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Abstract

Domain-Specific Modeling Languages (DSMLs) are increasingly used by system engineers to specify and document both the
structure and behavior of complex software systems. Compared to general purpose programming languages, they present numer-
ous advantages to the engineer, such as improved expressiveness, intuitive syntax tailored to a specific domain, and increased
level of abstraction. However, the development of a DSML is often carried out in a top-down manner with the definition of the
metamodel for the language as first step. In many cases, this is a complicated and error-prone process and does not reflect the
reality of software engineers that prefer to initially draw informal instance model sketches either on paper or in common drawing
tools such as Microsoft Visio or Dia. These sketches are merely considered as first drafts and serve no further purpose than ex-
pressing ideas in the early stages of development. This traditional approach also introduces an expertise gap since domain experts
rarely are experienced enough to create high-quality DSMLs without the help of a dedicated language engineer. To overcome
the shortcomings of the top-down DSML design process, several approaches have been proposed to derive a language definition
solely from informal sketches that are typically found in the very beginning of the modeling process. This promises to ease the
creation of DSMLs, ultimately making model-driven engineering of complex software systems more accessible for non-experts.
This paper discusses the current state of research and analyzes proposed solutions for designing domain-specific languages in a
bottom-up way. Individual challenges of this approach are identified and the solutions are examined to discover shortcomings
and areas where further research is needed.



1
Introduction

One of the major challenges in modern software development is to master the growing complexity of software-intensive sys-
tems. With the increasing amount of requirements that are imposed on such systems, engineers try to find new ways to make the
development process more efficient and less error-prone. A lot of effort has been spent to reduce the so-called accidental com-
plexity. As opposed to the essential complexity, which is inherent to a system and cannot be reduced, the accidental complexity
is attributed to inefficient development techniques that are considered a hindrance to the developer [10]. This chapter describes
fundamentals that act as basis for the subsequent chapters and presents the tools and approaches that were investigated in the
scope of this review.

1.1 Background

The most predominant approach to reduce the accidental complexity of software engineering is to raise the level of abstraction at
which the structure and behavior of a system is described. Historically, this technique has led to the establishment of high-level
programming languages such as Java or C++ that try to hide irrelevant and unimportant aspects that are not needed to solve a
problem. With Model-Driven Engineering (MDE), another trend has emerged to counter the growth in complexity of software-
intensive systems. MDE allows to raise the level of abstraction above general-purpose programming languages. Instead of code,
models are used to describe a system’s structure and behavior. The advantages are multifold: the accidental complexity reduced
by increasing expressiveness, formal verification is easier on higher levels of abstractions and various studies suggest a large
productivity improvement by using MDE techniques [49]. Beside general-purpose modeling languages such as Petri Nets [73]
or Statecharts [40] that can be used for a broad range of domains, the class of Domain-Specific Modeling Languages (DSMLs)
allows for MDE to be tailored to the particular domain of the system. Because of that, the structure of a DSMLs has to be defined
first by a metamodel. The metamodel specifies all available concepts in the language and imposes restrictions on how these
concepts can be used [51]. After that, models can be instantiated from the metamodel. Therefore, models that conform to the
metamodel are also called instance models. The creation of a DSML is often a complex and time-consuming task that requires
in-depth knowledge about metamodeling and specialized tools that have a steep learning curve [71]. Typically, it is carried out by
a language engineer that uses input from a domain expert to design an appropriate formalism. This includes the abstract syntax
(the structure of the concepts), the concrete syntax (how the language concepts are represented) and the semantics (the actual
meaning of the concepts) [41]. For the concrete syntax, either textual or graphical notations are established. The abstract syntax
is typically a data structure that describes the semantically relevant language concepts and their relations. This is usually done
by the metamodel of the language. Finally, the semantics of a language can either be defined by mapping the behavior to another
known formalism such as Statecharts or Petri Nets [63], in which case it is called denotational semantics or by explicitly giving
the execution rules. In this case, it is called operational semantics [62].
Within the MDE community, the most commonly used process to develop a DSML from scratch is executed in a top-down
manner [61][85]. It typically starts with gathering and analyzing requirements from the domain experts. The domain experts are
engineers that want to use a DSML to describe a system, but do not necessarily have the expertise to create such a language.
Therefore, dedicated language engineers define the abstract and concrete syntax and the semantics based on the input of the
domain experts. After the development and testing of the language is finished, the domain experts verify if it meets their initial
requirements. If not, another iteration of the development cycle can be executed. Figure 1.1 depicts the different roles and
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activities that are involved in the top-down DSML creation process.

Figure 1.1: Top-down approach for DSML design, adapted from Cho et al. [15]

The described DSML design process exhibits major flaws that can be attributed to the centralization of the metamodel construc-
tion and to its strict top-down nature. Most noticably, the metamodel that describes the abstract syntax is directly derived from
the requirements of the domain experts. However, this approach is counter-intuitive for the domain experts since they may not be
aware of all requirements yet and might therefore fail to state them in a concise and complete manner. In reality, they often start
drafting example models first and then abstract them into elements and relations of the envisaged DSML to clarify the require-
ments [57]. Research has also shown that such informal sketching is a vital aspect in creative problem solving methods which
are often used in early phases of the system development process [33][91][13]. Beaudouin-Lafon et al. describe pen and paper
prototyping as the fastest, cheapest and most widespread prototyping method for interactive system design [8].
Another problem stems from the strict separation of domain experts and language engineers. The creation of a DSML inher-
ently requires domain knowledge, but domain experts often do not have the required competence to design a metamodel for the
language [46]. This results in an expertise gap between the domain experts and the language engineers that introduces commu-
nication problems and might be difficult to overcome [18]. It also shifts a lot of the work to the language engineer and creates
an imbalance in the workload of the involved engineers [56]. There is currently very little tool support for creating a DSML
without being familiar and experienced with the concepts of metamodeling. This is especially important since MDE tools are
still considered a major hindrance for wide-spread industrial adoption [90][71].
The described approach to design DSMLs bears strong similarities with early approaches for software development processes
and also shares their shortcomings. The iterative, but somewhat rigid process depicted in figure 1.1 is comparable to the waterfall
model, first formally described by Royce [82]. Characteristic to this development process is that each stage must be executed
in its entirely before moving on to the next. Typical stages include requirements analysis, design, implementation and testing.
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(a) Waterfall model for systems engineering (b) Waterfall model adapted for DSML design

Figure 1.2: Comparison between traditional waterfall model and adapted waterfall model for top-down DSML creation

Figure 1.2 shows how the software development waterfall model can be adapted for the construction of DSMLs. Similar to the
process shown in figure 1.1, it assumes a linear succession of the individual steps, starting from the requirements. Therefore, the
shortcomings of the waterfall model can also be applied to the currently established top-down process of DSML creation and can
be summarized as:

1. Requirements first: Both the waterfall model and the top-down process depicted in figure 1.1 assume that all requirements
for the software artifact to develop are completely known beforehand. However, it is nowadays a generally acknowledged
fact that often, requirements are initially incomplete and may be contradictory and inconsistent [77].

2. Linear and rigid: The waterfall model imposes a strict sequence of the individual activities and does in its original form
not allow for any kind of iterations or incremental development. It is therefore difficult and expensive to react to changing
requirements in later phases of the development. Also, if different developer roles for the activities are assumed, the
sequential nature of the waterfall model wastes a lot of time, for example by letting the test engineers idle during the initial
requirement engineering phase.

3. Late delivery and feedback: The waterfall model only produces results in the late phases of the process. Therefore, users
and stakeholders can give feedback only once the product is finished. This may lead to expensive and long re-iterations of
the complete activities.

Altogether, these issues have resulted in the establishment of methodologies that belong to the class of iterative and incremental
development methods [53]. Most prominently, the family of agile development methods promises to remedy the shortcomings
of traditional approaches by letting the requirements and product iteratively evolve over time [65]. One of the key elements is
the ability to quickly react to changing user requirements by shortening the time it takes to execute one iteration of the devel-
opment process. Another element is intensive communication within the team by regular meetings and regular feedback from
the stakeholders of the product to develop [75]. Over the recent years, it has been discussed how the agile methodology can
be combined with MDE. This combination is commonly referred to as ”Agile Model-Driven Engineering” (AMDD) and has
first been described by Ambler [2][1]. Since then, several concrete processes have been proposed [66] as well as a multitude
of applications [27], with preliminary research and industrial case studies showing promising results [1][96]. However, these
approaches mainly focus on the agile development of software-intensive systems with general-purpose modeling languages and
not the DSML construction process itself.
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The most promising trend to overcome the issues of the linear top-down DSML creation process is the field of example-based
metamodel construction. By providing a set of example instance models, it is tried to automatically infer a metamodel to which
all these instance models conform to. This approach bears similarities with the Programming by Demonstration movement (PbD,
sometimes also called Programming By Example, PbE), a technique that appeared in software development research in the mid
1980s [37][55]. Here, the main objective is to make computer programming more accessible to end-users: If the user knows how
to perform a task on a computer, that should be sufficient to create a program that performs this task. Hence, it should be unnec-
essary to learn an actual programming language. By recording what the user does, the computer ”comes up” with a program that
corresponds to the user’s actions. The main challenge hereby is how to infer the user’s intent from his actions. Since the context
and data may change between executions of the program, it is important to acquire a correct set of generalizations for the user’s
actions. Often, the intent can be derived by inspecting and comparing multiple user recordings or letting the user manually select
the right intention from a list of possible candidates [23]. Several uses for PbD have been proposed, most noticeably in the field
of robotics [9] and machine learning [54].

