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Abstract

Resilience in Information and Communication Technology (ICT) sys-
tems was introduced around the seventies and has been more intensively
used in the research community in the very last years. If we refer to the
literature on the topic we find that the word resilience is used with many
different definitions and at different levels. This is a problem as it hinders
communication between researchers and does not allow for a fundamental
theory on the subject.

This paper is a proposal to address this issue theoretically and opera-
tionally. In our laboratory we have developed a framework called DREF
where resilience is essentially defined as a property of an evolving system
that is considered to improve capabilities to avoid failures. In this pa-
per we formalize operational support for this idea by using artifacts and
tools from the modelling world. In particular we define an evolving system
as a sequence of models and compute if that evolving system is resilient
regarding a property of interest by using a model checker.

Our proposal is aimed both at providing a formal definition of the
resilience concept and at providing the means to produce or analyze a
resilient system. Our approach is illustrated by developing a filesystem
which is resilient regarding confidentiality.



1 Introduction and Problem Statement

We consider software and systems’ dependability as a composite quality. While a
traditional cartesian approach to engineering would require to consider it strictly
scientifically and progressively throughout the whole lifecycle, a loose pragmatic
approach tackles it incrementally as soon as its satisfaction level is below the
stakeholders’ acceptance threshold. The generic problem we address in this
paper is to find a solution that would combine those two, a priori, contradictory
viewpoints. More precisely, we need an approach that allows for flexible handling
of dependability in a scientific framework supported by software engineering
tools and techniques.

Resilience was introduced in ICT systems around the seventies [9] and has
been more intensively used in the research community in the very last years'.
By analyzing these references we can notice that the word is used with many
different definitions and at different levels [5, 13, 20].

In [10], we have proposed a formal framework called DREF designed to ease
the development of dependable systems from a software engineering perspective.
This framework provides a mathematical definition of resilience and related con-
cepts. In DREF the fundamental concepts are: entities, properties, satisfiability
functions, nominal satisfiability, tolerance threshold and evolution. Entities are
anything that is of interest to be considered. It might be e.g. a program, a
database, a person, a hardware element, a development process, or a require-
ment document. Properties are the basic concepts to be used to characterise
entities. It might be e.g. an informal requirement, a mathematical property or
any entity that aims at being interpreted over entities. The fact that a property
is satisfied by an entity is defined by a satisfiability function? having the real
numbers as co-domain.

In our context, we want to consider entities whose existence (i.e. defini-
tion) may vary. Thus change is the difference between two definitions of two
entities distributed over a common evolution axis. The intention is to allow for
comparison of entities relatively to evolution axes.

Intuitively, we define the concept of resilience as the existence of a change
for improvement by an evolution process which reduces failures and tolerance
needs regarding a property of interest. For instance, if one considers security as
a property of interest of an evolving e-banking system, that e-banking system
would be considered resilient regarding security if the number of successful at-
tacks involving unauthorized money transfers would diminish over the system’s
lifetime. Examples of practical usage of this definition of resilience could be to
provide a methodology to build resilient evolving systems or to evaluate if a
given evolving system is resilient regarding a certain property.

Lon the approximately 1300 citations using the term resilient or resilience registered at
DBLP, 90% appeared after 2000 and 75% in the last five years.

2We define two categories of satisfiability functions: nominal satisfiability and tolerance
threshold. Both partition the satisfiability space in three parts: nominal (from and above
nominal satisfiability), failures (below the tolerance threshold) and tolerance in between the
two (representing degradation).



Notwithstanding that DREF' is defined mathematically, the theory is given
at a meta level. This paper proposes an instantiation of the DREF framework
designed to be integrated with operational support to compute satisfiability —
and consequently resilience. In DREF the satisfaction of a property by an
evolving system is supposed to be provided and is relative to a set of subjective
stakeholders (i.e. observers). In this paper we propose to automatically decide
on the satisfaction of property of interest. In order to do this we will restrict
the properties of interest we are considering to computable ones.

For our operational purposes we use concepts from the modelling world to de-
fine and process the notions of entities, properties and satisfaction. In particular
entities are system models defined in term of Algebraic Petri Nets (APN) [17]
and properties are defined in terms of safety properties —i.e. invariants regarding
places in the APN as defined by the model checker AIPINA [6].

The paper is structured as follows: in section 2 we present the mathematical
theory behind our operational notion of resilience; in section 3 we provide an
example of an evolving filesystem exhibiting resilience regarding the confiden-
tiality property; in section 4 we study the theoretical constraints on evolution
regarding the choices we have made for the particular modelling and model
checking formalisms used in section 3; in section 5 we discuss the open issues
of our proposal; in section 6, we present a state of the art focused on existing
approaches to resilience; finally section 7 discusses perspectives of this research
and concludes.

2 Operational Resilience

In this section we provide formal definitions of the concepts we manipulate in
this paper. In the text that follows we consider a universe including the disjoint
sets ENTITY and PROPERTY . We start by a set of auxiliary definitions.

Definition 2.1 FEwolving System and Discrete Evolution

An evolving system is an indexed set of entities es = {enty,...,ent,} C
ENTITY. A discrete evolution of es is a pair (enty,enti11)(1 <k <n). The
set of all discrete evolutions of es is written DFE,g.

Definition 2.2 Composed Property

Given an evolving system es = {enty,...,ent,} C ENTITY, a composed
property C € P(PROPERTY) is a set of decidable properties of the elements of
es, each of those decidable properties p € C' being called a component property.
The set of all composed properties is called C — Property. Given a component
property p € C and an entity enty, (1 < k <n) we write enty, |=p to state that
enty, satisfies® p.

