
UNIVERSITEIT ANTWERPEN
Faculty of Sciences
Department of Mathematics and Computer Science
June 2018

Moodling: An Integrated Approach Towards
Example-based Domain-Specific Language Design

with Focus on Agility

Author: Promoter:

Lucas Heer Prof. Dr. Hans Vangheluwe
Advisers:

Dr. Simon Van Mierlo
Yentl Van Tendeloo

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science: Computer Science

in the

Modelling, Simulation and Design Lab

Department of Mathematics and Computer Science

http://msdl.cs.mcgill.ca/people/lucas
http://msdl.cs.mcgill.ca/people/hv
http://msdl.cs.mcgill.ca/people/simonvm
http://msdl.cs.mcgill.ca/people/yentl
http://msdl.cs.mcgill.ca
https://win.ua.ac.be

Abstract

Domain-Specific Modeling Languages (DSMLs) are increasingly used by system engineers to

specify and document both the structure and the behavior of complex software systems. Com-

pared to general purpose programming languages, they present numerous advantages to the

engineer, such as improved expressiveness, intuitive syntax tailored to a specific domain and an

increased level of abstraction. However, the development of a DSML is a complex task and often

requires experienced language engineers. To tackle this issue, methods have been proposed that

automatically derive a DSML definition from example models. This allows engineers to express

the requirements of the language in an intuitive way and minimized the need for in-depth lan-

guage engineering knowledge. Currently, such example models are either sketched in dedicated

drawing applications and imported in metamodeling environments, or drawing applications are

extended with metamodeling features. Both approaches reduce the agility of the language de-

sign process by introducing a gap between the example model design and instance modeling

phases. As a result, the co-evolution of example models, the metamodel and instance models

is inhibited. This thesis proposes a solution for example-driven DSML design where sketching

and metamodeling activities are integrated in a single process. Example models are elevated

to the primary description of the language. It is more flexible, reduces the complexity of the

co-evolution issue and lowers the cognitive load for the user. The approach is evaluated with a

prototypical implementation in the Modelverse, a multi-paradigm metamodeling environment.

i

Acknowledgements

First of all, I would like to thank my promoter, Hans Vangheluwe. During my master studies,

he introduced me to the field of system’s modeling and simulation and provided valuable input

during my research internship and my Master’s thesis. Also, I would like to thank my supervisors

Dr. Simon Van Mierlo and Yentl Van Tendeloo for answering my questions, helping me whenever

needed and reviewing my work. Lastly, I would like to thank my family and friends who have

been a great support during my whole study career.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Model-Driven Engineering . 1