1.2 Bottom-up metamodel construction

Figure 1.3: Bottom-up, example-driven approach for DSML design

The principal idea of PbD has been transferred to the field of DSML construction. Figure 1.3 gives a generic overview of such
a bottom-up process, the different phases it incorporates and the roles of the domain experts and language engineers. The whole
process is divided into the brainstorming, refinement and modeling phase. As depicted, the initial brainstorming phase consists
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of the domain experts thinking about the requirements of the DSML and expressing their ideas as a set of fragmentary example
models. These example models do not necessarily have to be complete, but can also represent a single aspect of the DSML only.
Most commonly, these example models are of graphical nature and are drawn by hand on some kind of electronic device. As
soon as one or more example models exists, a metamodel is inferred (step 2). This metamodel can then be altered, either by hand,
by automatic optimization like refactorings or by changing the set of example models and deriving a new metamodel from them
(step 4). Throughout the whole refinement phase, the conformance relationship between the metamodel and the example models
must be maintained, preferably in an automatic way (step 3). Note that the refinement phase of the metamodel can be carried
out by both the domain experts and the language engineers, with the latter usually working on the metamodel level instead of
the example models. Step 6 is used to verify if the metamodel meets certain defined quality and requirements. If it does, the
metamodel can be either imported into or used to create a modeling platform. If it does not pass the tests, another cycle of the
refinement phase can be executed, either by directly manipulating the metamodel or indirectly by changing the set of example
models to reflect the necessary changes.
This bottom-up process also lessens the burden of the language engineers which no longer plays a central role during the DSML
development process. Rather than actively carrying out the requirements analysis and the subsequent language elements creation,
they supervise the whole process, define domain concepts, further refine the metamodel and participate in reviewing the quality
of the metamodel during the validation and testing process. Therefore, DSML development becomes more approachable for
non-experts that would be otherwise deterred by the formality and complexity of the traditional language design approach.
Various names have been proposed for the top-down metamodel construction out of example models, among them ”Example-
driven metamodel development”, ”Demonstration-based approach for domain-specific modeling language creation” or ”Bottom-
up designing domain-specific modeling languages”. In order to establish a consent terminology, we propose the word Moodling,
a blend between ”Doodling” and ”Modeling”. We will use this word for the remainder of the paper as an umbrella term for all
DSML creation processes that fit into the process described the figure 1.3.

1.3 Tool overview

Several authors have recognized the need for more flexible and agile processes in MDE and identified example-based approaches
as a possible alternative to established methods. Proposed techniques do not only target the metamodel design, but can be
applied to other MDE artifacts as well. One area of research in MDE is concerned with model transformations, that is, the
transformation between one or more source models to one or more target models by following a set of transformation rules [68].
As a consequence, research has been conducted that investigates methods to determine such transformation rules by example
[88][3][4][48]. Other areas include model refactorings [32][31] and DSML validation [60]. Furthermore, the tool Muddles
[50] extends the idea of automated metamodel inference by adding support for example models that can be processed by model
management programs such as simulators, model-to-model and model-to-text transformations. This enables engineers to develop
additional early confidence that the envisaged DSML fits its purpose.
Beside example-based approaches, there also exist tools that try to implement a more flexible metamodeling process by mitigating
the conformance relationship between instance- and metamodel. While some of them rely on relaxing this relationship in the
early phases of modeling [44][84][70], others let the metamodel evolve together with the instance models [34][36]. Lastly, it
has been tried to make MDE more suitable for agile development processes by implementing team collaboration and multi-view
features [21][30]. For example, AToMPM is a multi-paradigm modeling tool which elevates web-based technologies for a multi-
user cloud-based architecture [86]. Other tools which provide development environments running in web browsers are Clooca
[45], WebGME [64] and MDEForge [7]. However, all of these tools concentrate mainly on the modeling phase and therefore do
not fit in the category of sketch-based metamodel construction.
An overview of the tools that focus on the actual DSML creation process is shown in table 1.1. MLCBD1 (Modeling Language
Creation By Example) provides a systematic and user-centered approach for building visual DSMLs. It is capable of inferring a
metamodel and static constraints based on a set of domain example models and automatically generating instance models from
the metamodel to assist the user in exploring the model space. Scribbler2 focuses on the sketching aspect in the early design
phases of model-driven engineering. As such, it aims to emphasize a collaborative and creative workflow where models can be
drawn first as free-hand sketches and are then transformed to formal models while being independent from a pre-defined modeling
language. A similar approach has been proposed and implemented in the FlexiSketch3 tool. Its goal is to better integrate the early
sketching and modeling activities in the overall software engineering process. This is achieved by enabling the user to sketch
instance models without prior definition of a metamodel. Furthermore, a metamodel can be derived semi-automatically from
these instance models. The tool was later extended with support for team collaboration. metaBup4 aims to simplify the DSML
construction process and make it more approachable for engineers without metamodeling expertise. It proposes an interactive,

1http://hcho7.students.cs.ua.edu
2http://sse-world.de/index.php/forschung/ergebnisse-im-video/scribbler-from-collaborative-sketching-to-formal-domain-specific
3http://www.ifi.uzh.ch/en/rerg/research/flexiblemodeling/flexisketch.html
4http://jesusjlopezf.github.io/metaBup/index.html
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Name Year Implemented Resources

MLCBD 2012-2013
Yes

(MS Visio plugin) [15][17][14]

Scribbler 2013
Yes

(Standalone) [5][6][89]

FlexiSketch 2012-2015
Yes

(Android App) [92][93][94][95]

metaBup 2012-2017
Yes

(Eclipse plugin) [57][59][56][46][83][58]

Model Workbench 2013-2014
Yes

(Standalone) [79][78][81][80]

Table 1.1: Overview of investigated tools

iterative and example-based approach with automatic modeling environment generation. It lets the user sketch example models
by using informal drawing tools which are then used to infer the abstract and concrete syntax. Finally, the Model Workbench5 has
been used as a platform to implement a bottom-up metamodel design process based on example models. Early work on textual
example models was extended to support arbitrary example models independent of a concrete syntax.

In the remainder of this paper, the presented Moodling process as well as the accompanying tools and approaches will be further
evaluated. First, section 2 discusses the individual challenges of Moodling and shows how different solutions solve them. Section
3 evaluates the presented tools using various criteria and concrete test scenarios. This will help to point out gaps in the discussed
approaches and to identify areas where further research is needed. Section 4 concludes the paper and gives an outlook on such
possible future research.

5http://www.neu.uni-bayreuth.de/de/Uni_Bayreuth/Fakultaeten/1_Mathematik_Physik_und_Informatik/Fachgruppe_Informatik/
Angewandte_Informatik_IV/de/research/projects/983_ModelWorkbench/index.html
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2
Challenges

While the main challenge is to find an algorithm that takes the set of example models and generates a common metamodel, a
holistic approach to Moodling also incorporates other challenges that will be discussed in this chapter. While numerous solutions
were proposed for Moodling, they differ significantly depending on the respective focus of research. For example, one solution
focuses on textual DSML development while another solution investigates the challenge of metamodel evolution within the
developed framework. By discussing each of the identified challenges individually, we can perform a structured analysis of
existing solutions, compare them and point out aspects that are still unsolved. Section 2.1 focuses on sketch recognition which is
often used in Moodling to allow for free-hand input of the set of example models. Although this topic has been researched quite
well, the reliable recognition of hand-drawn shapes and forms within metamodeling still poses a challenge. Section 2.2 describes
how the concrete and abstract syntax are inferred from the example models. This forms the backbone of every approach since it
is concerned with the problem of deriving a formal metamodel from a set of potentially incomplete, inconsistent or insufficient
example models. Section 2.3 introduces the challenge of modeling languages evolution in general and the co-evolution of
instance- and metamodels in particular. This is an important aspect since DSMLs typically undergo multiple iterations and evolve
over time. To avoid inconsistencies, the conformance relationship between the derived metamodel and the example models has
to be preserved when either the metamodel or the example models change. Section 2.4 deals with the issue of further utilization
of the generated metamodel. After the inferred metamodel has reached all quality and domain requirements, it will be used as
descriptive element of the DSML’s structure and static semantics. Therefore, some solutions automatically generate a modeling
environment for the created DSML, while others allow the export of the metamodel to common metamodeling frameworks.
Lastly, section 2.5 looks at the tool support of the solutions. While some proposed solutions may only be of theoretical nature,
others focus on the practical implementation of the approach to demonstrate its usefulness.

