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Domain-Specific Modeling Languages

I Modeling languages tailored to a specific domain 1

I Increasingly used in software and systems development

I Describe structure and behavior of a system

I Abstract syntax → Structure (metamodel)

I Concrete syntax → Representation

I Semantics → Meaning and behavior

1Kelly, S. and Tolvanen, J. P. Domain-specific modeling: enabling full code
generation. John Wiley & Sons, 2008
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FTG+PM

I Formalism used to guide MDE lifecycle 2

I Describes processes, artifacts, involved languages and
transformations

I Used here to describe workflows and processes

2Lúcio, Levi, et al. The formalism transformation graph as a guide to model
driven engineering. School of Computer Science, McGill University, Tech. Rep.
SOCS-TR2012,1, 2012.
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Traditional DSML Design
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Drawbacks

1. Language engineering knowledge required

2. Slow reaction to new / changing language requirements

3. Late feedback on language adequacy
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Example-driven DSML Design
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Some Existing Approaches

metaBup3

I Sketch example models in general-purpose drawing tool

I Import into EMF to generate metamodel and modeling
environment

MLCBD4

I Self-contained in MS Visio

I Implicit metamodel generation

3López-Fernández, Jesús J. An agile process for the example-driven
development of modelling languages and environments. PhD thesis, Autonomous
University of Madrid, 2017

4Cho, H. A demonstration-based approach for domain-specific modeling
language creation, PhD thesis, University of Alabama, 2013
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Evaluation of Existing Approaches
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Issues

No existing approach gives compelling answer for:

How to

1. Evolve language without losing models?

2. Use models for MDE activities?

3. Decrease cognitive load?
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Solution

Need an integrated approach that increases agility:

Integrated: Designed around MDE principles and implemented in a
metamodeling environment

Agile: Short loop between language design and use without
abandoning model artifacts along the way
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Moodling Process

FTG+PM for an agile and integrated example-driven DSML design:

ExampleModels: ATG 
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Central Idea

Disadvantages of generating an explicit metamodel from example
models:

I Increases number of artifacts (cognitive load, usability)

I Simultaneous co-evolution of example- and instance models
required when metamodel is changed

I Knowledge of meta-concepts required

→ Constrain instance modeling directly by example models
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Ingredients

1. A common and generic metamodel to which example- and
instance models conform to

2. A conformance relationship between an instance model and a
set of example models

3. A co-evolution solution to automatically evolve instance
models when example models change
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A Common Metamodel

Example- and instance models conform to a common metamodel:

Node
ID: Integer
typeID: String

Edge

Attribute
key: String
value: String

NodeAttribute

1

*

ATG Metamodel

1

*

Model
name: String
is_example: Bool

*

*

ATG: Attributed type graph
14/41



Conformance Relationship

Instance models need to conform to the set of example models:

MATG

Sxm 

R

MMM

Min

R

R*

→ Need to define R*
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Conformance Relationship

Define conformance between an instance model and a set of
example models for:

1. Node typing

2. Type cardinality

3. Edge typing

4. Edge cardinality

5. Attribute typing

6. Attribute cardinality

→ Derived from conformance relationship between model and
metamodel
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Example: Node Typing

The nodes of an instance model are completely typed if for every
node, there is a node with the same type in any example model.
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Example: Node Typing
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Co-Evolution

Instance models must co-evolve when example models change:
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Co-Evolution Classification

Changes to example models have consequences:

Change operation Potential effect Constraint
Add node Make type mandatory Type cardinality

Delete node Makes type invalid Node typing

Retype node Makes type invalid Node typing

Add edge Makes edge mandatory Edge cardinality

Delete edge Makes edge invalid Edge typing

Add attribute Makes attribute mandatory Attribute card.

Delete attribute Makes attribute invalid Attribute typing

Change attribute Makes attribute invalid Attribute typing

Delete model
Makes type invalid
Makes edge invalid
Makes attribute invalid

Node typing
Edge
Attribute
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Co-Evolving Instance Models

Detect if change broke conformance and repair by applying the same
change transformation to instance models:
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Evolution Example
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Evolution Example
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Evolution Example
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Review: Moodling Process

FTG+PM for an agile and integrated example-driven DSML design:

ExampleModels: ATG 
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Moodling Process

Instance-modeling activity detailed (1):
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Moodling Process

Instance-modeling activity detailed (2):
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Implementation

Overview:

I Modelverse as metamodeling back-end

– Flexible
– Very little constraints
– Python API

I Qt for graphical front-end

– Mature and documented
– Exhaustive feature set (UI Widgets, 2D, Statecharts, ...)
– Python bindings
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Two UI Modes

Unconstrained example modeling:

I Sketch example models similar to drawing tool

I Only constraint: conformance to ATG metamodel

Constrained instance modeling:

I Create models that conform to ATG metamodel and example
models

I Implements example-model conformance relationship
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Example Modeling

1. Sketch

30/41



Example Modeling

2. Type, connect and attribute
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Instance Modeling

Overview
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Instance Modeling

Constrained add edge operation
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Co-Evolution

General scheme:

Given a change transformation T,

1. Apply it to the example model

2. Check for invalidated instance models

3. Repair conformance by applying T to invalid instance model
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Concrete Syntax

Explicitly modeled → Stored as model of concrete syntax
metamodel:

Icon

typeID: String

is_primitive: Bool

Image

data: String

scale: Float

PrimitiveGroup

Line

startX: Integer

startY: Integer

endX: Integer

endY: Integer

Rectangle

x: Int

y: Int

width: Int

width: Int

Ellipse

startX: Int

startY: Int

endX: Int

endX: Int

Primitive
*

1

CS Metamodel
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Concrete Syntax

Can evolve concrete syntax:
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Evaluation

The approach is

1. Integrated: Implemented in a metamodeling environment
I No difference between example- and instance models

(reusability)
I Can directly apply MDE activities

2. Agile: Switch between design and use at any time
I Automatic co-evolution of instance models when example

models change
I Quickly react to new or changing requirements
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Comparison
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Conclusion

Example-driven DSML design process was developed:

I Integrated in metamodeling environment

I Example models are primary language description by defining
conformance of instance models

I Metamodeling aspects hidden

I Automated co-evolution of instance models

I Evolution of concrete syntax
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Review

What about ...

1. RAMification for transformations? 5

2. Interoperability with other tools?

3. Constraints, abstraction, inheritance, hierarchy?

4. Requirements?

5Kühne, T., et al. Explicit transformation modeling. In International
Conference on Model Driven Engineering Languages and Systems (240-255),
Springer, 2009
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Future Work

1. Process integrated, but strict separation of design and use
phases still exists

2. Use Moodling for brainstorming and generate metamodel later

3. Preceding requirements engineering phase

4. Performance and usability of front-end
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