3w.r.t. the DREF framework in [10], we have a satisfiability function |=: es x ¢ — {0, 1}
where ¢ € PROPERTY is a decidable property. When instantiating the concepts of DREF,
nominal satisfiability is 1, failure threshold is 0 and there is no tolerance margin (i.e. no value
between 0 and 1).



Intuitively, a composed property corresponds to a set of decidable properties
which together make up a property regarding which resilience can be measured.

Definition 2.3 Property-Preserving Discrete Evolution

Given an evolving system es = {enty,...,ent,} € ENTITY and a com-
posed property C € C'—Property, a discrete evolution (enty, entry1) € DEqs (1 <
k < m) is property — preserving regarding p € C iff enty = p = entpy1 E p.

Let us now define the concept of monotonic resilience, which is the formal
definition of resilience we will use throughout this paper.

Definition 2.4 Monotonic Resilience

Given an evolving system es = {enty,...,ent,} € ENTITY and a com-
posed property C € C — Property we say that es exhibits monotonic resilience
regarding C iff for all (enty,enti11) € DEes

|{p|p€C A enty )=p}| < |{p|p€C A entpi \:p}’
and for all p € C such that enty, |= p, (enty, entii1) is property-preserving.

In other words, definition 2.4 states that an evolving system exhibits mono-
tonic resilience regarding a C-Property C' when any entity in the of that evolv-
ing system satisfies at least the same component properties of C' as the previous

one?.

As mentioned in section 1, we will be using concepts from the modelling
world to represent and reason about the notions of entity, property and satis-
faction, in particular: Algebraic Petri Nets [17] (APN) as a modelling langage to
represent entities and more generally evolving systems (see definition 2.1); the
AIPiNA model checker [6, 19] to model decidable properties (see definition 2.2)
and compute their satisfaction on APN models.

Algebraic Petri Nets are a formalism used for modelling, simulating and
studying the properties of concurrent systems. They are based on the well known
Place/Transition (P/T) Petri Nets formalism where places hold resources — also
known as tokens — and transitions are linked to places by input and output arcs,
which can be weighted. Normally a Petri Net has a graphical concrete syntax
consisting of circles for places, boxes for transitions and arrows to connect the
two. The semantics of a P/T Petri Net involves the sequential non-deterministic
firing of transitions in the net — where firing a transition means consuming tokens
from the set of places linked to the input arcs of the transition and producing
tokens into the set of places linked to the output arcs of the transition. The
algebraic extension allows defining tokens as elements of sets (with associated
operations) which are models of algebraic specifications. The arcs of APNs can

4Stronger alternatives to monotonic resilience would force the number of properties satis-
fied by entiy1 to be strictly greater than those satisfied by enty, or that ent, would satisfy
strictly more component properties than entj.



include weights defined by terms of the algebraic specification and the transitions
can be guarded by algebraic equations.

The AIPiNA model checker uses as models Algebraic Petri Nets. Specifica-
tions in AIPiNA are composed of two parts: an algebraic specification which is a
set of abstract definitions of sorts and associated operations; a Petri Net which
is represented graphically. AIPiNA and is able to decide on the satisfaction of
invariant properties on those nets. The invariants are expressed as conditions
on the tokens contained by places in the net at any state of the net’s semantics.
Invariants are built using first order logic, the operations defined in the algebraic
specification and additional functions and predicates on the number of tokens
contained by places.

3 Motivational Example — A Confidentiality Re-
silient Filesystem

In this section we introduce an example of an evolving system presenting mono-
tonic resilience. The example is inspired from [8] where a UNIX-like operating
system including a multi-level security filesystem is described. In the context of
our paper we will describe how to measure resilience regarding the confidential-
ity property across three entities representing three evolutions of the operating
system’s filesystem.

In Multi-Level Security (MLS) [3] there are two main concepts: objects and
subjects. Objects regard system resources or data repositories that must be
protected, such as files, directories or terminals. Subjects regard entities capable
of requesting services from those system resources such as users or processors.

In MLS objects and subjects are associated to an access class. Access classes
are used to classify objects and subjects according to their confidentiality or
responsibility degree respectively. Intuitively, an object having a high access
class can only be seen or manipulated by a subject who is highly trusted.

For our studies we will use as example an MLS filesystem. We will only
consider files from the set of possible objects and users from the set of possible
subjects. In order to keep the case study manageable, we will use a simplified
model of a filesystem where we consider that a file can be either being read or
written by a user, or idle. In particular this means that in our models a file
cannot be read by multiple users simultaneously.

3.1 Properties

For our example we are interested in the confidentiality property, i.e. the fact
that data inside files can only be accessed for reading or writing by users that
have enough privileges to do so. An important confidentiality threat which we
will take into consideration in this study are trojan horses [1]. Trojan horses
consist of code which is executed by a trusted user without his/her knowledge or
consent and can pass confidential data to an untrusted user by copying that data
to a file an untrusted user can access. In order to prevent such problems from



arising we further develop the confidentiality property to include the fact that
a user cannot have two files opened simultaneously where the more confidential
one is open in read mode and the less confidential one in write mode®.
Summarizing, and according to the theory we have presented in section 2, we
have detailed the confidentiality property in the following composed property:

e A file with a certain confidentiality level can only be accessed for reading
or writing by a user who is sufficiently trusted;

e A user have cannot two files opened simultaneously where the more confi-
dential one is open in read mode and the less confidential one in write mode.

3.2 Entities

In order to illustrate a resilient system we will present three entities representing
an evolving system which models of a confidential filesystem5.