2.1 Unconstrained input

Unconstrained input is the first step towards the inference of metamodels from example models as one of the prerequisites
for Moodling is the possibility to freely create and edit graphical sketches of the example models. In figure 1.3, hand-drawn
shapes together with sketch recognition is the most commonly applied technique for step 1, namely the example model creation
phase. Ideally, sketches are partial or complete instance models of the DSML to be designed and focus on a single specific
aspect of the language only. Every sketch consists of a set of shapes which represent the concrete syntax for an element in the
abstract syntax. Sketches have to be recognized and categorized in order to infer a set of distinct elements that form the concrete
syntax. Furthermore, the relationship between the shapes has to be captured as well in order to reason about the abstract syntax.
The automated recognition of hand-drawn shapes is called sketch recognition and has been researched exhaustively with the
applications being multifold, ranging from the detection of hand-drawn chemical structures [74] to electric circuit design [28].
In the scope of systems modeling, it has been used for example to recognize hand-drawn UML shapes [38][11] or user interface
design [52]. Generally, sketch recognition algorithms can be classified into gesture recognition (how the sketch was drawn) and
visual recognition (what the sketch looks like), although combinations of both do exist as well [39]. Gesture recognition requires
a shape to be drawn in a particular drawing style to achieve a high detection rate while visual recognition depends on an accurate
geometrical description of the shape [20]. However, there is broad agreement that sketch recognition only works in domains
where a well-established lexicon of possible shapes exists and that unrestricted recognition (the recognition of arbitrary shapes
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without prior definition of a lexicon) is not feasible [25]. This poses an issue for Moodling where the goal is to give the user as
much freedom as possible while sketching the example models of the DSML.
Depending on the approach, sketches are created either in an external general-purpose drawing software such as Dia1, Microsoft
Visio2 and yEd3 or directly within the Moodling environment itself. With the latter, the sketch recognition algorithm not only
has access to the coordinates of the drawn data points but can also to the timestamp when these points were drawn, thus enabling
gesture recognition. Some solutions use this additional information to increase the recognition rate. Due to the difficult nature
of sketch recognition, the investigated approaches either support recognition of previously defined shapes or avoid the problem
altogether.

1. Recognition of pre-defined shapes: In their Moodling tool Scribbler, Vogel et al. support sketch recognition of hand-drawn
shapes within the environment itself [5][6][89]. It requires a lexicon of previously defined shapes that the algorithm should
recognize. Therefore, Scribbler comes with a training feature where new shapes can be demonstrated and saved in the
lexicon for later use. Both the learning and recognition method are based on a trainable sketch recognizer introduced by
Coyette et al. [22]. It uses the Levensthein distance to compute the edit distance between the unknown shape and the shapes
in the lexicon. The shape with the smallest edit distance is considered to be the type of the unknown shape. For every
shape, Scribber saves the x- and y-coordinates, the convex hull and the mouse movements which were used to it. By using
the convex hull, the shape is then scaled to a previously defined grid size. After that, the intersections of the drawing’s lines
and the grid itself are calculated. By enumerating the grid’s individual rectangles, the algorithm calculates a set of numbers
describing where and in what order the shape crosses the boarders of the grid. This set can then be compared using the
Levenshtein distance with the already known elements in the lexicon. To add a new element to the lexicon, Scribbler has
a dialog where the user can repeatedly draw the desired shape to populate the lexicon with more samples.
A similar approach is used in the (MLCBD) framework [15] by Cho et al.: It supports both the recognition of a set of
default shapes and a so-called shape authoring tool to register domain-specific shapes. However, it uses not only visual,
but also gesture recognition to make the process more robust. The sketch recognition is based on SUMLOW, a tool for
recognizing UML diagrams sketched on an electronic whiteboard [12]. SUMLOW features both a multi-stroke recognizer
for UML shapes and a text recognizer for annotations of the UML elements. The multi-stroke recognizer makes use of a
database that describes inherent features of the various UML shapes and how they are typically drawn. It therefore not only
captures the shape itself but also records the strokes that were executed to draw it. As a result, it can only detect shapes
when they are drawn in a specific order (for example, the Actor shape needs to be drawn with the head as a circle first), but
with very high detection rate. As soon as a UML shape is recognized, it is automatically extended with empty text fields
for the annotations. When the user writes inside the text fields, a separate text recognition transforms the handwriting in
text. MLCBD uses the same technique as it requires the user to register new shapes first. However, it also defines a set
of pre-defined shapes that cover commonly used shapes such as circles, rectangles and arrows. The main disadvantage of
this approach is that the shapes can only be recognized if they are drawn in a specific order. Therefore, the user has to be
familiar with the particular shapes and stroke drawing process.
Finally, also the FlexiSketch framework by Wüest et al. uses a lexicon of shapes to recognize via Levenshtein distance
comparison [92]. However, the lexicon is populated in realtime while the user draws shapes and therefore transparent: if
an object is not recognized, the user is asked to provide a name for it so it can be inserted in the lexicon. If a sketch is
recognized since it is already in the lexicon, it is added to the set of sketches representing the sketch to further train the
recognizer.

2. No recognition: Due to the inherently difficult nature of sketch recognition, the metaBup framework [56][57] avoids this
problem altogether by letting the user manually provide a legend for the shapes along with the sketched example model
(also called ”fragment” in the framework). This legend maps every every shape in the example model to a metamodel type.
This also allows using different symbols for the same concepts. The example models are not drawn in the tool itself but
externally by using general-purpose drawing tools. So far, the importer of metaBup supports the file formats of the drawing
tools yEd and Dia. This is made possible by a common sketch metamodel that imposes a specific structure on the input
sketches. It captures most of the types typically found in sketches, including nodes, lines, arrows, text labels and graphical
properties of the aforementioned. A metaBup example model with a legend is depicted in figure 2.1. This simple frag-
ment serves as an example model for a DSML that allows the user to describe the connection between an internet service
provider and customer homes. Apart from the example model, the legend assigns every icon a name that will later be used
as type in the metamodel. This approach bears similarities to the traditional top-down DSML construction process where
the mapping between abstract and concrete syntax is often carried out manually. Typically, some kind of icon definition
languages are used where the user has to explicitly create an icon for each meta-class [87].
Later, the framework was extended by more advanced detection techniques mainly for spatial relationships such as contain-

1https://wiki.gnome.org/Apps/Dia
2https://products.office.com/visio
3http://www.yworks.com/products/yed
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ment and overlapping shapes [59]. This allows for a more detailed representation of domain properties. Recognized spatial
relationships are translated to annotations for the textual model representation and later to references in the generated
metamodel.

Figure 2.1: Example of a metaBup input fragment consisting of sketch and legend

The majority of the investigated approaches above focus on the graphical development of DSMLs and therefore require some
kind of sketch recognition or equivalent. However, Roth et al. describe in their work a bottom-up development process that
focuses on textual DSMLs [80]. Consequently, the example models are of textual nature and do require some kind of text parsing
and recognition. This is done with a mixture of regular expressions and manual user input, as further described in section 2.2.
Moreover, Roth et al. identify a need for features such as syntax highlighting and content assist since they are common for
modern IDE and expected by the user.

2.2 Metamodel generation

The metamodel captures the abstract syntax and the static semantics of a DSML and constrains the structure of the language ele-
ments. Therefore, probably the most important challenge in Moodling is the inference of the metamodel from the set of example
models. Ideally, an inference engine can use a large set of concise and consistent input models. In reality however, the input
models might be incomplete, inconsistent or not reflect all aspects of the language appropriately. Therefore, the inference engine
must be able to handle all of these potential issues.
Metamodel inference is also used in areas outside of Moodling. For example, MARS [47] is a system that tries to recover a lost
metamodel from domain models by using a semi-automatic grammar inference engine. It induces a metamodel by first translat-
ing the set of domain models into a custom model representation language which then is used to translate the domain models
into a context-free grammar. From this grammar, the metamodel is generated. Although being rather constrained to the specific
environment and format of the domain models, it shows promising results in an experimental study. However, in this approach,
the lost metamodel has already been defined in the past and the set of domain models can therefore be considered consistent and
complete.
We classify the metamodel inference capabilities by their level of automation. While some approaches are able to infer the meta-
model in a completely automated manner, others require user interaction or are very limited in that the metamodel is essentially
generated by the user itself.

