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Abstract. In recent years, many new concepts, methodologies, and tools
have emerged, which have made Model Driven Engineering (MDE) more
usable, precise and automated. MDE processes are very often domain
dependent. Thus, means for composing and customizing MDE tools and
activities are increasingly necessary.
In this paper, we propose the Formalism Transformation Process (FTP)
as a guide for carrying out model transformations, and as a basis for uni-
fying key MDE practices, namely multi-paradigm (multi-abstraction and
multi-formalism) modelling, meta-modelling, and model-transformation.
The Formalism Transformation Graph (FTG) and its complement, the
Process Model (PM), constitute the FTP, and cover the MDE lifecy-
cle from initial domain-specific modelling to model checking, simulation,
code synthesis, and deployment. The FTG incorporates formalisms ap-
propriate to the abstraction level and to the intent of the transformation.
We illustrate the proposed FTG/PM through the design of an automated
power window, a case study from the automotive domain.

1 Introduction

In recent times, model driven engineering (MDE) has been been adopted in in-
dustrial projects in domains ranging from mobile telephony and automotive to
avionics and military. The promises of MDE regarding traditional software devel-
opment methods are many, chiefly among which: better management of the com-
plexity of software development by making use of powerful abstractions; better
management of the requirements for the system coming from the stakeholders,
by both exposing the logic of the system in languages that are understandable
by non programmers and fast re-generation of code by using automated model
transformations; less bugs in the final software product given that automation
helps eliminating errors and usage of formal verification tools raises confidence of
correctness; and finally automated documentation generation from the domain
?? The presented work has been developed in the context of the NECSIS project, funded
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specific models. If achieved, all of these benefits would translate in potentially
faster, cheaper and more reliable software development techniques than than the
ones traditionally used.

Several important concepts and associated fields of study have emerged or
have been adopted and further developed by the efforts of the MDE community.
Practices such as model transformations, domain specific modelling, requirements
engineering, verification and validation, multi-paradigm modelling, model com-
position, simulation, calibration, deployment, code generation, etc. are often pro-
posed in the form of tools, methodologies or frameworks to help in alleviating
issues in the application of MDE. However, to the best of our knowledge, the
challenges and benefits arising from the conjugation and synergies of all these
concepts during the application of MDE are yet to be explored. This is partially
due to the fact that most of the tools, methodologies or frameworks proposed by
the community often focus on in-depth technically challenging issues, while the
broader picture of the systematic integration of those technical and methodolog-
ical solutions remains, for the time being, to be explored. An additional difficulty
often faced by MDE researchers is the limited access to the software development
tools, methodologies and models used in real industrial settings. This is often
due to the fact that companies that do apply MDE techniques during software
development do not want to expose their development processes or data either
by fear of loss of competitive edge, or simply by lack of time and resources to
share their know-how with researchers.

The goal of our work is to provide a complete and detailed process archi-
tecture for model-driven software development by unifying key MDE practices.
We propose a Formalism Transformation Process (FTP) intended to guide de-
velopers throughout the MDE lifecycle. The FTP is comprised of the Formalism
Transformation Graph (FTG) and its complement, the Process Model (PM).
The idea behind the FTG is similar to the formalism transformation lattice for
coupling different formalisms as proposed by Vangheluwe et al in [45]. We go
a step further from multi-formalism modelling, and apply the notion of multi-
paradigm modelling [33] in our work. Model transformation is a key element in
our FTP. Our FTP addresses the need for domain-specific modelling, and an
instance of the FTG includes domain-specific formalisms and transformations
between them that allow capturing a map of the process used to develop soft-
ware within a given domain. The PM introduced as part of the FTP can be used
to precisely model the control flow between the transformation activities taking
place throughout the software development lifecycle starting from requirements
analysis and design to verification, simulation, and deployment.

