
Moodling

An Integrated Approach Towards Example-based
Domain-Specific Language Design with Focus on
Agility

Lucas Heer



Domain-Specific Modeling Languages

I Modeling languages tailored to a specific domain 1

I Increasingly used in software and systems development

I Describe structure and behavior of a system

I Abstract syntax → Structure (metamodel)

I Concrete syntax → Representation

I Semantics → Meaning and behavior

1Kelly, S. and Tolvanen, J. P. Domain-specific modeling: enabling full code
generation. John Wiley & Sons, 2008

2/41



FTG+PM

I Formalism used to guide MDE lifecycle 2

I Describes processes, artifacts, involved languages and
transformations

I Used here to describe workflows and processes

2Lúcio, Levi, et al. The formalism transformation graph as a guide to model
driven engineering. School of Computer Science, McGill University, Tech. Rep.
SOCS-TR2012,1, 2012.

3/41



Traditional DSML Design

Domain
expert

Language
engineer

TextualRequirements

Specification

DefineReqs

Analyze

Abstract 
Syntax 

Concrete
SyntaxSemantics

DefineConSynDefineSem

DSML

TestCases

DefineTests

ComposeDSML

DefineAbsSyn

Boolean

Test

:DefineReqs

:Analyze
:TextualRequirements

:Specification

:DefineAbsSyn :DefineConSyn

:DefineSem :ConcreteSyntax:AbstractSyntax :Semantics

:ComposeDSML

:Test
:DSML

:DefineTests

:TestCases

[True] [False]

FTG Language

Manual transformation

Automatic transformation

PM Model artifact
Manual acticity

Automatic acticity

:Boolean

4/41



Drawbacks

1. Language engineering knowledge required

2. Slow reaction to new / changing language requirements

3. Late feedback on language adequacy

5/41



Example-driven DSML Design

:CreateExModels 

:DeriveMetamodel 

ExModels: ExLang 

Metamodel:
MMLang

[Export][Self-contained]

:ExportMetamodel 

MetamodelExp:
MMLangExp 

MetamodelExp:
MMLangExp 

:Modeling 

InstanceModels:
DSML :Verify 

[True] :ReviseDSML [False]

[Backward 
evolution]

[Forward
evolution]

:ChangeExModels 

:ChangeMetamodel 

:ImportMetamodel 

FTG Language

Manual transformation

Automatic transformation

PM Artifact
Manual acticity
Automatic acticity

ExLang

CreateExModels

MMLang

DeriveMetamodel

MMLangExp

ExportMetamodel

ChangeExModels

ChangeMetamodel

DSML

Modeling

:Boolean 

ImportMetamodel

Boolean
Verify

ReviseDSML

:EvolveModels 

EvolveModels

6/41



Some Existing Approaches

metaBup3

I Sketch example models in general-purpose drawing tool

I Import into EMF to generate metamodel and modeling
environment

MLCBD4

I Self-contained in MS Visio

I Implicit metamodel generation

3López-Fernández, Jesús J. An agile process for the example-driven
development of modelling languages and environments. PhD thesis, Autonomous
University of Madrid, 2017

4Cho, H. A demonstration-based approach for domain-specific modeling
language creation, PhD thesis, University of Alabama, 2013

7/41



Evaluation of Existing Approaches

8/41



Issues

No existing approach gives compelling answer for:

How to

1. Evolve language without losing models?

2. Use models for MDE activities?

3. Decrease cognitive load?

9/41



Solution

Need an integrated approach that increases agility:

Integrated: Designed around MDE principles and implemented in a
metamodeling environment

Agile: Short loop between language design and use without
abandoning model artifacts along the way

10/41



Moodling Process

FTG+PM for an agile and integrated example-driven DSML design:

ExampleModels: ATG 

:ExampleModeling 

:InstanceModelingATGConcrete 
Syntax 

:ConcreteSyntax 

InstanceModels: ATG 

:Verify :Boolean

:ReviseDSML [False][True]

Boolean

ExampleModelingInstanceModeling

Verify
ReviseDSML

11/41



Central Idea

Disadvantages of generating an explicit metamodel from example
models:

I Increases number of artifacts (cognitive load, usability)

I Simultaneous co-evolution of example- and instance models
required when metamodel is changed

I Knowledge of meta-concepts required

→ Constrain instance modeling directly by example models

12/41



Ingredients

1. A common and generic metamodel to which example- and
instance models conform to

2. A conformance relationship between an instance model and a
set of example models

3. A co-evolution solution to automatically evolve instance
models when example models change

13/41



A Common Metamodel

Example- and instance models conform to a common metamodel:

Node
ID: Integer
typeID: String

Edge

Attribute
key: String
value: String

NodeAttribute

1

*

ATG Metamodel

1

*

Model
name: String
is_example: Bool

*

*

ATG: Attributed type graph
14/41



Conformance Relationship

Instance models need to conform to the set of example models:

MATG

Sxm 

R

MMM

Min

R

R*

→ Need to define R*
15/41



Conformance Relationship

Define conformance between an instance model and a set of
example models for:

1. Node typing

2. Type cardinality

3. Edge typing

4. Edge cardinality

5. Attribute typing

6. Attribute cardinality

→ Derived from conformance relationship between model and
metamodel

16/41



Example: Node Typing

The nodes of an instance model are completely typed if for every
node, there is a node with the same type in any example model.