1. Manual: Scribbler requires the user to externally define the metamodel of the DSML within the Eclipse Modeling Frame-
work (EMF) as an Ecore model [5]. The user then has to manually map the previously defined sketch elements of the
language to the metamodel objects. After this, the user can sketch instance models that can be exported to the EMF for
further usage. This mapping is bidirectional since Scribbler also supports the import of EMF models which then get repre-
sented as sketches again [6]. Therefore, Scribbler is well suited for language experts that are able to define the metamodel
of the DSML within EMF but rather like to sketch their models by hand than a complete Moodling solution where the
metamodel is inferred from a set of sketched instance models.

2. Semi-automatic: MLCBD supports the semi-automatic inference of the DSML metamodel. Proceeding from the recog-
nized sketches (see section 2.1), it defines an algorithm that incrementally builds the metamodel with user interaction where
necessary [17]: First, the so-called Graph Builder transforms the sketched example models into representation-independent
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undirected graphs by using graph transformations. The Concrete Syntax Identifier then traverses the generated graphs and
tries to identify candidates for the concrete syntax of an element. The candidates need to be reviewed and annotated by
the user during this step, thus making the approach semi-automatic. The annotations help to further specify the nature of
the elements (e.g. does a link denote inheritance, is it bidirectional or unidirectional). After the concrete syntax has been
identified, the Graph Annotator takes the previously made annotations and applies them to the graph representations of
the example models generated in the first step of the process. It renames the elements from their generic to the concrete
syntax names, changes the graphs to directed graphs if necessary and optimizes the graph structures by merging nodes
with the same names and attributes. The optimized graph structures are handed over to the actual Metamodel Inference
Engine that infers the abstract syntax and outputs the metamodel of the input models. This is done by first merging the
graph representations into one single graph that represents all aspects of the input models and then performing a (sub)graph
isomorphism test between instances of known metamodel design patterns and the merged graph. These design patterns
are a result of a survey conducted by the same authors of MLCBD [16]. In his PhD thesis, Cho extended the described
approach with model space exploration [15]: After the metamodel is successfully inferred, a set of example models is
automatically instantiated from it. The user then plays the role of an oracle and decides if the generated model is valid
in the DSML. This information is then fed back into the Inference Engine to incrementally update and further refine the
metamodel. This approach also helps to identify the current quality of the induced metamodel and possibly spot mistakes
that otherwise would only appear later when the DSML is used in production.

Figure 2.2: The metamodel for the concrete syntax tree according to Roth [80]

Another approach was described by Roth et al. [78][80][81]. Unlike the other discussed solutions, it focuses on Moodling
where the input models and the generated metamodel are of textual nature only. Similar to abstract syntax trees, the solution
proposes the use of a concrete syntax tree (CST) that is built gradually while the user enters a textual example model. It also
provides a metamodel that describes the structure of such a CST which is depicted in figure 2.2. A base class called ”Cell”
serves as an abstract class for the tokens and containers classes. Both tokens and containers have an associated ”TypeClass”
that determines their type. To effectively support token recognition, several assumptions are made about the format and
the semantics of the tokens. For example, a whitespace character is assumed to be a delimiter, a list of comma-separated
tokens is an enumeration and braces or indentation are used to set the scope. These tokens are building blocks for containers
which can be statements, complete blocks or expressions. The recognition itself is performed semi-automatic with regular
expressions and manual user interaction. Regular expressions are able to identify single tokens and distinguish between
literals such as integer and floats, but not between different types of tokens such as keywords, identifiers or references.
In these ambiguous cases, user interaction is needed to determine the type of a specific token and register it in the CST.
Once the CST is built, it can be used to derive the abstract syntax for the DSML as described in a seperate paper that
concentrates on a method to derive a concise metamodel from example models [79]. In contrast to other approaches that
focus on sketched input models, the described solution is independent from the concrete syntax of the example models.
Similar to MLCBD [15], it supports three types of refactorings that are applied to the generated metamodel to reduce its
complexity: Single inheritance, multiple inheritance and enumeration. The inference process itself only requires a notion
of concepts, assignments and attributes that in principal can come from any previously executed recognition process such
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as the CST that was described earlier. The inference is then done in 4 steps: First, for every identified unique type, a new
meta concept is created. Second, for each assignment in the type bodies, a new attribute is created for the corresponding
meta concept. This can be done in a straight-forward fashion for literals such as strings or integers but is more complex
for references to other meta concepts since the cardinality has to be taken into account. As a general rule, the lower bound
is set to 1 if each instance of the same type contains such a reference, otherwise 0. The upper bound is set to 1 if only
one value is assigned every time, otherwise to *. In the third step, duplicate attributes are merged. Finally, the fourth step
optimizes the metamodel by introducting inheritance and enumerations.

Figure 2.3: metaBup text fragment, automatically generated from an example model

3. Automatic: metaBup implements a fully automated metamodel inference engine [57][56]. Starting from the sketches, an
importer generates a textual fragment that describe the classes and references between the classes in the sketch. This im-
porter first converts the sketch to a model that conforms to the sketch metamodel of metaBup (see section 2.1). It then uses
a model transformation to transform the model into a text fragment. This process is necessary to stay technology agnostic
when different sketching tools like Dia or yED are used. To effectively support a model transformation from the sketch to
the text fragment, metaBup also features a metamodel for the text fragments language. A text fragment consists of objects
with attributes and references with both of them being able to be annotated. The elements of the sketch metamodel are
mapped to the elements of the fragment metamodel to carry out the model transformation. Figure 2.3 shows such a frag-
ment that was automatically generated from the sketched example model in figure 2.1. Particularly, the spatial information
about overlapping icons that is present in the example model got translated to textual annotations in the fragment.
After the transformation, the metamodel inference engine iterates through all text fragments and creates a new meta-class
for every object found, if it does not exist already. Similarly, an annotation is created for every reference found in the
fragments. The cardinalities are set to the respective minimum and maximum numbers as found in the fragment. The
resulting metamodel can then be refactored and evolved as described in section 2.3. To guide the metamodel inference
process, the user can also manually annotate either the sketches or the text fragments. Such annotations are either domain
or design annotations: domain annotations give the inference engine knowledge about further domain knowledge and result
in OCL constraints attached to the generated metamodel (see section 2.4) while the design annotations affect the structure
and organization of the metamodel. However, these annotations are optional and the inference process can be executed
from the sketches to the final metamodel in a completely automatic manner.
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Automatic metamodel inference is also supported by the FlexiSketch tool [92][93]. Users can draw symbols, links and
annotations on a canvas and are required to provide type information and a name for every shape. For symbols, the user
can choose to either use already registered types or add the symbol as a new type. Therefore, the set of available metamodel
classes typically grows during the sketching process. For links, the user has to select the type from a set of given options
such as unidirectional, bidirectional, solid or dashed. This limits the amount of possible link types and permits symbol
overloading. Lastly, the cardinalities are automatically set and updated when needed. However, the user can also select
a link and set the lower and upper bounds explicitly as long as they do not violate any other cardinality rules. Finally, to
ensure consistency of the sketched model, a wizard can be used during sketching or when the model is saved to fix issues
such as missing type information for symbols and links.

2.3 Evolution of modeling languages

Software evolution is a subdomain of software engineering that investigates ways to adapt software to changing requirements
and operating environments as well as the change process itself [67]. Due to the general-purpose nature of most programming
languages, only the programs evolve, while the languages themselves do not. This is contrary to MDE where modeling languages
are often tighly bound to a specific domain. Therefore, both the instance models and the language itself are subject to frequent
changes due to changing requirements or refactorings. Due to the importance of the topic, the MDE community has conducted
intensive research to find solutions for what is often referred to as the co-evolution of models [42]. In their recent survey, Hebig
et al. give an overview of 31 different approaches that investigate metamodel co-evolution [43]. Meyers and Vangheluwe present
a taxonomy for different evolution scenarios within MDE and propose a structured, semi-automatic framework for the evolution
of modeling languages [69].
Cho et al. identify the co-evolution of models as one of the key challenges in Moodling [18]: Language evolution becomes par-
ticularly interesting because only rarely, all language requirements are met or even known within the first development iteration.
In Moodling, changes to the language are either induced by adapting the set of example models and then propagating the changes
to the language induction mechanism (which we will call forward evolution) or directly manipulating the derived metamodel
(backward evolution). Both cases carry the substantial risk of instance models and metamodel diverging and therefore breaking
the conformance relationship between example models and metamodel. Furthermore, a change to one single example model
might affect all other example models as well, making the evolution problem even more of a challenge. For this reason, many
solutions identify a need for a (semi-)automated co-evolution of models. This paragraph discusses the different approaches to
model co-evolution found in the literature. We will use the term unidirectional to describe that co-evolution is only supported in
one direction (that is, either forward or backward evolution but not both). The term bidirectional denotes that both forward and
backward evolution is supported.