We have worked with automotive systems as our target domain, but we
believe that the FTP that can be applied in general in a broad range of domains.
In particular, we demonstrate the capabilities of the FTP through the design
of an automated power window. The case study is of inherent complexity, non-
trivial in nature, and representative of industrial case studies. The formalisms
used in the FTG are appropriate to the level of abstraction, and include discrete-
time, continuous-time, discrete-event, and hybrid formalisms. The MDE process



is entirely based on concrete models and transformations, starting from domain
specific requirements and design models aimed at describing control systems
and their environment and finishing with Automotive Open System Architecture
(AUTOSAR) [4] code.

This paper is organized as follows: Section 2 provides background informa-
tion on meta-modeling, model transformation, and multi-paradigm modeling.
Section 3 describes the FTP and illustrates it using the power window case
study. Section 4 gives a formal definition of the formalism transformation graph
(FTG) and the process model (PM). Section 5 discusses our contibutions and
possible improvements of FTP. Section 6 presents related work in this area and
Section 7 draws some conclusions.

2 Background

Model Driven Engineering (MDE) encompasses both a set of tools and a method-
ological approach to the development of software. MDE advocates building and
using abstractions of processes the software engineer is trying to automate, thus
making them easier to understand, verify, and simulate than computer programs.

Within the context of this paper, we have chosen to follow the terminology
as presented in [18]).

– A model consists of its abstract syntax (its structure), concrete syntax (its
visualisation) and semantics (its unique and precise meaning).

– A language is the set of abstract syntax models, possibly described by e.g.,
a grammar or metamodel. No semantics or concrete syntax is given to these
models.

– A concrete language is a language that comprises both the abstract syntax
and a concrete syntax mapping function κ. Obviously, a single language may
have several concrete languages associated with it.

– A formalism consists of a language, a semantic domain (which is itself a
language) and a semantic mapping function giving meaning to model in the
language.

– A concrete formalism comprises a formalism together with a concrete syntax
mapping function.

Domain Specific Modeling (DSM) formalizes the fact that certain languages
or classes of languages, called Domain Specific Languages (DSLs), are appropri-
ate to describe models in certain domains. A famous white paper on the subject
from MetacaseTM [29] presents annecdotal evidence that DSLs can boost pro-
ductivity up to 10 times, based on experiences with developing operating systems
for cell phones for NokiaTM and LucentTM . DSM has led to the development of
formalisms and tools such as EMF and GMF [32], AToM3 [11] or Microsoft’sTM

DSL Tools [10].
Model transformations are the heart and soul of model-driven software de-

velopment, as stated by Sendall and Kozaczynski [40]. Model transformation



involves automatic mapping of source models in one or more formalisms to tar-
get models in one or more formalisms using a set of transformation rules. Having
an automated process for creating and modifying models leads to reduced effort
and errors on the software engineer’s part.

Implementations for transformation languages such as ATL [2] or QVT [14],
and for graph transformations (as used in AToM3) have been developed in the
last few years and provide stable platforms for writing and executing model
transformations.

Multi-Paradigm Modeling (MPM), as introduced by Mosterman and Vangheluwe
in [33], is a perspective on software development that advocates not only that
models should be built at the right level of abstraction regarding their purpose,
but also that automatic model transformations should be used to pass informa-
tion from one representation to another during development. In this case, it is
thus desirable to consider modeling as an activity that spans different models or
paradigms. The main advantage that is claimed of such an approach is that the
software engineer can benefit from the already existing multitude of languages
and associated tools for describing and automating software development activ-
ities – while pushing the task of transforming data in between formalisms to
automated transformations.

Another possible advantage of MPM is the fact that toolsets for implementing
a particular software development methodology become flexible. This is due to
the fact that formalisms and transformations may be potentially plugged in and
out of a development toolset given their explicit representation.

3 The Formalism Transformation Process: The Power
Window Case Study

The goal of this section is to introduce the Formalism Transformation Process
(FTP). The language used to define Formalism Transformation Processes con-
sists of two sub languages: the Formalism Transformation Graph language, which
allows declaring a set of formalisms available to model within a given domain
as well as available transformations between those formalisms; and a Process
Model (PM) language, which is used to describe the control and data flow be-
tween MDE activities. We illustrate our work using the power window case study
from the automotive domain.