3.2.1 Naive Filesystem

Let us start with the first entity which we will call naive filesystem. The APN
model can be observed in figure 1 and represents the semantics of the operation
of a filesystem. The Petri net uses several kinds of algebraic tokens”: pairs
belonging to the set fileName X accessClass are used in place filesystem to
represent file names and their respective access classes; pairs belonging to the
set user Name x accessClass are used in place users to represent a sample of
users of the filesystem; finally places readFiles and writeFiles hold tokens which
are pairs (fileName X accessClass) x (user Name x accessClass) in order to
keep track of which file was opened by which user. We do not explicitly define
the names of the variables that act as weights on the arcs given their type can
be inferred from the either the origin or the target place of the arc.

The semantics of the naive filesystem model in figure 1 is such that it sim-
ulates opening files in read or write mode and closing them — by firing the
openForRead, openForWrite and close transitions respectively. The variables
on the entry arcs of the transitions declare the consumed tokens from the input
places and the variables on the output arcs of the transitions declare the pro-
duced tokens on the output places. Note that, despite the fact that transitions
in APN models may be guarded, in this naive version of the confidential filesys-
tem the openForRead and openForWrite transitions we do not check if the the
user has permission to access a given file.

5In the literature this property of a filesystem is called confinement.

6The interested reader may download the Algebraic Petri Net models and associated prop-
erties presented in this paper at [12] and validate the properties against the model using the
AIPiNA model checker [19].

"For the presentation of the confidential filesystem example we use in this paper names of
sorts and operations which, despite being self descriptive, for space reasons cannot be formally
introduced. A full description of the algebraic specifications used in the confidential filesystem
example can be found in appendix A.
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Figure 1: Naive Filesystem

Because we have a first formalization of the filesystem, we can now precisely
express the confidentiality property we have detailed informally in section 3.1.
Confidentiality is a composed property (see definition 2.2) which can be expressed
as three component properties about the APN filesystem model in figure 1. All
three properties are safety properties, thus stating what should happen for all
states belonging to the models’ semantics:

Vp € writeFiles . user HasPermissionForFile(p) = true
(1)
Vp € readFiles . user HasPermissionFor File(p) = true
(2)
Vp, € readFiles . (Vpy, € writeFiles .
getUser Name(projz(pr)) = getUser Name(proja(pw)) =>
(get AccessClass(proji(pr)) dominates get AccessClass(proji(pw)) = false

(3)

e Property 1, which we will call respect WritePerms, states that a file in the
writeFiles place has been opened by a user who is sufficiently trusted.
This decision is computed by the user HasPermissionForFile predicate
which compares the access class of the file with the access class of the
user who opened it;

[$u]



Table 1: Property Satisfaction for the Naive Filesystem
(1) respectWritePerms | (2) respectReadPerms | (3) noReadWriteFlow
false false false

Table 2: Property Satisfaction for the Simple Security Filesystem
(1) respectWritePerms | (2) respectReadPerms | (3) noReadWriteFlow
true true false

e Property 2, which we will call respectReadPerms, is similar to property 1
but for the files in the readFiles place;

e Property 3, which we will call noRead WriteFlow, states that if a user has
simultaneously a file open in read mode and another in write mode, then
the one open in read mode does not dominate the one open in write mode.

In table 1 it is possible to observe that the naive filesystem in figure 1 does
not respect any of the confidentiality component properties we have defined.
The component properties were automatically validated by the AIPiNA model
checker.

3.2.2 Simple Security

The second entity which we will call simple security filesystem is an evolution
of the naive filesystem in figure 1 where the transitions openForRead and open-
ForWrite become guarded. In particular, we add to each of those transitions
the following guard:

dominates(get AccessClass(u), get AccessClass(f)) = true
where u € (userName X accessClass) and f € (fileName x accessClass)

This means that in the simple security model in figure 2 we are enforcing
that, in order for a user to read or write a file, that user has to be sufficiently
trusted regarding the access class of the requested file. This is achieved using
the dominates predicate (see appendix A for the predicate’s semantics).

In table 2 the satisfaction of the confidentiality properties by the simple se-
curity model is shown. We can observe that the introduction of the two guards
has rendered confidentiality properties 1 (respectWritePerms) and 2 (respec-
tReadPerms) satisfied.

3.2.3 Confinement

Finally, we introduce the third entity which we will call confined filesystem. The
confined filesystem model can be observed in figure 3 and is an evolution of the
simple security filesystem in figure 2. Two places writeFilesLog and readFilesLog
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Figure 2: Simple Security Filesystem

have been added to the APN. The function of these places is to hold two lists
of pairs (fileName x accessClass) x (userName X accessClass) which log
the files which are open for reading and for writing. When a file is open for
reading, a check is done on the writeFilesLog place to decide if there are no files
open for writing by the same user which are less confidential than the file being
opened. This is achieved by adding a condition to the guard of the openForRead
transition (hidden for lack of space in figure 3) as follows:

dominates(minAccess(lpw, u), get AccessClass(f)) = true

where minAccess function returns the minimum access class value of the set
of files currently open for writing by user wu.

The dominates predicate is again used to decide if the confidentiality of
the file f being opened by a user u for reading is lower than the minimum
confidentiality of the files opened for writing by user u. The reverse principle is
applied to opening files for writing.

If we again model check the confidentiality properties on the new model in
figure 3 we find that the noRead WriteFlow property is now satisfied — as can be
observed in table 3. This means that attacks by trojan horses on this new model
of a filesystem are made difficult and thus the confidentiality property is made
stronger. Note also that properties respect WritePerms and respectReadPerms
remain true when evolving from the simple security filesystem entity to the
confined filesystem entity.

