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Introduction

In this work we apply the program verification concept of symbolic execution to the verification of model transformations written in the Turing-incomplete
DSLTrans language. Current state of the art model transformation verification techniques rely on SMT solvers or theorem proving to deal with the complexity of
model transformations [1, 2, 3]. Our symbolic execution construction algorithms leverage on DSLTrans’ reduced expressiveness in order to cope with the
classical state space explosion problem typical to symbolic execution. As a result our verification technique [4, 5] is simple, relies on an in-house model
transformation symbolic execution engine, is fully axiomatized, can be mathematically proved and has the potential to scale to real size GM transformations.

DSLTrans Model Transformations and Properties

"a model which includes a police station that has
 both a male and female chief officers will be

transformed into a model where the male
 chief officer will exist in the male set  and the female 

chief officer will exist in the female set "
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"any model which includes female officer
will be transformed into a model where
that female officer will always supervise

another female officer "
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Symbolic Execution Construction
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Experimental Results

All experiments ran on a 2.2 GHz Intel Core i7 machine with 8GB of DDR3
memory running Ubuntu 11.10 and Python 2.7.

Implementation

I T-Core is used to to handle all the model manipulation primitives in the Symbolic Execution construction
and property proof;

I Implemented as a mix of Python and T-Core;
I The whole prototype was built using the MDD principles, i.e. Model Transformations are used to verify

Model Transformations.
I Optimizations:

. memoization was used whenever possible to avoid isomorphic graph matching and rewrite operations
(space + time complexity);

. pointers to rules instead of copies of rules to build each path condition (space complexity);

. For property proof we avoid checking path conditions where the property is sure to hold (time
complexity).

Conclusion and Contributions

I We have applied the concept of symbolic executions of (DSLTrans) Model
Transformation and provided the necessary algorithms;

I We show our symbolic execution technique scales well in our experimental
setting and has the potential to scale for real world problems;

I We demonstrate that expressiveness reduction of a model transformation
language can be very beneficial to the design and construction of a model
transformation verification tool;

I We demonstrate that model transformations can verify model transformations.
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