A power window is basically an electrically powered window. Such devices
exist in the majority of the automobiles produced today. The basic controls of
a power window include lifting and descending the window, but an increasing
set of functionalities is being added to improve the comfort and security of the
vehicle’s passengers. To manage this complexity while reducing costs, automo-
tive manufacturers use software to handle the operation and overall control of
such devices. However, because of the fact that a power window is a physical
device that may come into direct contact with humans, it becomes imperative
that sound construction and verification methodologies are used to build such
software.
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Fig. 1. FTG (on the left) and PM (on the right) for Power Window software develop-
ment



In Figure 1 we depict a condensed version of the FTP we have built for
developing Power Window software. The FTG is shown on the left side, the
PM is shown on the right side. The power window FTP was built based on
experiments we have performed while developing software development processes
for the automotive industry. cite tech report? Notice that in the FTG (left side of
the FTP of Figure 1) a set of domain specific formalisms are defined as labelled
rectangles. Transformations between those formalisms are depicted as labelled
small circles. On the PM (right side of the FTP of Figure 1) a diagram with a
set of ordered tasks necessary to produce the power window control code is laid
out. The language used for the PM is the UML Activity Diagram 2.0 language
[21]. The labelled round edged rectangles in the Activity Diagram correspond to
executions of the transformations declared on the power window FTG. Labelled
square edged rectangles in the PM correspond to models that are consumed or
produced by activities. A model is an instance of the formalisms declared on the
power window FTG with the same label. Notice that on the PM side the thin
arrows indicate data flow, while thick arrows indicate control flow. Similar to the
models, the arrows must also have corresponding arrown in the FTG, meaning
that their input and output nodes must correspond. Additionally we use as
control flow constructs for a PM joins and forks, represented as horizontal bars,
and decisions, represented by diamonds. The formalised meaning of the FTP
will be presented in depth in Section 4.

Figure 1 shows the FTP for building the power window system. It contains
several phases, that are sometimes executed in parallel. These contain (1) Re-
quirements Engineering, (2) Design, (3) Verification, (4) Simulation, (5) Cali-
bration, (6) Deployment and finally (7) code generation. In the following section
we describe the activities in each phase and highlight some of the details. Due
to this paper’s space constraints we will not be able to describe a real execution
of the process described in the power window FTP in Figure 1. However, most
of the FTP, with the exception of requirements, has been described in [26].

3.1 Requirements Engineering

Before any design activities can start, the requirements need to be formalised
so they can be used by the engineers. Starting from the textual description con-
taining the features and constraints of the power window, a context diagram is
modelled using the SysML use case diagram. The use cases are further refined
and complimented with the use case descriptions. Finally, the requirements are
captured more formally with a SysML requirements diagram. Note that these
transformations are usually done manually by the requirements engineers though
some automatic transformations can be used to populate the use case diagram
and requirements diagram. The manual transformations are shown greyed out
in the FTG.
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3.2 Design

When given the task to build the control system for a power window, engineers
will take two variables into consideration: (1) the physical power window itself,
which is composed of the glass window, the mechanical lift, the electrical engine
and some sensors for detecting for example window position or window collision
events; (2) the environment with which the system (controller plus power win-
dow) interacts, which will include both human actors as well as other subsystems
of the vehicle – e.g. the central locking system or the ignition system. This idea
is the same as followed by Mosterman and Vangheluwe in [33]. According to con-
trol theory [13], the control software system acts as the controller, the physical
power window with all its mechanical and electrical components as the process
(also called the plant), and the human actors and other vehicle subsystems as
the environment.

Using the requirements, engineers start the design activities using domain-
specific languages (DSL) for the Environment, Plant, and Controller. The Net-
work is used to combine the three design languages and identify the interfaces
between them.

3.3 Verification

To assure that there are no safety issues with the modelled control logic, a formal
verification can be done. The domain-specific models used for defining the plant,
environment and the control logic are transformed to petri-nets where reachabil-
ity properties are checked. Of course it is also necessary to evolve requirements
to a language that can be used to check the petri-nets.

In Figure 2, we present the full safety analysis part of the power window PM,
along with the corresponding subset of the FTG. Notice that the safety analysis
block is displayed in its collapsed form in the complete FTP in Figure 1.