1. Unidirectional, manual: Cho identifies language evolution as the weakest area of the MLCBD approach [15]. He compares
MLCBD with GME, a generic modeling environment focusing on easy creation of graphical DSMLs in the traditional top-
down process [24] and concludes that while GME supports evolution of the metamodel by applying requested changes and
triggering a rebuild of the metamodel, MLCBD requires a complete iteration of the development process. Therefore, the
only possibility to evolve the language is to change the set of example models and perform a full iteration of the process
again so a new metamodel is created which reflects the changes. Also, no refactoring or backwards propagation of manual
changes from the metamodel to the example models seems to exist within MLCBD.
The collaborative model sketching approach Scribbler implements manual backwards evolution. Although not explicitly
mentioned in any of the resources, it can be deduced that the metamodel, since it has to be created by hand, can also be
changed at any point of the DSML development process. However, it is also the user’s responsibility to manually maintain
a valid mapping between the metamodel elements and the sketches. Forward evolution is not possible since the workflow
needs a metamodel defined prior to any sketching activities.

2. Bidirectional, semi-automatic: In their effort to create an interactive and iterative Moodling approach, metaBup by López-
Fernández et al. support the refactoring of the metamodel after it is automatically induced from the example models
[57][56]. They implement a visual refactoring assistant that provides several pre-defined metamodel improvement sugges-
tions to the user, ranging from simple renames to pulling up common features to a common superclass. These refactorings
stem from those found in traditional object-oriented programming as exhaustively described by Fowler [29] and Demeyer
et al. [26]. In this example for backward evolution, they follow the taxonomy described by Cicchetti et al. [19]: Metamodel
changes are classified into non-breaking, breaking and resolvable, and breaking and unresolvable. The solution supports
automatic updating of the example models if the metamodel refactoring is either non-breaking or resolvable. For the unre-
solvable ones, the user is asked to provide additional information or simply discard example models that no longer conform
to the updated metamodel. The solution also allows for forward evolution where the metamodel is changed by changing
the set of example models. If an example model is altered in a way that it now includes contradictory information, the
assistant raises a conflict and notifies the user about the issue. If the conflict is resolvable, it tries to automatically resolve
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the issue. For instance, changing an attribute to a string while another object already defines the same attribute as an integer
results in an automatically resolvable issue since all integers can be represented as strings as well. However, the other way
around presents an unresolvable conflict that requires manual user intervention since not all strings can be represented by
integers.

3. Unidirectional, automatic: FlexiSketch tries to support automatic forward co-evolution of the example- and metamodel
[93]. Two mechanisms are presented to minimize the synchronization problem between multiple versions of the models.
First, each sketched example model stores its own metamodel that it conforms to. At any point, metamodels can be merged
automatically as long as only non-breaking changes such as relaxing existing cardinality rules need to be performed.
Merges that result in breaking changes are rejected and left for the user to resolve manually. Second, metamodels can
be locked as soon as they are considered final. Once a metamodel is locked, it will not be updated anymore even if the
example models change. Instead, the parts that do not conform to the metamodel are highlighted. A locked metamodel can
also be saved independently from the example models.

4. Bidirectional, automatic: In his dissertation [78], Roth extends his previous work on textual Moodling [80][79] and de-
scribes a holistic approach where he distinguishes between the linguistic and the onthological context. Both refactorings
for the generated metamodel and induced changes from the example models are supported in a fully automated way. This
is made possible by restricting the changes that can be applied to either the metamodel or the example models. For the
refactorings, only changes that are strictly non-breaking and do not require any changes to the models conforming to the
metamodel are performed. This includes for example further restriction of multiplicities and the deletion of unused con-
cepts. The same holds true for forward evolution: The user can freely manipulate the set of example models and regenerate
the metamodel as long as the changes do not invalidate the conformance of any model with the metamodel. In such a case,
an issue is raised and the user is asked to resolve the problem manually.

2.4 Modeling environment integration

The main goal of Moodling is the creation of a conceptual metamodel for a DSML from instance models. However, once this
metamodel has been inferred, it still needs to be implemented in a particular platform to serve as a usable description for a DSML.
We distinguish the solutions between standalone applications that feature an export function to established modeling environ-
ments such as the Eclipse Modeling Framework (EMF)4, metaDepth5 and MetaEdit+6 or solutions that are already integrated
into such environments and therefore do not require to switch the tool during the DSML development lifecycle.

1. Export: For standalone applications that implement a Moodling approach, it is common to export the generated metamodel
to an already existing framework. Ideally, the existing framework is well-known and mature so a high quality environment
is ensured. As already mentioned in section 2.2, Scribbler is a standalone tool, but tightly integrated with the EMF as
it requires a metamodel definition as Ecore metamodel to map recognized sketches to classes. Once a sketch is done, it
can be exported to the EMF. Scribbler therefore allows for sketching instance models to already defined DSMLs. It also
supports the import from EMF models to represent them as sketches again, given the mapping between sketch elements
and Ecore classes is still intact [5].
FlexiSketch also relies on export. The developers plan to integrate an export function for the generated metamodel to
MetaEdit+, another environment for creating and using DSMLs [93]. Currently, however, it only supports saving and
loading a metamodel in a custom XML format. It is suggested that this XML file can be manually converted by the user to
the format of the target environment until an export function is available.
Although metaBup is implemented as a plugin to the EMF and therefore primarily advertises an automated modeling
evironment generation within the same, it also supports exporting its metamodels to metaDepth [57]. Hereby, the ex-
porter makes use of features that are unique to metaDepth, for example the distinction between unidirectional relations
between classes called ”Reference” and bidirectional relations called ”Edge”. Constructs that cannot be directly expressed
in metaDepth metamodels are compiled into OCL constraints.

2. Integrated: As mentioned before, metaBup is implemented as a plugin for the Eclipse Modeling Framework (EMF)
[57][56]. Although it supports the export of the generated metamodel to metaDepth, it mainly focuses on the automatic
generation of a modeling environment for the DSML within the EMF [59]. This includes the transformation from the
neutral metamodel to a specific Ecore metamodel that defines the abstract syntax with the concepts provided by the EMF,
a model for the concrete syntax for Sirius, the language workbench creation software of the EMF, and a mapping between
those two. These transformations are possible due to the fact that metaBup provides an explicit metamodel for the example
models. Therefore, a mapping between elements of the example models and the EMF Ecore metamodel can be established.

4https://www.eclipse.org/modeling/emf
5http://metadepth.org
6http://www.metacase.com/products.html
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The Model Workbench was extended by Roth to support his Moodling approach [78]. It was initially developed to support
DSML development for the business process domain. Both textual and visual metamodel development methods are sup-
ported. Once the metamodel is defined, the framework allows to instantiate models from it within the same environment
by switching from the DSML design view to the modeling view. For visual DSMLs, it provides the user with a pallet of all
possible constructs in the language and notifies about metamodel violations in real time. The textual editor supports syntax
highlighting and auto-completion of language keywords.

2.5 Tool support

The tool support of an approach can be used as a benchmark for its practicability. While some implement a complete production-
ready software for Moodling, others only provide a prototypical implementation to prove the general feasibility of the idea.
This paragraph describes the tools that were already presented in chapter 1 and categorizes them into either prototype or fully
functional software.

1. Prototype: metaBup is implemented as a technical prototype to show the feasibility of the approach described by López-
Fernández [57][56]. It is built as a plugin for EMF and was evaluated in a user study to investigate the usability and quality
of the tool [59]. For this, 11 participants were asked to create sample models from a pre-defined domain and set of symbols.
Although the results show that both the usability and quality of the tool and the generated modeling environment are high,
the narrowness of the study permits a statement about the universal quality of the overall approach for unconstrained
Moodling.
Instead of implementing the solution in an already existing modeling framework, MLCBD emphasizes the sketching aspect
of the approach by realizing a prototype in the general-purpose graphics application Microsoft Visio [15] which allows
plugin development and process automation with Visual Basic for Applications (VBA). Two case studies were conducted
by the author where MLCBD is used to develop two different DSMLs and compared to other modeling environments
that only support the traditional top-down, metamodel-centric design process. The author concludes that with MLCBD,
less effort is required to develop a DSML since no language development expertise is needed to create the language.
However, he also identifies limitations when it comes to language evolution (see section 2.3) and the flexibility of the VBA
implementation within MS Visio.
FlexiSketch is implemented as a prototype application for mobile devices powered by Android [92]. Thereby, it focuses
mainly on devices with big screens, i.e. tablets for proper sketching support. A screenshot of the tool can be seen in
figure 2.5 and shows how different features like free-hand sketching, linking and element editing can be done on the same
canvas. The tool was evaluated in two different studies conducted by the authors. While the first study focused on the
general feasibility and usability, the second study was concerned with the utility of the tool. In conclusion, both studies
were rather small but showed promising results: most participants only had critique on details and the vast majority rated
the tool as useful and practical for their daily work. The single most frequently mentioned improvement suggestion was
support for larger screens and electronic whiteboards. Recent developments of the FlexiSketch tool address these issues by
implementing a client-server architecture that supports a broader range of devices and also team collaboration [94].