[Sul [Sul
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Table 3: Property Satisfaction for the Simple Security Filesystem

(1) respectWritePerms

(2) respectReadPerms

(3) noReadWriteFlow

true

true

true

10

1 Slpwe |




Table 4: Property Satisfaction for the Simple Security Filesystem

(1) respectWritePerms | (2) respectReadPerms | (3) noReadWriteFlow
naive false false false
simple security true true false
confined true true true

Finally, in table 4 we present the satisfaction of the confidentiality sub-
properties for the three entities of the multi-level security filesystem. We can
observe that the naive filesystem satisfies none of the component properties
of confidentiality, the simple security filesystem satisfies two of the component
properties of confidentiality and the confined filesystem satisfies all of the com-
ponent properties of confidentiality. Because the satisfaction of the confinement
composed property always increases along the discrete evolutions of the confi-
dential filesystem we can claim according to definition 2.4 that the confidential
filesystem evolving system presents monotonic resilience regarding the confi-
dentiality property.

4 Evolution Conditions

In definition 2.4 we have introduced the notion of monotonic resilience meaning
that given an evolving system, represented by a sequence of entities and a com-
posed property C, any entity in the sequence always satisfies at least the same
component properties of C' as the previous entity in the sequence.

The intuitive approach to checking if a component property is kept during a
discrete evolution is to recheck it on the new entity. However if we would admit
arbitrary modifications to an APN during a discrete evolution (definition 2.1)
three outcomes of that discrete evolution would be possible:

1. the discrete evolution would be such that the component properties sat-
isfied by the entity before the evolution would be satisfied by the entity
after the evolution;

2. the discrete evolution would be such that some or all of the component
properties satisfied by the entity before the evolution would be not be
satisfied by the entity after the evolution;

3. the discrete evolution would be such that some or all of the component
properties satisfied by the entity before the evolution could not be verified
in the entity after the evolution. This would happen in the case where
there would be no reasonable mapping between structural parts of the
entities in that discrete evolution which are referred to by component
properties.

In the context monotonic resilience (definition 2.4) and of the choices we
have made in section 3 for modelling formalism, property language and satisfac-
tion function, we are interested in studying under which conditions a discrete

11



evolution can happen between two entities expressed as Algebraic Petri Nets
such that points 2 and 3 in the list above are avoided. Such conditions can
provide the guidelines for evolution such that monotonic resilience regarding
safety properties can be guaranteed in evolving systems expressed as a sequence
of APN models.

In [14, 15] we can find a theory for the refinement of Algebraic Petri Nets
preserving safety properties. The theory states that if there is a place preserving
morphism between two APN models then safety properties are kept. Intuitively,
a place preserving morphism maps the structure of an APN model Ny into the
structure of another APN model N5 such that:

e cach place of V7 is mapped onto a separate place of Ny and each transition
of N7 is mapped onto a separate transition of Ny — formally, the place and
transition mapping functions are injective;

e Mapped transitions’ guards are at least preserved but can be strength-
ened® when transitions of N; are mapped onto Na;

e Arcs adjacent to places of Ny are preserved in the corresponding places in
N5 and no new arcs are added;

e There can be more places as input or output of a mapped transition in
Ny than in the corresponding original transition in Vy;

e The mapping of the algebraic specifications used by N; are included in
those used by Nos.

In practice the conditions above force a structural inclusion of Nj into Ny
such that the traffic of tokens in the N; subnet of N5 is at most constrained
regarding N7, but no new behaviors are added. Coming back to the three en-
tities we have proposed in section 3.2, we can identify two discrete evolutions:
(naive filesystem, simple security filesystem) and (simple security filesystem,
confidential filesystem). We have presented in section 3.2 experimental evidence
that the confidential filesystem evolving system exhibits monotonic resilience
regarding the confidentiality composed property — formalized as safety prop-
erties respectReadPermissions, respect WritePermissions and noRead WriteFlow
in section 3.2. We will now show that the the discrete evolutions of the evolving
system presented in section 3.2 respect the conditions of the Algebraic Petri Net
refinement theory described above.

Regarding the (naive filesystem, simple security filesystem) discrete evolu-
tion (figures 1 and 2), nothing has to be shown because the naive filesystem
does not satisfy any of the component properties of the confidentiality property
and thus the evolution in unconstrained.

8The strengthening of transition guards is not part of the original theory but an extension
provided by us. The formal definition and justification of guard strengthening regarding the
original theory can be found in appendix B.
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Regarding the (simple security filesystem, confidential filesystem) discrete
evolution (figures 2 and 3), properties respectReadPermissions and respect Write-
Permissions are kept. If we apply the APN refinement theory then a mor-
phism mapping places and transitions from the simple security filesystem into
the con fidential filesystem has to be found that satisfies the conditions given
above. Such a morphism maps places of the entity simple security filesystem
filesystem, readfiles, writefiles and users into the places of the same name
in entity confidential filesystem. It also maps transitions of the entity sim-
ple security filesystem openFor Read, openForWrite, close and close’ into the
transitions of the same name in entity confidential filesystem.

The identified morphism respects the conditions above as: 1) firing condi-
tions are strengthened in transitions openForRead and openForWrite; 2) arcs
adjacent to mapped places are not touched; 3) both the place and the transition
morphisms are injective.

In appendix B we present a complete and rigorous description of the place
preserving morphism mapping the simple security filesystem APN into the con-
fined filesystem. Also in appendix B we formally introduce the transition condi-
tion strengthening extension to the theory in [14, 15] which is necessary to our
approach.

5 Discussion and Threats to Validity

In this paper we have introduced an operational definition of resilience based
on using the modelling concepts model and decidable property represent the
notions of evolving system, the property regarding which resilience is measured.
In particular and in order to be tool supported, our approach relies on Algebraic
Petri Nets for modelling and an associated safety property model checker to
compute the satisfaction of safety properties.