Figure 2 shows a part of the FTP. It uses five models that are the result of
previous activities (shown on the left of the PM). We see that the combinePN



activity takes as inputs three encapsulated Petri nets1 derived from the envi-
ronment, plant and control domain specific models in Figure 1, as well as a
network model that specifies how those three models communicate. As data
output, the CombinePN activity produces a Place/Transition Petri net (non-
modular), which is the result of the fusion of the three input modular Petri nets
according to the input Network model.

Following the CombinePN activity, the ToSafetyReq and BuildRG activities
should be executed in parallel. The ToSafetyReq activity is greyed out since it
needs human intervention. It takes as inputs a model of the safety requirements
for the power window, as well as the combined Petri net model including the
behavior of the whole system, and outputs a set of CTL (Computation Tree
Logic) formulas encoding the requirements. does this mean that CTL is written
by hand? On the other hand the BuildRG activity is automatic and allows
building the reachability graph for the combined Petri net model. The join bar
enforces that both the CTL formulas and the reachability graph are produced
before the CheckReachableState activity is executed. This last activity verifies if
the reachability graph adheres to the formulas built from the requirements and
produces a boolean as output.

conclude that the FTP clarifies things in the power window
When the solution is not safe, hence the output from the boolean is False,

the process restarts from the design phase.

3.4 Simulation

On the other hand, the continues behaviour of the up-and downward movement
of the window is simulated using a hybrid formalism. The hybrid simulation con-
tains the environment and plant DSL transformed into Causal Block Diagrams
(CBD) 2 and the controller in the Statecharts formalism. The process of verify-
ing the continues behaviour is very similar to the Safety Analysis, presented in
section 3.3 though as a requirements language CBDs are also used.

3.5 Deployment

After the software has been created and verified, the software has to be de-
ployed onto a hardware architecture. This hardware architecture contains a set
of electronic control units (ECU) that are connected using a network. Each ECU
can execute a set of related and unrelated software components. To allow this,
AUTOSAR defines a standardised middleware containing a real-time operating
system, a communication stack and drivers to access the peripherals like analog-
digital converters, timers and others. Software components can be distributed
1 encapsulated Petri nets are a modular Petri net formalism, where transitions can be

connected to an encapsulating module’s ports. Module’s ports can then be connected
by a Network formalism.

2 Causal Block Diagrams are a general-purpose formalism used for modelling of causal,
continuous-time systems, mainly used in tools like Simulink



freely among the available hardware units and a lot of other choices need to
be made like mapping the software functions to tasks, the mapping of signals
to messages and a multitude of deployment choices in the middleware. These
choices give the engineer a lot of flexibility that can result in non-feasible solu-
tions where the spatial and temporal requirements are violated. On the other
hand it allows to search the deployment space for optimal solutions in terms of
cost, energy consumption and other extra-functional properties.

In our power window case study, we take a platform-based design method[39]
for exploring the deployment space with the goal of creating a feasible deploy-
ment solution in terms of real-time behaviour. Platform-based design introduces
clear abstraction layers where certain properties can be checked. Real-time be-
haviour can be checked in three stages to step-wise prune the deployment space:
(1) after mapping the software to the hardware using a simple bin packing check,
(2) after mapping the software functions to tasks and messages to the bus using
schedulability analysis and (3) after setting all the parameters in the middleware
using a low-level deployment simulation.

Figure 3(a) shows the activities involved in checking a single solution at
the level of schedulability analysis. ToSchedulabilityAnalysis takes a single AU-
TOSAR solution and a performance model as input to derive set of algebraic
equations which are subsequently executed. This execution, modelled as Calcu-
lateSchedulability, produces a trace containing the worst-case execution times of
the software functions. Afterwards the trace is compared to the requirements,
expressed using the TIMMO-formalism [7] in the CheckSchedulabilityTrace pro-
ducing a boolean whether the requirements are met. When the result is not
satisfying the requirements, a backtracking step is taken so new deployment so-
lutions can be explored. The process continues until a feasible solution is found.
This common activity of transforming to another formalism, executing this new
model and comparing the traces to check a certain property can be seen as a
pattern for all three deployment levels in the FTP of Figure 1.
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3.6 Calibration

In the previous paragraphs we assumed that a performance model was readily
available to use during the deployment space exploration. To build the perfor-
mance model, we can also use fully automated generative MDE techniques. This



process is depicted in Figure 3(b), where the plant model, environment model
and instrumented source code are combined and executed in a Hardware-in-the-
loop environment3 giving back execution time measurements. These measure-
ments can be transformed in a real performance model that is used during the
deployment space exploration.