2. Production-ready: Scribbler is a fully functional and collaborative Java application to transform free-hand sketches to
formal models and back again [5][6]. It focuses on the collaboration and sketching aspect and, although being an indepen-
dent tool, is closely integrated with the EMF and its Ecore metamodel for the abstract syntax and semantics. To support
collaboration, Scribbler is implemented as a client-server architecture and transferring the sketches to all clients simulta-
neously. It also features a history function that saves all drawing actions and lets the user replay the sketching process later
on. The tool was evaluated by three different industrial users that all confirmed the usefulness during the early phases of
development. Especially the collaboration functionalities and the high recognition rate of new sketches were perceived
as valuable. Figure 2.4 shows a screenshot of the tool where the user has drawn an example model from a causal-block
diagram DSML [35] with operator and constants blocks and connections between them.

Roth [78] implements his approach in a web application called Model Workbench that was initially developed for modeling
domain-specific process management modeling languages. It comes with two different editors for textual and graphical
metamodeling. Following his previous work [80][79][81], the approach focuses on textual Moodling. As described in
section 2.2, a token parser is implemented that semi-automatically constructs a concrete syntax tree (CST) from textual
example models. This CST is then used to infer a metamodel which can be reused within the same environment. Once the
metamodel is derived, the instance model editor supports syntax highlighting and autocomplete of the previously identified
keywords.
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Figure 2.4: Screenshot of the Scribbler tool

Figure 2.5: Screenshot of FlexiSketch
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3
Analysis

In this chapter, the quality of each solution will be analyzed with respect to the challenges presented in section 2. In order to
establish a common ground for the analysis, concrete test scenarios are developed for every of the challenges. These scenarios
serve as a benchmark framework for each tool and make a quantitative comparison between them possible. Each following
section first introduces a test scenario that reflects a individual challenge and then investigates if and how it manifests in the
different tools. It should be noted however that, since most tools were not available for an actual hands-on evaluation, most of
the analysis was carried out based on the information found in the literature.

3.1 Unconstrained input

This section assesses the quality of the input method for example models of each tool. This both includes what kind of visual
building blocks and variables are available to express the user’s intent and how the tool uses this information to infer a metamodel.
Such visual variables include, but are not limited to the shape, color, textual annotation and spatial relationship of a symbol [72].
Although rectangular shapes are the most predominantly used notation in visual languages [76], it can not be anticipated what
constructs the user will use for the example models. Therefore, a good the input method provides a wide variety of visual
notations and is able to recognize and differentiate between them. In order to limit the amount of test cases needed analyze
the input methods, only constructs that are explicitly supported by any of the tools are used. This includes the three variables
shape, textual annotations and spatial relationships. For each of these variables, one example model was developed that assesses
these variables individually. Since the concrete representation of such example models will differ between the tools, an external
drawing tool not affiliated to any of the tools was used to present the models in a neutral way.
An example model for the shape variable is shown in figure 3.1. It consists of named entities representing network devices
and connectors as the links between them. No textual annotations or spatial relationships like intersections or containments are
present. Therefore, the tool only has to provide means to input and recognize different shapes and connections. By adding
annotations to the entities and typing the connectors as shown in figure 3.2, the example model becomes graphically more
complex. The tool has to be able to not only recognize different shapes, but must also support textual annotations. Furthermore,
there are now two different types of links present: a solid line which denotes an Ethernet connection and a dashed line for wireless
connections. Finally, the last and most complex example model in figure 3.3 adds spatial information to the sketch. Network
devices can now reside in different rooms (containment) and the router has overlapping circles representing ports. Consequently,
the tool must possess a notion of layers so that shapes can overlap and contain each other.

1. Scribbler allows for unconstrained input by providing a canvas that lets the user freely draw shapes by hand. These shapes
are then recognized by a sketch recognition engine, given that they are already registered in the lexicon of available shapes.
To register new shapes, Scribbler provides a recognition training dialog where the user can repeatedly draw the shape of an
element that should be recognized. The recognition process itself is done by computing the minimal Levenshtein distance
between the drawn shape on the canvas and the shapes registered in the lexicon. This suggests that with Scribbler, it is
possible to draw the basic example model of figure 3.1. However, no evidence could be found that implies support for
more advanced constructs like annotations or spatial relationships as shown in the figures 3.2 and 3.3, respectively.

2. MLCBD is capable of both sketch recognition of hand-drawn shapes and modeling with pre-defined icons. It comes with

16



Figure 3.1: The most basic example model with entities
and relations

Figure 3.2: More advanced example model with annota-
tions

an authoring tool to register new shapes that should be recognized later. Contrary to other solutions however, it not only
records the coordinates of the strokes, but also the time (i.e., how a shape was drawn). This improves recognition rate at
the cost that the user has to remember the individual steps that are needed to draw a specific shape. Given the fact that the
tool is implemented as a plugin for Microsoft Visio, a commercial diagram and vector graphics application, the user is not
forced to stick to hand-drawn shapes only, but can also use icons similar to the ones that are present in the test example
models. Therefore, it can be assumed that example models with the complexity of the model in figure 3.3 can be sketched.
However, the tool does not support the actual detection and processing of spatial relationships.

3. FlexiSketch tries to mimic the traditional pen and paper scribbling by supporting large-screen touch devices. While also
featuring sketch recognition of shapes in a lexicon, it does not require an explicit learning phase: as soon as a drawn shape
is not recognized, the user is asked to either manually pick a shape type from the lexicon or introduce a new type for
the shape. Shapes can be annotated as shown in figure 3.2. However, such annotations are purely visual information and
have no affinity to any shapes. Furthermore, no spatial relationships are supported, thus making it impossible to input any
example models such as the one depicted in figure 3.3.

4. metaBup relies on external general-purpose drawing tools for the sketching process. It features an importer that can read
the file formats of these external tools and transform them into an internal representation of example models. To map the
elements in the sketch to metamodel objects, the importer also requires a legend of shapes that connects every shape with
a type identifier. Therefore, the input is unconstrained but more laborious due to the fact that external tools need to be used
for the sketching process. On the other hand however, the user is not constrained to one tool since the importer supports
multiple of them, the most advanced being yED1. Since this editor comes with a set of pre-defined icons for various
domains and also supports the import of custom icons, it is possible to sketch example models with the complexity of 3.3.
The tool supports the detection of spatial relationships and translates them to metamodel constructs such as compositions
and inheritance.

5. The Model Workbench implements a bottom-up DSML creation process for mainly textual languages. It provides an IDE-
like text editor which allows the user to freely enter example models. Every key stroke triggers an analysis of the tokens,
their types and the structure of the entered text. The result of this analysis is a concrete syntax tree that describes the
structure of the example model. While later work suggests that support for visual languages has been added [78], the focus
still lies on textual languages. As such, the test example models would have to be translated to a textual representation
first. In that form, both attributes and spatial relationships can be represented, making the Model Workbench suitable for
complex example models such as the one shown in figure 3.3.

The results of the analysis of the unconstrained input are summarized in table 3.1. metaBup and the Model Workbench support
all test cases with their regarding graphical challenges. The Model Workbench primarily supports textual example models, where
constructs like attributes and hierarchy can easily be expressed. Scribbler and FlexiSketch allow freehand sketching on a canvas

1https://www.yworks.com/products/yed
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Figure 3.3: Complex example model with spatial relationships

object whereas MLCBD and metaBup make use of general-purpose vector graphics programs. While freehand sketching might
be preferable due to being closer to natural pen-and-paper doodling, it is inherently limited in its power to express complex
visual notations that go beyond basic shapes such as rectangles, circles and lines [72]. Furthermore, for the sketch recognition
algorithm to work effectively, hand-drawn shapes need to be sufficiently distinguishable from each other, a constrain that is not
present when using an icon-based language of annotated vector graphics as done by for example metaBup.