Our proposal for an operational definition of resilience raises many questions.
We will start by discussing the questions raised by the choice of Algebraic Petri
Nets as modelling formalism and then will go on to discuss more general ques-
tions independent of the choice of the modelling formalism.

One might ask if the evolution conditions for APN models we have intro-
duced in section 4 are too constraining. In fact, given a discrete evolution
(enty, entgy1), we impose a particular kind of structural inclusion of enty, into
entyy1. This structural inclusion ensures that the behavior of enty 1 regarding
safety properties expressed over enty is included in the behavior of enty. If on
the one hand this constraint is very taxing on the kind of discrete evolutions
that can happen, on the other hand it guarantees that all safety properties veri-
fied by enty, can still be expressed over and verified by entyy1. If one would like
to relax the evolution conditions a possible path would be to take into account
the safety properties verified in ent; when evolving, which might lead to weaker
conditions than the ones imposed by the total place preserving morphism we
have introduced in section 4. There is work from the model checking commu-
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nity on alleviating state space explosion by simplifying specifications using the
variables in the properties under check. For example in [4] the authors describe
the cone of reduction technique used in hardware verification where a specifi-
cation P is reduced in such a way that the reduced specification — thus with a
less expensive state space — P’ satisfies a formula ¢ if and only of P satisfies
¢. More directly related to our research, in [16] a technique is presented for
slicing Place/Transition Petri Nets with the goal of easing the verification of
LTL formulas. Both these pointers could be used in our research for finding
subnets of an APN entity ent; which satisfy a set of safety properties such that
the remaining part of ent; could be discarded or modified in a discrete evolution
— thus relaxing the place preserving total morphism constraint.

Another important question regards the usage of safety properties as a means
of representing properties regarding which resilience can be measured. Other
types of properties could be envisaged such as liveness or other properties ex-
pressed in temporal logics. The preservation of such properties in a discrete
evolution would however impose other evolution conditions which could be in-
spired by [4, 16] as mentioned above.

One might also ask if the decomposition of a property regarding which re-
silience can be measured into component safety properties is feasible and useful
in general. This is a question that can only be answered experimentally.

A more general issue in our approach regards the fact that we are consider-
ing monotonic evolution. It could be interesting to relax this assumption such
that in a discrete evolution (enty,entyy1) the constraint that the number of
component properties satisfied by entry1 can be less than the number of prop-
erties satisfied by enty — in other words component properties might be dropped
within a discrete evolution. Given the evolution conditions are properly studied,
this might allow for a larger margin in the fashion an evolving system evolves.

Finally, the research we present in this paper is oriented at: concretely defin-
ing the resilience concept; providing operational means to analyze an evolving
system and deciding automatically whether that system is resilient regarding
a certain property; provide a set of conditions under which an entity from an
evolving system can change such that degradation regarding a certain property
does not occur. We have not addressed in this work how to build discrete evolu-
tions (entk, entkH) such that entj 1 satisfies more component properties of a
property of interest than enty. This is done purposefully as we believe strategies
for evolution of a system are domain dependent and thus cannot be given gener-
ically in a theory. If however such an evolution strategy is given for a particular
domain, it could be possible to expand the concept of evolving system from a
sequence to a graph of entities formed by building the possible evolution paths
— given an initial model and an evolution strategy.

6 Related Work

As we have mentioned in section 1, there is a multitude of definitions and usages
of the word resilience in the information and communication science literature.
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Because of this multitude of meanings we provide a relatively broad section on
related work. We consider this is important as our definition of resilience is
inspired from and tries to concretize existing definitions and usages of the term.

Concerning the definition of resilience coming from the dependability com-
munity and the adaptive systems community in information and communication
science, many representative researchers [7, 11, 2, 18] share the same definition.
From their perspective, resilience is initially defined as ”the persistence of ser-
vice delivery that can justifiably be trusted, when facing changes” and mainly
regarded as equivalent to fault-tolerance. However, its use is considered to
put emphasis on a notion of ”unforeseen events” and to include the effects of
evolution through the ”change” concept. While no definition, formal or infor-
mal, of resilience is proposed, the authors’ intuition on resilience show that the
DREF formal conceptual framework could be used to provide a coherent and
more precise definition of resilience from their viewpoint.

Nevertheless, we should remark that only focusing on persistence of service
delivery is too restrictive to characterize the concept of resilience. In DREF it
would mean that the satisfiability function should be always over the nominal
satisfiability, never decreasing and, furthermore, using a binary quantification
(only correct service delivery or incorrect). In our approach, there is a fun-
damental difference that forbids us to consider that resilience is a synonym of
fault-tolerance, it is the explicit consideration of an evolution axis for satisfiabil-
ity. Thus if we want to relate to fault-tolerance, resilience would be characterized
by the evolution of fault-tolerance capabilities over an evolution axis.

We can also find many studies in which the integration of dependability
and evolution concepts are introduced at modelling or meta-modelling level.
This is done at a different level of formalization, ranging from informal (natural
languages) to formal (mathematical languages). In [13], the authors propose to
explicitly add at requirements level non functional properties directly related at
abstract level to dependability. Metrics for quantification of these attributes are
also informally introduced and can be related to our approach. Nevertheless,
the attributes used to characterize resilience are different from the ones in our
approach since resilience is defined as availability, reliability and assurance.