3.7 Code Generation

When a solution turns out to be feasible after the three stages, the code can
be synthesized for each hardware platform in the configuration (only shown in
Figure 1). This includes the generation of the C-code of the application, genera-
tion of the middleware and generation of the AUTOSAR run-time environment
(RTE) that is required to glue the application code and middleware code to-
gether.

4 The Formalism Transformation Process (FTP)

In the following definitions we will provide the precise abstract syntax of the
FTP formalism. We will mention the relation between FTP abstract and con-
crete syntax (as can be observed e.g. in figure 1) whenever the abstract syntax
definitions do not make that relation immediately obvious.

Definition 1. Formalism and Model
We call the set of all formalisms Form and the set of all models Models. A

model always conforms4 to a given formalism, formally written model conformsTo f ,
where f ∈ Form. The set of models that conform to a formalism f ∈ Form is
the set Modelsf =

{
model ∈ Models | model conformsTo form

}
.

Definition 2. Transformation and Transformation Execution
Given a set of formalisms F ⊆ Form, we formally write ts1,...,sm

t1,...,tn
to denote

a transformation t where {s1, . . . , sm} ∈ P(F ) is the set of source formalisms
of t and {t1, . . . , tn} ∈ P(F ) is the set of target formalisms of t. The set of all
transformations for a set of formalisms F ⊆ Form is written TrF .

Given a set of formalisms F ⊆ Form, a transformation execution of ts1,...,sm

t1,...,tn
∈

TrF is a computation that: receives a set of inputs models im1, . . . , imm such
that mik conformsTo sk (1 ≤ k ≤ m); produces a set of outputs models
om1, . . . , omm such that omk conformsTo tk (1 ≤ k ≤ n). Given the above,
we write ex executionOf t to denote ex is an execution of t. The set of all
executions of t is written Exect.

Definition 3. Formalism Transformation Graph (FTG)
A formalism transformation graph is a tuple 〈F , τ〉 ∈ Ftg, where F ⊆ Form

and τ ⊆ TrF .
3 Hardware-in-the-loop is TODO EXPLANATION
4 this is the typical conformance relation as found in the literature, cite one of Khune’s

papers here. . .



In the FTG definition 3 the “graph” notion comes from the fact that for-
malisms (languages) can be seen as nodes of a graph where transformations
connect the nodes via relations of input and output. In what follows we use the
notation Vs to denote the set of variables over set s.

Definition 4. Process Model (PM)
Let ftg = 〈F , τ〉 ∈ Ftg. A process model of ftg is a tuple 〈Act,Obj,CtrlNode,

CtrlF low,DataF low,Guard,CtrlNodeType〉 ∈ Pmftg, where:

– Act ⊆
⋃

ex=Exect Vex such that t ∈ τ
– Obj ⊆

⋃
mod=Modelsf Vmod such that f ∈ F

– CtrlNode ⊆ NodeID, where NodeID is a set of control node identifiers;
– CtrlF low ⊆ (Act×Act) ∪ (Act× CtrlNode) ∪ (CtrlNode×Act)
– DataF low ⊆ (Act×Obj) ∪ (Obj ×Act) ∪ (Act×Node)
– Guard : CtrlF low ↪→ conditionsOver(F )5

– CtrlNodeType : CtrlNode →
{
forkJoin, decision, begin, end

}
with the following additional constraints:

– for all a ∈ Act inbound dataflow arrows carry the transformation’s input
models; outbound dataflow arrows carry the transformation’s output models;

– for all pm ∈ Pmftg, CtrlNodeType is surjective regarding the restriction of
the function’s co-domain to

{
begin, end

}
, meaning that for a given process

model only one start and only one end control node exist;
– if (a,n), (a′,n′) ∈ CtrlF low then a = a′, meaning only one control flow arc

is allowed from each activity;
– if (a, d), (a′, d′) ∈ DataF low then a = a′, meaning only one data flow arc is

allowed from each activity;
– if (d,n) ∈ DataF low then CtrlNodeType(n) = decision;
– Guard

(
(n,n′)

)
, where (n,n′) ∈ CtrlF low, is defined if and only if

CtrlNodeType(n) = decision.