Tool Language type Input Entities and
relationships

Textual
annotations

Spatial
relationships

Scribber Visual Freehand Yes No No
MLCBD Visual Editor Yes Yes Yes (draw only)
FlexiSketch Visual Freehand Yes No No
metaBup Visual Editor Yes Yes Yes
Model Workbench Textual and visual Text editor Yes Yes Yes (textual)

Table 3.1: Tool support regarding example model input capabilities

3.2 Metamodel generation

After defining a set of example models, a metamodel needs to be inferred from them. To evaluate the quality of this feature,
the same example models that were presented in paragraph 3.1 are used. Obviously, the overall complexity of the generated
metamodel is directly linked to the expressiveness of the example model: if a tool only supports shapes and links as depicted
in example model 3.1, the resulting metamodel will only contain those entities. Another aspect to the analysis is the support
for modeling concepts like inheritance, abstract classes or compositions which have a direct influence on the expressiveness and
quality of the metamodel. For example, the metamodel for figure 3.2 could include an abstract class for the link, from which the
two types ”Ethernet” and ”WiFi” are inherited as concrete classes. Finally, the level of automation is taken into account as well,
although a preliminary classification of the tools has already been done in section 2.2. Again, due to the unavailability of most
tools, this analysis has to be performed based on the information given in the literature.

1. Although being a standalone application, Scribbler is tightly integrated with the Eclipse Modeling Framework. As de-
scribed in section 2.2, it requires the manual definition of an Ecore metamodel in Eclipse and a mapping between elements
in the shape lexicon and classes of the metamodel. Therefore, no bottom-up metamodel inference is supported.
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Tool Metamodel
generation Advanced constructs Automation

Scribber Manual, external None Manual
MLCBD Implicit None Semi
FlexiSketch Implicit None Full

metaBup Explicit
Inheritance, abstract classes,

compositions Full

Model Workbench Explicit Inheritance, abstract classes Semi

Table 3.2: Tool support regarding the metamodel inference process

2. MLCBD proposes a semi-automatic bottom-up process. It makes heavy use of graph transformations to iteratively translate
the input sketches to annotated graphs which are then used to infer the metamodel. Therefore, this approach allows for
structural optimizations such as nodes merging. MLCBD uses a unique approach to infer the metamodel: After all example
models are merged together to one graph, an isomorphism test is performed with known metamodel design patterns to
identify common constructs and transform them into a metamodel for the DSML. However, the metamodel cannot be
accessed or modified by the user and only exists in the form of an internal graph structure. Once a metamodel and its
constraints have been inferred, the user can use the application to further create instance models that conform to the
metamodel which was described by means of example models.

3. FlexiSketch combines the freehand sketching aspects of Scribbler with the hidden metamodel construction of MLCBD.
While example models are sketched, the tool builds a metamodel which later is used for conformance checking new
models that are sketched in the same language. The metamodel is incrementally built in the background while the user
sketches. However, it does advanced constructs such as inheritance, abstract classes or compositions.

4. metaBup is capable of automatically deriving an explicit metamodel which is transparent to the user and can be manip-
ulated. Since it supports detection of spatial relationships, a metamodel derived from example model 3.3 would contain
compositions (i.e. the Router class is composed of multiple ports). Further supported are inheritance and abstract classes
which, in case the example model importer does not recognize them through their spatial information, can either be implied
at example model level via annotations or applied to the metamodel directly.

5. The Model Workbench supports a semi-automated inference process based on either textual or graphical example models.
The metamodel can be accessed and changed by the user and the literature suggests that structural optimizations in the
form of inheritance and abstract classes are supported.

The features and capabilities of each tool regarding the metamodel inference process are summarized in table 3.2. Only metaBup
and the Model Workbench are capable of explicitly deriving a metamodel which can be inspected and modified by the user. The
other tools build an implicit metamodel which is then used to constrain further sketching activities.

3.3 Co-evolution

To assess the model co-evolution capabilities of every tool, two concrete evolution scenarios are used as follows:

1. Forward evolution: A metamodel is inferred from two example models that describe different aspects of the same lan-
guage. After that, one example model is modified so that the metamodel as well as the other example model need to
co-evolve.

2. Backward evolution: A metamodel is inferred from a example model. The metamodel is then modified by the user so
that the example model needs to co-evolve.

Using the sample language that was already utilized for the models in section 3.1, the test case for forward evolution is given
in figure 3.4. Two example models conform to a metamodel. Then, one example model is changed (highlighted in blue) and
the conformance relationship breaks, making an evolution of the metamodel necessary. Additionally, since the ”Router” element
was renamed, this change also affects the second example model which has to evolve as well. Figure 3.5 depicts the same
scenario, however with the change now performed at metamodel level. Again, by renaming the ”Router” element, a breaking and
resolvable change was introduced. This requires co-evolving both example models and could possibly performed automatically.
Furthermore, a breaking and unresolvable change was done by adding a ”Switch” element between the router and the personal
computers. A tool should warn about the connections in the example model that violate this new constraint.
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(a) Two example models conforming to a
inferred metamodel

(b) An example model change induces
co-evolution

Figure 3.4: Forward evolution example

(a) Two example models conforming to a
inferred metamodel

(b) A metamodel change induces
co-evolution

Figure 3.5: Backward evolution example
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Tool Forward
Evolution

Backward
Evolution Classification

Scribbler No Manual None
MLCBD Manual No None
FlexiSketch Yes No None

metaBup Yes Yes
Non-breaking

Resolvable
Unresolvable

Model Workbench Yes Yes
Non-breaking

Breaking

Table 3.3: Summary of co-evolution features

The remainder of this section investigates if and how the different tools support the two co-evolution scenarios. Since only
metaBup and the Model Workbench expose the metamodel to the user (see section 3.2), backward evolution is not applicable to
FlexiSketch and MLCBD.

1. Scribbler supports manual backward evolution since the metamodel needs to be defined in the Eclipse Modeling Frame-
work by hand and therefore can be changed at any point by the user. However, the mapping between sketched models and
metamodel needs to be updated as well. Regarding the scenario depicted in figure 3.5, the user has to manually retain the
conformance relationship by renaming the example model elements and introducing the new ”Switch” element.

2. MLCBD supports forward evolution by re-iterating the metamodel inference process. In scenario 3.4, after the example
model is changed, the metamodel can be updated by regenerating it. However, for the other example model that is affected
by the change as well, the user gets a warning about the conflicting types and needs to resolve the issue manually. Backward
evolution is not supported due to the metamodel being generated implicitly only.

3. FlexiSketch mitigates issues during forward co-evolution by implementing two different synchronization mechanisms.
First, for every example model, a corresponding metamodel is stored. Two or more metamodels can me merged into a
generalized model as long as only non-breaking changes have to be performed. Second, a lock mechanism can be triggered
by the user which disallows any modifications to a metamodel. Therefore, instead of evolving the model, non-conforming
parts of an example model will be highlighted. When considering scenario 3.4, FlexiSketch would maintain one metamodel
for every example model. Changes on one example model will not affect the other one as long as the metamodels have
not been merged. If such a merge is executed, two different classes for the ”Router” and the ”DSL Router” element are
generated in the metamodel since FlexiSketch separates different example models strictly.

4. metaBup implements both forward and backward evolution and is capable of handling both scenarios. For 3.4, the rename
is treated as a non-breaking issue and applied to the metamodel and all other example models. The new ”Switch” element
will be included in the metamodel once it is regenerated. Similar applies for the backward evolution scenario in figure 3.5:
renaming an element in the metamodel is classified as non-breaking change and can therefore be applied to every example
model. However, when introducing the new ”Switch” element, the tool issues a warning that the first example model does
not conform to the metamodel anymore and the user is asked to resolve it manually.

5. The Model Workbench supports co-evolution features comparable to metaBup. For forward evolution, non-breaking
changes like the rename in figure 3.4 are applied automatically upon metamodel regeneration. For every other changes,
the user is asked to resolve them manually. Backward evolution also supports non-breaking changes only. In scenario 3.5,
the tool notifies the user about the broken conformance relationship between the modified metamodel and the first example
model.

Table 3.3 summarizes the co-evolution support of the tools. Again, metaBup and the Model Workbench feature the most complete
implementation and use the commonly used taxonomy of diving the evolution scenarios in non-breaking, breaking and resolvable
and breaking and unresolvable at least to some extend. If a change is unresolvable, the user is notified and asked to resolve it
manually.

3.4 Tool support

Table 3.4 gives a summary of the tool support analysis which was carried out in multiple dimensions.
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Scribbler MLCBD FlexiSketch metaBup Model Workbench

Implementation Java Application MS Visio plugin
Android App

Java Application EMF plugin Java EE Application

Integration EMF - -
EMF

metaDepth Self-contained

Usability Industrial user study Case study User study User study -
Scalability Not assessable Not assessable Limited Yes Not assessable
Collaboration Client-Server - Client-Server - Client-Server

Table 3.4: Summary of tool support evaluation

1. Implementation: Every tool was implemented with different frameworks and technologies, making the results rather
diverse. The area of focus of each tool is reflected in the design and implementation decisions. For example, while
metaBup emphasizes metamodeling and DSML design aspects and therefore is implemented as a plugin to EMF, a widely
used modeling framework, FlexiSketch focuses on unconstrained sketching and supports touch-based input devices.