In [7] the need for a model based approach to resilience is explicitly fore-
seen: ”to deal with the challenges of adaptation we envisage a model-driven
development where models play a key role throughout the development (...)”.
In fact, models can support estimation of system status, so that the impact of a
context change can be predicted. Provided that such predictions are reliable, it
should be possible to perform model-based evolution analysis as a verification
activity. The work we present in this paper goes in the direction of proving that
the hypothesis stated in [7] has an operational counterpart.

7 Conclusions and Future Work

This paper constitutes an attempt at providing a concrete definition for the
resilience concept. In order to do this we have: considered the abstract definition
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of resilience in DREF'; formalized it with the purpose of operationalizing the
notion of resilience; provided an instance of an evolving filesystem in Algebraic
Petri Nets and showed it is possible to use model checking tools to automatically
prove its resilience regarding the confidentiality property. We have then formally
defined the conditions such that no loss of resilience regarding a set of safety
properties occurs in an discrete evolution modelled using APN. These conditions
provide the basis for a study on how to formally define evolution strategies in
this particular formal setting.

The study presented in this paper opens many questions. Given the cur-
rent state of the art we find that proposing concrete research questions on the
semantics of the resilience concept is a necessary step. As was explained in
section 5, the future work ranges from exploring more flexible conditions than
the ones presented in section 4 for defining discrete evolutions to expanding the
approach to incorporate evolution strategies. As an immediate future work we
are planning on instantiating the theory with a real world use case in order
to evaluate the practical applicability of the several theoretical and operational
layers we present in this paper.
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A Algebraic Specifications for the Secure Filesys-

tem Example

In this appendix we present the complete specifications for the three entities we

have introduced informally in section 3.

A.1 Naive Filesystem Specification

Adt FileName
Sorts fileName;

Generators
fl1 : fileName;
f2 : fileName;
f3 : fileName;

Adt UserName
Sorts userName;

Generators
levi : userName;
nicolas : userName;
ayda : userName;

import ”fileName.adt”
import ”"accessClass.adt”

Adt File

Sorts file;

Generators

file : fileName, accessClass —> file;
Operations

getFileName : file —> fileName;

getAccessClass : file —> accessClass;
Axioms

getFileName (file ($fn, $acl)) = $fn;
getAccessClass (file ($fn, $acl)) = $acl;

Variables
fn : fileName;
acl : accessClass;

import ”userName.adt”
import ”accessClass.adt”

Adt User

Sorts user;

Generators
user : userName, accessClass —> user;
Operations
getUserName : user —> userName;
getAccessClass : user —> accessClass;
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Axioms
getUserName (user ($un, $acl)) = $un;
getAccessClass (user ($un, $acl)) = $acl;

Variables
un : userName;
acl : accessClass;

Adt category
Sorts category;

Generators
NATO : category;
CIA : category;
NUCLEAR : category;

import ”boolean.adt”

import ”category.adt”

import ”list .gadt”

Adt categorySet Is List[category]

Operations

subset : list [category], list [category] —> bool;

Axioms
empty subset $1 = true;

if contains($h,$l) = false then list ($h, $t)
if contains($h,$1) = true then list ($h,$t)

Variables
h : category;
t : list [category |;
1 : list [category |;

subset $1
subset $1

= false;

= $t

subset $1;

import ”boolean.adt”
Adt securityLevel

Sorts securityLevel;

Generators

UNCLASSIFIED : securityLevel;

s : securityLevel —> securityLevel;
Operations

le : securityLevel, securityLevel —> bool;
Axioms

UNCLASSIFIED le UNCLASSIFIED = true;
UNCLASSIFIED le s($x) = true;

s($x) le UNCLASSIFIED = false;
s(8x) le s(8y) = $x le 8y;

Variables
x : securityLevel;
y : securityLevel;

import ”boolean.adt”
import ”categorySet.adt”
import ”"securityLevel.adt”
import ”list .gadt”
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import ”category.adt”

Adt accessClass is list [category]

Sorts accessClass;
Generators
top : accessClass;
bottom : accessClass;
ac : securityLevel, list[category] —> accessClass;
Operations
dominates : accessClass, accessClass —> bool;
Axioms
ac(8$s1,8cl) dominates bottom = true;
top dominates ac($sl,8cl) = true;
top dominates bottom = true;
if ($s2 le $s1) = true & (8$c2 subset $cl) = true then ac($sl,$cl)
dominates ac($s2,8$c2) = true;
if ($s2 le $s1) = false & ($c2 subset $cl) = true then ac($sl,$cl)
dominates ac($s2,8$c2) = false;
if ($s2 le $s1) = true & ($c2 subset $cl) = false then ac($sl,$cl)
dominates ac($s2,$c2) = false;
if ($s2 le $s1) = false & ($c2 subset $cl) = false then ac($sl,8cl)
dominates ac($s2,8$c2) = false;
Variables
sl : securityLevel;
s2 : securityLevel;
cl : list[category];
c2 : list [category];

import ”boolean.adt”
import ”pair.gadt”

import 7 file .adt”
import ”user.adt”
Adt FileUserPair is Pair[file ,user]
Operations
userHasPermissionForFile : pair[file ,user] —> bool;
Axioms
userHasPermissionForFile (pair ($f,8%u)) = getAccessClass(3u) dominates
getAccessClass ($f);
Variables
f . file;
u : user;

A.2 Simple Security Filesystem Specification

The algebraic specification is the same as the one in section A.1.