The abstract syntax of PM in definition 4 includes the fundamental set of
constructs in activity diagrams, as well as data flow: Act are action nodes (in our
case placeholders for executions of transformations) and are represented as round
edged rectangles; Obj are object nodes (in our case placeholders for instances of
formalisms) and are represented by square edged rectangles. CtrlNode is a set
of control nodes typed by the CtrlNodeType function and having the respec-
tive classical activity diagram concrete syntax. The CtrlF low and DataF low
relations specify the edges between action, object and control nodes. Finally
the Guard function allows defining guards for edges which are outbound of de-
cision nodes. The constraints following the first part of definition 4 insure the
well-formedness of the PM activity diagrams.

Definition 5. Formalism Transformation Process (FTP)
A formalism transformation process is a pair 〈ftg, pm〉 ∈ Ftp, where ftg =

〈F , τ〉 ∈ Ftg and pm ∈ Pmftg is a process model of ftg.
5 we use ↪→ to denote a partial functions.



The semantics of a 〈ftg, pm〉 ∈ Ftp is a set of traces associated with execu-
tions of the activity diagram specified in pm. The semantics of activity diagrams
with data flow have been addressed by Störrle in [41] and are built by transform-
ing UML 2.0 Activity Diagrams into Coloured Petri Nets [1], as suggested by the
UML 2.0 specification [21]. The resulting traces are labelled transition systems
where states hold the models available at each given moment of the develop-
ment process and transitions represent transformation executions. Notice that
in definition 4 action nodes and object nodes are defined as variables of trans-
formation executions and formalisms’ models, respectively. However, when the
traces are calculated the PM’s variables are replaced by concrete transformation
executions and models (see definition 2).

5 Discussion

The contribution of the paper is the Formalism Transformation Process artifact,
consisting of the Formalism Transformation Graph and the Process Model. Its
usefulness was illustrated by an industrial-size case study. The resulting FTP
allows the MDE process to be flexible. Also, a lot of insight in the domain can
be garnered as FTP is giving its users an organised way to look at the MDE
process. We suggest that one of these FTPs should be devised for each specific
domain where MDE should be applied. This way, PMs model domain-specific
MDE. Because the FTG maps out all different formalisms and their relationships,
it can be seen as a model of MDE.

The languages for both FTGs and PMs, and their relationship are formalised
in Section 4. In practice, we use a subset of UML Activity Diagrams 2.0 to
express PMs. The metamodel of FTGs is a bipartite graph. Its metamodel is
straightforward and is not shown in this paper because of spacial constraints.
The explicit modelling of the FTP and its execution semantics allow us to extend
the formalisms in a MDE fashion, garnering from all its benefits.

In its current state, FTP can be improved in several ways to make it more
valuable. (1) The execution semantics of the PM could include an annotation
mechanism to keep some information on an artifact such as author, date created,
tool used, and formalism it conforms to (similar to [8]); (2) A difference can be
made in the FTG between general-purpose formalisms and transformations that
are likely to be reused (e.g., Petri-net to reachability graph) and domain-specific
parts that are only relevant to one particular PM (e.g., C-code calibration for
Autosar C-code). The general-purpose artifacts can be browsed as a library for
off-the-shelf formalisms and transformations when creating a new PM; (3) Cur-
rently, all relationships in the FTG are transformations. We can classify the
transformations according to their type and/or intention, e.g., model-to-model
translation, verification, refinement, abstraction, code generation, simulation,
etc. [27]. Generalising this further, we can add pre- and post conditions as prop-
erties to the transformations in the FTG. During the execution of the PM, these
pre- and post conditions can be checked for validity and correctness of the trans-



formations. Moreover, this strategy can be combined with analytical techniques
to prove some of the general purpose transformations that are used more widely.

