FemaleFemale

supervisesFemale

Precondition

Station MaleFemale

Postcondition

Station MaleFemale

malefemale

agent agent

"any model which includes female officer
will be transformed into a model where
that female officer will always supervise

another female officer "

s'

m1'

m2'

m3'

f1'

f2'

f3'

f4'

m
ale

female

m
al
e

m
al
e

fem
ale

fem
ale

fem
ale

supervisesMale
supervisesFemale

supervisesFemale

supervisesFemale

s

m1 m2

m3

f1

f2 f3 f4

agent

supervisessupervises

supervises

supervises

supervises supervises

Symbolic Execution Construction

11Path Conditions Layer l 21 31 11 21 21 31
11 21

31
11 31

11 31
12

11 31
22

11 31
32

11 31
42

11 31
12 22

...
Path Conditions Layer l+1

Unfeasible
Execution Path

Unfeasible
Execution Path

Layer 1

S

S M

M

F

F

Layer 2

S M

S M

S F

S F

F F

F F

M M

M M

1 2 3

1 2 3 4

DSLTrans Transformation

Symbolic Execution Construction

Property Proof

S M

S M

F F

F F

F

F

Precondition

Postcondition

S M

S M

F

F

F

F F

S

S

F

F

Precondition

Postcondition

Property

Path Condition

?

Precondition found
Postcondition found

Property holds!

Precondition found
Postcondition NOT found
Property does not hold!

Property

Path Condition

Property
Holds!

Property does
not Hold!

Experimental Results

All experiments ran on a 2.2 GHz Intel Core i7 machine with 8GB of DDR3
memory running Ubuntu 11.10 and Python 2.7.

Implementation

I T-Core is used to to handle all the model manipulation primitives in the Symbolic Execution construction
and property proof;

I Implemented as a mix of Python and T-Core;
I The whole prototype was built using the MDD principles, i.e. Model Transformations are used to verify

Model Transformations.
I Optimizations:

. memoization was used whenever possible to avoid isomorphic graph matching and rewrite operations
(space + time complexity);

. pointers to rules instead of copies of rules to build each path condition (space complexity);

. For property proof we avoid checking path conditions where the property is sure to hold (time
complexity).

Conclusion and Contributions

I We have applied the concept of symbolic executions of (DSLTrans) Model
Transformation and provided the necessary algorithms;

I We show our symbolic execution technique scales well in our experimental
setting and has the potential to scale for real world problems;

I We demonstrate that expressiveness reduction of a model transformation
language can be very beneficial to the design and construction of a model
transformation verification tool;

I We demonstrate that model transformations can verify model transformations.

Bibliography

[1] M. Asztalos, L. Lengyel, and T. Levendovszky. Towards Automated, Formal Verification of Model
Transformations. In ICST, pages 1524. IEEE, 2010.

[2] F. Büttner, M. Egea, J. Cabot, and M. Gogolla. Verification of ATL Transformations Using Transformation
Models and Model Finders. In ICFEM, pages 198213. Springer, 2012.

[3] F. Büttner, M. Egea, and J. Cabot. On Verifying ATL Transformations Using ’off-the-shelf’ SMT Solvers. In
MoDELS, pages 432448. Springer, 2012.

[4] Symbolic Execution for the Verification of Model Transformations, Levi Lucio and Hans Vangheluwe. Technical
report, SOCS-TR-2013.2, McGill University, 2013.
http://msdl.cs.mcgill.ca/people/levi/30 publications/files/MTSymbExec.pdf

[5] Model Transformations to Verify Model Transformations, Levi Lúcio and Hans Vangheluwe. Proceedings of
Verification of Model Transformations (VOLT) 2013, Budapest, Hungary.

http://msdl.cs.mcgill.ca/ http://msdl.cs.mcgill.ca/people/levi/

http://msdl.cs.mcgill.ca/
http://msdl.cs.mcgill.ca/people/levi/