A.3 Confinement Filesystem Specification

The algebraic specification is the same as the one in section A.1l, incremented
by the following definitions:

0‘ import ” file.adt”
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import ”user.adt”

import ”"accessClass.adt”
import ”pair.gadt”
import ”list .gadt”
import ”fileUserPair”

Adt listOfFiles Is list [pair[file ,user]]

Operations
maxAccess : list [pair[file ,user]|] —> accessClass;
minAccess : list [pair[file ,user]|] —> accessClass;
calcMaxAccess : accessClass, list[pair[file ,user]] —> accessClass;
calcMinAccess : accessClass, list [pair[file ,user]] —> accessClass;
Axioms

maxAccess($l) = calcMaxAccess (bottom, $1);

calcMaxAccess ($acl ,empty) = $acl;

if (getAccessClass(first ($p)) dominates $acl) = true then
calcMaxAccess($acl,list ($p,$1)) = calcMaxAccess(getAccessClass (
first ($p)),$1);

if ($acl dominates getAccessClass(first ($p))) = true then
calcMaxAccess($acl,list ($p,81)) = calcMaxAccess($acl,$1);

minAccess($l) = calcMinAccess(top, $1);

calcMinAccess ($acl ,empty) = $acl;

if (getAccessClass(first ($p)) dominates $acl) = true then
calcMinAccess ($acl,list (3p,$1)) = calcMinAccess($acl, $1);

if ($acl dominates getAccessClass(first ($p))) = true then
calcMinAccess ($acl,list ($p,$1l)) = calcMinAccess(getAccessClass(
first ($p)),$1);

Variables
1 : list [pair[file ,user]];
p : pair[file ,user];
acl : accessClass;
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B Preservation of Safety Properties Algebraic
High Level Nets

The main theorem in [14, 15] states that place preserving Algebraic High-Level
(AHL) Nets morphisms preserve safety properties. Algebraic High-Level Nets
are equivalent to the Algebraic Petri Nets formalism we are using in the research
presented in this report. Place preserving morphisms are a particular class of
AHL net morphisms mapping algebraic specifications, places, transitions and al-
gebras. We are interested in such place preserving morphisms as they guarantee
we can evolve our models while preserving previously satisfied safety properties.
The theory presented in this appendix extends the theory presented in [14, 15]
in order to allow transition guard strengthening in a safety property place pre-
serving morphism. Definitions B.1, B.3 and theorem B.5 are lighter versions
of the theory presented in [14, 15]. Definitions B.2, B.4, proposition B.6 and
lemma B.7 have been introduced by us.

Definition B.1 Algebraic High-Level (AHL)

An Algebraic High-Level net is a 7-tuple (SPEC, P, T, pre,post, cond, A)
where SPEC' is an algebraic specification, P is a set of places, T a set of
transitions, pre and post functions assigning term weighted input and output
arcs to transitions, cond a function assigning a set of equational conditions to
transitions and A an algebra which is model of SPEC'.

Definition B.2 Guard Strengthened Algebraic High-Level (AHL)

Let N = (SPEC, P, T, pre, post, cond, A) be an AHL. N' = (SPEC, P, T, pre,
post, cond’, A) is a guard strengthened version of N if for all transitions t € T
the set of equations cond(t) is included in the set of equations cond'(t).

Definition B.3 Place Preserving Algebraic High-Level Net Morphism

Let N1 = <SPE01, Pl, Tl,prel,postl, cond1, A1> and N2 = <SPE02, Pg, TQ,
prea, posta, conds, As) be two AHL Nets. f = (fp, fr, fsprc, fa) : N1 — Na
is a Place Preserving AHL Net Morphism where fp : Py — Py, fp:T) — To,
fspec : SPECy — SPECS and f4 : A1 — Ao are morphisms iff the following
18 true:

e Firing conditions are preserved when transitions of 11 are mapped onto
TQ;

o Arcs adjacent to places of Py are preserved when those places are mapped
onto the places of Py by fp;

o fr, fp and fsppc are injective and fsppc is persistent, meaning the
mapped signatures, terms and equations of SPECy, by fsprpc are con-
tained in SPECsy;

e There can be more places in the pre or post domain of a mapped transition
than in the corresponding domains of the original transition;
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o Ay merely extends the mapping of A1 by fa for the new parts of As or it
18 merely renamed.

Definition B.4 Place Preserving Guard Strengthening Algebraic High-Level Net
Morphism

Let N1 and Ny be two AHL Nets. Let also f : Ny — Ny be a Place Preserving
AHL Net Morphism. f is guard strengthening if there is a an AHL net N3 such
that f : Ny — N3 is a place preserving morphism and Ns is a guard strengthened
version of N3.

Theorem B.5 Preservation of Safety Formulas

Let f: N1 — N2 be a Place Preserving AHL morphism and My and My be
markings of N1 and No respectively, with My ; = My — meaning the restriction
of the marking Ms to f(My). Let ¢ be a formula representing a marking of the
AHL network or formulas built by the conjunction or negation of such formulas.
Then there is the following equivalence:

M, ':Nl D¢ < Mo ':N2 Tf(D¢)

where M =x O¢ means formula ¢ is satisfied in all markings attainable
from marking M by firing all transitions of AHL N. If we consider only one
marking M of N, satisfaction of ¢ in M means the marking expressed in ¢ is
contained in M. Finally, 7 is the function translating formulas regarding the
place preserving morphism f.

Proposition B.6 Preservation of Safety Formulas under Guard Strengthening

Let f : Ny — Ny be a place preserving morphism. We know by B.5 that
My =N, O¢ & M =, 7p(0¢). We thus know that for all markings obtained
from My by firing transitions of No (noted [M2)n,) formula 7($) is satisfied.
If the guards of the transitions of No are strengthened then by lemma B.7 the
number of markings of the set [M2)y, is also reduced. Since all the markings
on [M2)y, satisfy T(¢), so do all the markings of any of the subsets of [M2)n,.