Usage of the FTP-approach results in an ever growing centralised FTG, and
an ever growing collection of PMs which can be used for empirical evaluation
of current MDD techniques. By using data mining techniques on a collection of
FTPs, several patterns can emerge that can enable reuse and help designers to
solve ever increasing complexity. The FTP-approach can also be used as an en-
abler for tool integration where the transformations between the different model
representations in the FTG can be looked up and reused within the PMs.

6 Related Work

Our work is focused on creating a platform for unifying MDE practices by defin-
ing a detailed and precise model, namely the FTG, to guide the model transfor-
mation process. While FTG is generic and can be applied in the development of
systems in various domains, we have worked on a case study in the automotive
domain to illustrate our Formalism Transformation Graph and its applicabil-
ity. There have been research carried out in both academia and industry on
the model-driven engineering of automotive cyberphysical systems [17, 46, 37,
16]. [6] present a MDE framework based on SysWeaver for the development of
AUTOSAR-compliant automotive systems.

Research related to our approach can be divided into two parts: modelling
the relations between models explicitly (similar to the FTG), and describing the
transformations explicitly as an MDD process (similar to the PM).

6.1 Inter-model modelling

The idea of modelling the existing relations between different processes was first
introduced by Vangheluwe et al. [44] in the context of simulation. A Formal-
ism Transformation Lattice, addressing the same goals the Formalism Trans-
formation Graph, is introduced in [45]. The idea is further elaborated in [12],
advocating AToM3 [11] as a suitable tool for its implementation. Indeed, we use
AToM3 and its successor AToMPM excessively in the power window case study.
The FTG of [12] has no formal character however and leaves transformations
implicit.

Bézivin et al. introduce the concept of megamodels [8] as a global view of the
considered artifacts in a system. They claim that this concept is essential in any
MDD platform. Key in their approach is that not only models, but also tools and
the services and operations they provide are also represented as models, with all
sorts of relations in between. Megamodelling is also called modelling in the large.
A megamodel is mainly presented as a means to store metadata (e.g., that an
artifact was generated by a particular transformation or created in a particular
tool, what its metamodel is, etc.). The authors state that process modelling could
be achieved with megamodelling. [15] continues on megamodelling, and four dif-
ferent kinds of relations are presented, referring to the semantics: DecomposedIn,
RepresentationOf, ElementOf, and ConformsTo.



Salay et al. introduce macromodels as a means to capture the intended pur-
pose and a set of intended relationships (such as refinement, instantiations, refac-
torings, etc.) of models [38]. They model relationships between formalisms in a
similar way as in megamodeling, but they allow modelling these relationships
explicity as metamodels. Their goal is to improve understandability, to enforce
contraints on models even before they are created, to check for consistency be-
tween models and to manage evolution of the modeling project. Similarly to
megamodeling, there is no support for workflow modeling.

6.2 The MDD process

Various model transformation languages and toolsets are used in practice today,
such as the OMG-standard QVT [28], Atlas Transformation Language [25], and
AToM3 [11]. Such tools are used independently for carrying out some particular
purpose within MDE. However, research has shown a need for unifying MDE
practices and tools [5] [33].

Process modelling has a huge following in research, resulting in many mod-
elling languages. Recent years, most of these languages are based on π-calculus
and/or Petri nets. π-calculus [31] was introduced by Robert Milner, and is based
on Calculus of Communicating Systems (CCS) [30] which was developed by Mil-
ner in Parallel with Hoare’s Communicating Sequential Processes (CSP) [22], all
of which are prominent process calculi. Petri nets [36] were created by Carl
Adam Petri as a graphical formalism to express concurrent systems. Examples
of used process modelling languages that have roots in π-calculus and/or Petri
nets are Business Process Model and Notation (BPMN) [20], the textual Busi-
ness Process Execution Language (BPEL) [34], Coloured Petri nets [23] in e.g.,
CPNTools [24], Yet Another Workflow Language (YAWL) [43], Event-Driven
Process Chains (EPC’s) [42] and UML Activity Diagrams [21]. The XML Pro-
cess Definition Language (XPDL) [9] is a well-known standard defined by the
Workflow Management Coalition (WfMC) for storing visual diagrams, such as
BPMN diagrams.