2. Integration: Integration with other metamodeling tools is an important factor for the actual value of a tool when used in
the scope of real-world projects. It answers the question about how the abstract and concrete syntax can be used after they
are defined and considered ready to use. Three possible methods are used in the presented tools: providing an exporter
to external metamodeling frameworks, automatically generating such a framework or a self-contained environment where
seamless DSML definition and usage is possible. The latter is done by the Model Workbench that provides a unified
environment to define and use a DSML. metaBup is capable to generate a modeling environment with the abstract and
concrete syntax as defined by the example models. This is made possible by using EMF’s capabilities to build a custom
modeling environment out of a metamodel. For FlexiSketch, an exporter is planned that generates a MetaEdit+ compatible
file for the metamodel. However, no such functionality could be found in the tool. Scribbler provides an importer and
exporter for EMF: Ecore metamodels can be imported to link elements to shapes and sketched models can be exported to
represent them in EMF. MLCBD does not feature any kind of integration with other metamodeling tools.

3. Usability: The usability of most tools has been evaluated in user studies with varying size and scope. Scribbler was
made available to industrial users that were asked to use the tool in their daily work and report about their experiences.
It was found to be generally helpful and valuable with a good recognition rate of the hand-drawn shapes. MLCBD was
not evaluated in a user study. However, a case study was presented [15] where a concrete DSML for finite state machines
and a network diagram language was developed and the workflow compared with two other metamodeling tools, the
Generic Modeling Environment (GME)2 and the Eclipse Modeling Framework. In summary, it was found that the DSML
development complexity has reduced and, in contrast to GME and EMF, no metamodeling expertise is required. Language
evolution and metamodel analysis and debug capabilities have been identified as shortcomings of MLCBD. The usability
of FlexiSketch was analyzed in a user study with 17 participants coming from the academic and industrial context. The vast
majority of the users found the tool to be useful and stated that they would use a polished version of the tool in their daily
work to replace whiteboards and flipcharts. metaBup was analyzed in a study with 11 participants with varying background.
The participants were asked to design a DSML which requirements were provided as text. The overall usability of the tool
was rated as good. Furthermore, no correlation between metamodeling experience and time needed to develop the language
was found, suggesting that non-experts benefit greatly from the example-based approach. Finally, the Model Workbench
was not assessed in any user or case study. Therefore, no statements about its usability can be made.

4. Scalability: This criteria is concerned with the adequacy of the tool to handle large real-world data which goes beyond
the scope of a demonstration. In the context of Moodling, this means designing a complex language that requires a large
amount example models. Due to the unavailability of most tools, this feature was assessed on existing user studies, if
available.
The user study conducted with the Scribbler tool does not give any information about the size of the used languages and
models. Similar holds true for MLCBD, where two use cases were presented with a purely demonstrative purpose. The
scalability of FlexiSketch was not explicitly assessed during the user studies as they focused on the usability of the tool
and only feature small-scale examples. Due to the touch-based input method and the limited screen size of touch devices,
it can nonetheless be concluded that FlexiSketch is mainly suited for quickly sketching high-level models of a language.
The user study of metaBup included a maximum of six example models to describe the language, with an average of 12
elements and 9 edges per example model. Since the example models get drawn individually in an external general-purpose
graphics vector program and with EMF, an established metamodeling framework is used, the scalability of metaBup can

2http://www.isis.vanderbilt.edu/Projects/gme
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be considered suitable for industrial-sized projects. Lastly, the Model Workbench could not be evaluated with regards to
scalability since neither the tool itself or further information is available nor a user study has been conducted.

5. Collaboration: Multi-user support is a vital aspect in Moodling since, typically, Moodling involves multiple domain
experts and language engineers that actively collaborate together. Scribbler supports multiple users working together on
one sketch model in parallel. One running instance of the tool functions as server to which the clients connect to. In a multi-
user session, mouse movements and events are distributed to all participants, making collaborative sketching possible.
FlexiSketch has been evolved into FlexiSketch Team [94] which extends the original tool with collaboration features similar
to Scribbler: one tool instance is configured as server to which all clients connect to. To prevent inconsistent states, a
locking mechanism prohibits concurrent modification of the same element. Additionally, the sketch sharing mechanism can
be disabled by the user to have a private workspace. The Model workbench is implemented as a client-server architecture
and makes use of modern web technologies. A ReST API connects clients to the server and provides access to the models
saved in a database. No further information about collaboration mechanisms could be found that indicates real team support
like locking and parallel manipulation of the same elements.

3.5 Comparison

Figure 3.6 shows the results of the evaluation as a radar chart. It points out the maturity of each solution in the individual
areas Unconstrained input, Metamodel generation, Co-evolution and Tool support. For the rating, a point-based system was
used, based on the previous analysis. Section 3.1 evaluated the visual expressiveness of the input method. Weak support means
that only conceptually simple (that is, no textual annotations or spatial information) example models can be expressed with the
provided input method whereas advanced support includes support for visual constructs like spatial relationships. Section 3.3
compared the co-evolution support of the tools. A distinction between forward evolution, backward evolution and an existing
evolution classification was made. Weak support in this area means that only one evolution direction is supported while advanced
support indicates the presence of all three aforementioned distinct features. Lastly, section 3.4 analyzed the tools with regard to
their usability, scalability and collaboration features. Weak support in this area implies that only one of these factors were tested
or implemented. In contrast, advanced support means all three areas are covered.
The following findings can be deducted from the comparison:

• In all areas, a high diversity between the tools and their support for specific features exists. This indicates that Moodling is
still in its infancy and no best practices have been established yet.

• For sketching example models, multiple methods have been implemented, with either mimicking traditional pen-and-paper
sketching on a digital canvas or icon-based editors.

• Only two tools explicitly generate a metamodel that can be inspected and manipulated by the user. The others, albeit
allowing to sketch models and implicitly building a metamodel to constrain the sketching process, do not expose it to the
user.

• Co-evolution is distinctively diverse, spawning all levels of support. Naturally, a correlation between metamodel generation
and evolution maturity exists: if the metamodel can not be manipulated by the user, there is no need for backward evolution.

• Mostly being research prototypes, the tool support itself was the area with the most deficiencies. While all approaches were
implemented as either plugins or standalone applications, most of them are unavailable, making a throughout evaluation
difficult.
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Figure 3.6: Summary of strengths and weaknesses of solutions
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4
Conclusion

This paper has given an overview of the approach to create a DSML metamodel definition in a bottom-up way, starting from a set
of example models. Furthermore, it investigated existing solutions by classifying them using several criteria: sketch recognition,
metamodel inference, evolution of the DSML, environment integration and tool support. These criteria were used to analyze and
compare the different solutions in an effort to find open research questions. We conclude the following:

– Full automation for both metamodel inference and co-evolution is not possible due to the fact that the user’s intention has
to be captured and manual intervention is required for ambiguous scenarios. Further work in this area is not considered
conducive.

– Most solutions force the language designer to specify a single shape for each metamodel concept. Therefore, the mapping
between concrete and abstract syntax is manually defined as a one-to-one relationship. Once introduced, a concrete syntax
representation for a concept is difficult to alter.

– Support for model co-evolution exists within the scope of metamodel refactorings, but is mostly basic without structured
approaches implemented. No clear distinction between forward and backward evolution is made. Missing support for
automated co-evolution limits the user’s ability to freely manipulate both example models and the metamodel to quickly
adapt it to changing DSML requirements. Furthermore,

– No solution provides seamless integration of language design and usage. Mostly, a strict separation between the metamodel
construction and the model instantiation environment exists. This makes it difficult to use the generated metamodel in the
early design phases to acquire knowledge about its usability and adequacy. Also, some solutions rely on exporting the
metamodel to external metamodeling tools and therefore discourage the user to continue evolution within the Moodling
framework once such an export has been performed. In order to implement a holistic agile DSML design process, co-
evolution must consider the complete development chain, from the example models to the metamodeling environment.

– Tool support was perceived as rather poor since the majority of them are either prototypes or unavailable. Adoption of the
Moodling approach would benefit from easy to use, mature and stable tools.

– The usability and added value of bottom-up metamodel construction was only investigated in small-scale user experiments.
Currently, no detailed experience reports in the scope of large projects exist, suggesting that Moodling has not attracted
attention in the industrial environment yet.

Further research concerning these issues will help remedy the remaining problems that inhibit wide-spread acceptance of Moodling
as a method for developing domain-specific modeling languages.
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