17/41



Example: Node Typing

1 
"Router"

2 
"PC"

3 
"AP"

4 
"Tablet"

Example 
model 

1 
"Router"

2 
"Phone"

Instance 
model 

18/41



Co-Evolution

Instance models must co-evolve when example models change:

MATG

Sxm

R

MMM

Sim

R
R

′Sxm

R

SSim

identify

∈ ∈∈ ∈∈ ∈ ∈∈

R*

R*
T

change

′ , ...,Mex1
Mexn

, ...,Mex1
Mexn

, ...,Min1
Minm , ...,Min1

Mink

⊆ S ′Sim

R

evolve

′ , ..., ′Min1
Mink

∈∈

19/41



Co-Evolution Classification

Changes to example models have consequences:

Change operation Potential effect Constraint
Add node Make type mandatory Type cardinality

Delete node Makes type invalid Node typing

Retype node Makes type invalid Node typing

Add edge Makes edge mandatory Edge cardinality

Delete edge Makes edge invalid Edge typing

Add attribute Makes attribute mandatory Attribute card.

Delete attribute Makes attribute invalid Attribute typing

Change attribute Makes attribute invalid Attribute typing

Delete model
Makes type invalid
Makes edge invalid
Makes attribute invalid

Node typing
Edge
Attribute

20/41



Co-Evolving Instance Models

Detect if change broke conformance and repair by applying the same
change transformation to instance models:

MATG

Sxm

R

MMM

Sim

R
R

′Sxm

R

SSim

identify

T

∈ ∈∈ ∈∈ ∈ ∈∈

R*

R*
T

change

′ , ...,Mex1
Mexn

, ...,Mex1
Mexn

, ...,Min1
Minm , ...,Min1

Mink

⊆ S ′Sim

R

evolve

′ , ..., ′Min1
Mink

∈∈

21/41



Evolution Example

1 
"Router"

2 
"PC"

3 
"AP"

4 
"Tablet"

Example 
model 

1 
"Router"

2 
"PC"

Instance 
model 

22/41



Evolution Example

1 
"DSL-

Router"

2 
"PC"

3 
"AP"

Example 
model 

1 
"Router"

2 
"PC"

Instance 
model 

23/41



Evolution Example

1 
"DSL-

Router"

2 
"PC"

3 
"AP"

Example 
model 

1 
"DSL- 

Router"
2 

"PC"

Instance 
model 

24/41



Review: Moodling Process

FTG+PM for an agile and integrated example-driven DSML design:

ExampleModels: ATG 

:ExampleModeling 

:InstanceModelingATGConcrete 
Syntax 

:ConcreteSyntax 

InstanceModels: ATG 

:Verify :Boolean

:ReviseDSML [False][True]

Boolean

ExampleModelingInstanceModeling

Verify
ReviseDSML

25/41



Moodling Process

Instance-modeling activity detailed (1):

26/41



Moodling Process

Instance-modeling activity detailed (2):

27/41



Implementation

Overview:

I Modelverse as metamodeling back-end

– Flexible
– Very little constraints
– Python API

I Qt for graphical front-end

– Mature and documented
– Exhaustive feature set (UI Widgets, 2D, Statecharts, ...)
– Python bindings

28/41



Two UI Modes

Unconstrained example modeling:

I Sketch example models similar to drawing tool

I Only constraint: conformance to ATG metamodel

Constrained instance modeling:

I Create models that conform to ATG metamodel and example
models

I Implements example-model conformance relationship

29/41



Example Modeling

1. Sketch

30/41



Example Modeling

2. Type, connect and attribute

31/41



Instance Modeling

Overview

32/41



Instance Modeling

Constrained add edge operation

33/41



Co-Evolution

General scheme:

Given a change transformation T,

1. Apply it to the example model

2. Check for invalidated instance models

3. Repair conformance by applying T to invalid instance model

34/41



Concrete Syntax

Explicitly modeled → Stored as model of concrete syntax
metamodel:

Icon

typeID: String

is_primitive: Bool

Image

data: String

scale: Float

PrimitiveGroup

Line

startX: Integer

startY: Integer

endX: Integer

endY: Integer

Rectangle

x: Int

y: Int

width: Int

width: Int

Ellipse

startX: Int

startY: Int

endX: Int

endX: Int

Primitive
*

1

CS Metamodel

35/41



Concrete Syntax

Can evolve concrete syntax:

36/41



Evaluation

The approach is

1. Integrated: Implemented in a metamodeling environment
I No difference between example- and instance models

(reusability)
I Can directly apply MDE activities

2. Agile: Switch between design and use at any time
I Automatic co-evolution of instance models when example

models change
I Quickly react to new or changing requirements

37/41



Comparison

38/41



Conclusion

Example-driven DSML design process was developed:

I Integrated in metamodeling environment

I Example models are primary language description by defining
conformance of instance models

I Metamodeling aspects hidden

I Automated co-evolution of instance models

I Evolution of concrete syntax

39/41



Review

What about ...

1. RAMification for transformations? 5

2. Interoperability with other tools?

3. Constraints, abstraction, inheritance, hierarchy?

4. Requirements?

5Kühne, T., et al. Explicit transformation modeling. In International
Conference on Model Driven Engineering Languages and Systems (240-255),
Springer, 2009

40/41



Future Work

1. Process integrated, but strict separation of design and use
phases still exists

2. Use Moodling for brainstorming and generate metamodel later

3. Preceding requirements engineering phase

4. Performance and usability of front-end

41/41


	Introduction