OMG’s Software Process Engineering Metamodel (SPEM) [3], formerly known
as Unified Process Model (UPM), is designed for defining the process of using
different UML models in a project. SPEM is defined as a generic software process
language, with generic work items having different roles. It is merely a generic
framework for expressing processes, and does not include e.g., a visual concrete
syntax.

Oldevik et al. [35] present a metamodel-based UML profile for model transfor-
mation and code generation. The goal of the work is provide a framework that
assists transformations in the MDE lifecycle by defining activities and tasks.
The paper outlines the semantics of the transformations required to map mod-
els models at a high level of abstraction (e.g. requirements) to models at the
architecture and platform-specific levels.

Similar to our Process Models, Van Gorp et al. employ Activity Diagrams 1.0
to express chains of transformations [19]. Their main goals are understandability
and reusability. Their notation uses regular States to denote types of models, and



Object Flow States to denote transformations. The rather preliminary language
uses Synchronisation Bars as well. They are used to denote synchronous execu-
tion (in case of multiple outputs of Synchronisation Bars), as well as multiple
transformation inputs/outputs for a transformation (in case of multiple inputs
of Synchronisation Bars). The language does not include decision diamonds and
has no precise semantics, but is rather used as a documentation means.

We ultimately chose Activity Diagrams 2.0 as our formalism for modelling
processes for three reasons: the formalism is well-known, especially in the field
of modelling, the formalism is well-supported by general tools, and it allows us
to model both control flow and data flow.

7 Conclusion

In this paper, we presented a platform for carrying out formalism transforma-
tions within MDE. We proposed the Formalism Transformation Graph (FTG)
and the Process Model (PM) to drive the model-driven development process. We
formally define the FTG and its complement, the PM, as the Formalism Trans-
formation Process (FTP) language. The FTG comprises of formalisms as nodes
and transformations as edges, and shows the different languages that need to be
used at each level of development for modelling at the right level of abstraction.
Meta-modelling and model transformation are the basis of the FTG. The FTG
explicitly models the relations between requirements, design, simulation, verifi-
cation, and deployment models. The transformations are depicted as activities,
and the control flow and the data flow between each transformation activity are
detailed out in the Process Model (PM).

We have applied FTP on a non-trivial case study of the design of a power
window controller. We have constructed the FTG and PM for the target domain
by applying the FTP language. Following requirements elicitation and specifica-
tion using the SysML use case diagram and requirements diagram formalisms,
we have defined domain specific languages that allow modelling of the main
components of the control system: the environment, the plant, and the con-
trol. The DSLs are transformed to petrinets for carrying out reachability analyis
on one hand, and to a hybrid simulation formalism (composed of a continuous
time formalism causal block diagrams, and a discrete-event formalism, state-
charts) for ensuring that system constraints are being satisfied. After successful
safety analysis and simulation, the control model in the statecharts formalism
is mapped on to deployment models. We have used the AUTOSAR middleware
for deploying our software onto a hardware architecture. The deployment is a
multiphase process beginning with the generation of a calibration infrastructure
which feeds to a performance model, followed by an intial architecture deploy-
ment (in C-code), bin packing analysis and schedulability analysis to check that
performance constraints are being met, and finally simulation using the DEVS
formalism. Additionally, timing requirements (represented using the TIMMO
language) are derived from the inital requirements diagrams, and integrated and



checked during deployment. Once the simulation outputs an acceptable trace,
the deployment models are transformed to middleware code and RTE code.

The FTG and PM we have established can be adapted for use in various
domains. It provides a complete model-driven process that is based on meta-
modelling, multi-abstraction, multi-formalism, and model transformation. We
plan on extending this work and adapting the FTP for feature-oriented software
development of software product lines.
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