Lemma B.7 Marking Inclusion under Guard Strengthening

Let N and N’ be two AHL nets where N' which is a guard strengthened
version of N and M be a marking common to the two nets. We will prove by
induction on the firings of N' that the reachable markings of an APN N’ from
marking M are a subset of the reachable markings of N, i.e. [M)n/ C [M)n.
The base case is when we have the initial marking M and any enabled tra-
sition of N’ fires. The set of states resulting from these firings, noted M)y,
is mecessarily included in M) N because: either a transition t of N has not been
strenghtened in N' and the markings resulting from firing t on M are the same
for both nets; or a transition t of N has been strengthened in N’ in which case
M)y € M) n+. For the induction step we assume that we have a marking of N’
which is contained in [M)y. By the same principle of the base case the set of
resulting markings from firing the enabled transitions will be contained in [M)y .
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We will now refer to the evolution example we have provided in section 3 and
validate that the morphisms we use are place preserving, and as such preserve
safety properties.

If we take into consideration the discrete evolution (naive filesystem,simple
security filesystem) (figures 1 and 2), there is no safety property to preserve. In
fact, from the three component properties we have presented in section 3.2 that
form confidentiality, none is verified in by the naive filesystem entity as is shown
in table 1. However, properties respectReadPermissions and respect WritePer-
missions in section 3.2 are experimentally verified by the simple security filesys-
tem as can be observed in table 2. We would thus like to prove that proper-
ties respectReadPermissions and respect WritePermissions are indeed preserved
by the confined filesystem entity in figure 3 in order to confirm the truthfulness
of table 4. To do so we will formally define the simple security filesystem and
confined filesystem entities and show that the morphism that defines the discrete
evolution from the former to the latter is place preserving, and in particular place
preserving guard strengthening.

By definition B.1 the simple security filesystem which we will call ssf is
a T-tuple such that ssf = (SPECssf, Psst, Tssf, presss, Postssf, condgsf, Assy),
where:

e SPEC,y is given in section A.2
o Pir= {fileSystem, readFiles, writeFiles, users}
o Top = {openForRead, openForWrite, close, close’}

e pressy = {(openForRead, {($f, fileSystem), ($u, users)}),
(openForWrite, {($f, fileSystem), ($u, users)}),
(close, {($p,readFiles), ($u, users)}),
(close’, {(8p, writeFiles}), ($u, users)) }

e postsss = {(openForRead, {(pair($f,$u), readfiles), ($u, users)}),
(openForWrite, {pair($ f, $u), readfiles), ($u, users)}),
(close, {(first(3p), fileSystem), ($u, users)}),
(close, {(first($p), fileSystem}), ($u, users))}

e condsy = {(openForRead, {dominates(get AccessClass($u),
getAccessClass($f)) = true}),
(openForWrite, {dominates(get AccessClass($u), get AccessClass($f)) =
true}),
(close, {getUser Name($u) = getUser Name(second($f)}),
(close’, {getU ser Name($u) = getUserName(second($f)})}

o Agip = the initial algebra of SPECsy

The confined filesystem which we will call ¢f is a 7-tuple such that cf =
(SPEC.f,P.s,Tcs,precy, postey, condey, Acy), where:

e SPEC,.y is given in appendix A.3
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o Py= {fileSystem, readF'iles, writeFiles, users, readF'ilesLog, writeFilesLog}
o Ty = {openForRead, openForWrite, close, close’}

e preqs = {(openForRead,{($f, fileSystem), ($u, users), ($lpw, writeFilesLog)}),
(openForWrite, {(3f, fileSystem), ($u, users), ($1pr, readFilesLog)}),
(close,{(3p,readFiles), ($u, users), ($lpr, readFilesLog)}),

(close’, {(Sp, writeFiles}), ($u, users), ($lpw, writeFilesLog)) }

e postcs = {(openForRead, {(pair($ f,$u), readfiles), (Su, users),
(list(pair($f,$u), $lpw), writeFilesLog)}),
(openForWrite, {pair(3f, $u), write files), ($u, users),
(list(pair($f, $u), $ipr), readFilesLog)}),
(close, {(first(8p), fileSystem), ($u, users), (delete(p, Ipr), readFilesLog)}),
(close, {(first($p), fileSystem}), ($u, users), (delete(p, lpw), writeFilesLog))}

e cond.s = {(openForRead, {dominates(get AccessClass($u),
getAccessClass($f)) = true}),
(openForWrite, {dominates(get AccessClass($u), get AccessClass($f))
true}),
(close, {getUser Name($u) = getU ser Name(second($f)}),
(close’, {getU ser Name($u) = getUserName(second($f)})}

o A.r = the initial algebra of SPEC. ¢

We can now build the morphism f = (f,, fi, fsprc, fa) between ssfand cf
where:

o f, = {(fileSystem, fileSystem), (readF'iles, readFiles), (writeFiles,
writeFiles), (users, users)}

o fi = {(openForRead, openForRead), (openForWrite, openForWrite),
(close, close), (close’, close’)}

e fsppc = morphism mapping signatures, terms and equations of SPEC,

into the (syntactically) corresponding signatures, terms and equations of
SPEC.;

e f4 = morphism such that algebra A.; extends fa(Asss)

According to definition B.3 morphism f is guard strengthening place pre-
serving and as such the discrete evolution (simple security filesystem, confined
filesystem) is property-preserving (see definition 2.3).

As a remark, note that we have not formally proved any equivalence between
the safety property language used for AHL in [14, 15] and that used in AIPiNA.
For the concrete properties we have presented in this paper in section 3 this is not
necessary as all the used constructs — markings, algebraic operations, variables,
logical operators and universal quantifiers — are described or implicitly used
in [15].

25