1.1.1 Model Transformations . 2

1.1.2 The FTG+PM Formalism . 3

1.1.3 Top-Down DSML Design . 3

1.2 Example-driven Metamodel Development . 3

1.3 Research Agenda . 9

2 Related Work 11

2.1 Overview of Existing Tools . 11

2.2 Analysis . 13

2.2.1 Unconstrained Input . 13

2.2.2 Metamodeling Support . 17

2.2.3 Co-Evolution . 22

2.2.4 Tool Support . 31

iii

2.2.5 Comparison . 34

2.3 Conclusion . 36

3 Theoretical Concepts 38

3.1 Introduction to Moodling . 38

3.2 Elements and Activities . 40

3.2.1 A Common Metamodel . 40

3.2.2 Model Consistency and Conformance . 43

3.2.3 Example Modeling . 47

3.2.4 Instance Modeling . 48

3.3 Co-Evolution . 50

3.3.1 Terminology . 51

3.3.2 Classification of Scenarios . 52

3.3.3 Resolving Issues . 53

3.4 Concrete Syntax Modeling . 54

3.4.1 Visual Concrete Syntaxes . 55

3.4.2 Concrete Syntax in Moodling . 56

3.5 An Agile Moodling Process . 58

4 Implementation 63

4.1 The Modelverse . 63

4.2 Underlying Metamodels . 64

4.2.1 ATG Metamodel . 64

4.2.2 Concrete Syntax Metamodel . 64

4.3 The User Interface . 65

4.3.1 Example Modeling . 66

4.3.2 Instance Modeling . 72

4.4 Co-Evolution . 77

4.5 Process Modeling . 81

iv

5 Evaluation 83

5.1 Research Questions . 83

5.2 Results . 84

5.3 Comparison with Existing Solutions . 85

5.3.1 Unconstrained Input . 86

5.3.2 Metamodeling Support . 87

5.3.3 Co-Evolution . 88

5.3.4 Tool Support . 93

5.3.5 Result . 94

6 Conclusion 98

6.1 Summary and Contributions . 98

6.2 Limitations and Future Work . 99

Bibliography 111

Appendices 112

A Source Code 113

B Sample Process 114

v

List of Figures

1.1 FTG+PM depicting the traditional top-down approach for DSML design 4

1.2 Comparison between traditional waterfall model and adapted waterfall model for

top-down DSML creation . 5

1.3 FTG+PM for the bottom-up, example-driven approach to DSML design 8

2.1 The most basic example model with entities and relations 15

2.2 More advanced example model with annotations 15

2.3 Complex example model with spatial relationships 16

2.4 Resolvable backward evolution test case: A metaclass is renamed 25

2.5 Unresolvable backward evolution test case: An obligatory metaclass is added . . 26

2.6 Resolvable forward evolution test case: A class instance is renamed in all example

models . 27

2.7 Unresolvable forward evolution test case: An obligatory metaclass is added to

the example models . 28

2.8 Summary of strengths and weaknesses of analyzed solutions 35

3.1 Example of two ATGs . 42

3.2 Example of a transformation rule with NAC, LHS and RHS 42

3.3 Overview of the co-evolution problem in Moodling 50

3.4 Example of a local add node operation that can break conformance. 52

3.5 The co-evolution problem can be solved by applying the same change to the

instance model . 55

3.6 Overview of concrete syntax models in Moodling 57

vi

3.7 FTG+PM describing the top-level Moodling process 59

3.8 FTG+PM detailing on the example modeling activity 60

3.9 FTG+PM detailing on the instance modeling activity 62

4.1 Metamodel for the attributed type graph . 65

4.2 Metamodel for the concrete syntax . 66

4.3 Statemachine describing the two UI modes . 67

4.4 State machine describing the UI behavior when in example modeling mode . . . 68

4.5 Screenshot of the tool in example modeling mode with sketches 69

4.6 Screenshot of the tool in example modeling mode after typing 70

4.7 The tool in example modeling mode after connecting and attributing nodes . . . 71

4.8 The tool in instance modeling mode . 72

4.9 State machine describing the UI behavior when in instance modeling mode . . . 73

4.10 Example of the constrained instance modeling mode 75

4.11 The UI informs the user about a failed verification 77

4.12 Screenshot of the scope selection before performing a delete operation on a node 80

4.13 Concrete syntax evolution: sketched primitives are replaced by icons 80

5.1 The instance model prior to retyping a node . 90

5.2 Example models prior to retyping a node . 90

5.3 The instance model after retyping the “Router” element in an example model . . 91

5.4 The instance model after adding a mandatory “Switch” node between the “Router”

and all its connecting nodes . 92

5.5 Summary of strengths and weaknesses of solutions, including our approach . . . 97

vii

List of Tables

2.1 Overview of investigated tools . 13

2.2 Tool support regarding example model input capabilities 18

2.3 Tool support regarding the metamodeling capabilities of each approach 23

2.4 Summary of co-evolution features . 31

2.5 Summary of tool support evaluation . 32

3.1 Classification of example model changes . 53

3.2 Resolving broken instance models by using equivalent changes 54

5.1 Tool support regarding example model input capabilities with our approach for

comparison . 86

5.2 Overview of metamodeling capabilities with our approach for comparison 87

5.3 Summary of co-evolution features with our approach 93

5.4 Summary of tool support evaluation . 95

viii

Chapter 1

Introduction

One of the major challenges in modern systems development is to master the growing com-

plexity of software-intensive systems, where hardware components are tightly integrated with

a software controller. With the increasing amount of requirements that are imposed on such

systems, engineers try to find new ways to make the development process more efficient and

less error-prone. A lot of effort has been spent to reduce the so-called accidental complexity. As

opposed to the essential complexity, which is inherent to a system and cannot be reduced, the

accidental complexity is attributed to inefficient development techniques that are considered a

hindrance to the developer [12]. This chapter describes fundamentals that act as basis for the

thesis and formulates research goals. First, section 1.1 introduces Model-Driven Engineering

as an approach to master the accidental complexity of software development. Then, 1.2 gives

an overview of example-driven modeling language design, where a domain-specific modeling

language is designed based on example models. Lastly, 1.3 presents the research agenda of this

thesis.

1.1 Model-Driven Engineering

The most predominant approach to reduce the accidental complexity of software engineering is

to raise the level of abstraction at which the structure and behavior of a system is described.

Historically, this technique has led to the establishment of high-level programming languages

such as Java or C++ that try to hide irrelevant and unimportant aspects that are not needed

to solve a problem. With Model-Driven Engineering (MDE), another trend has emerged to

counter the growth in complexity of software-intensive systems. MDE allows to raise the level

of abstraction above general-purpose programming languages. Instead of code, models are used

to describe a system’s structure and behavior. The advantages are multifold: the accidental

complexity reduced by increasing expressiveness, formal verification is easier on higher levels of

1

abstractions and various studies suggest a large productivity improvement by using MDE tech-

niques [55]. Beside general-purpose modeling languages such as Petri Nets [89] or Statecharts

[44] that can be used for a broad range of domains, the class of Domain-Specific Modeling Lan-

guages (DSMLs) allows for MDE to be tailored to the particular domain of the system. Because

of that, the structure of a DSMLs has to be defined first by a metamodel. The metamodel spec-

ifies all available concepts in the language and imposes restrictions on how these concepts can

be used [59]. After that, models can be instantiated from the metamodel. Therefore, models

that conform to the metamodel are also called instance models. The creation of a DSML is

often a complex and time-consuming task that requires in-depth knowledge about metamodel-

ing and specialized tools that have a steep learning curve [84]. Typically, it is carried out by

a language engineer that uses input from a domain expert to design an appropriate formalism.

This includes the abstract syntax (the structure of the concepts), the concrete syntax (how the

language concepts are represented) and the semantics (the actual meaning of the concepts) [45].

For the concrete syntax, either textual or graphical notations are established. The abstract

syntax is typically a data structure that describes the semantically relevant language concepts

and their relations. This is usually done by the metamodel of the language. Finally, the seman-

tics of a language can either be defined by mapping the behavior to another known formalism

such as Statecharts or Petri Nets [75], in which case it is called denotational semantics or by

explicitly giving the execution rules. In this case, it is called operational semantics [74].

1.1.1 Model Transformations

Model transformations are used to define the relationship between models and the languages

the models conform to. They have been referred to as “the Heart and Soul of Model-Driven

Software Development” [104] and are considered “undoubtedly the most profound aspect of

model-driven software development” [81]. Model transformations take one or more input models

and generate one or more output models, according to the definition of the transformation.

Such a definition consists out of a set of transformation rules that describe how constructs

of the source language are transformed to constructs of the target language. For defining

such transformation rules, multiple ways exist. For example, they can be specified manually

using an imperative programming language. Here, the code needs access to the model to

query and manipulate it according to the transformation [110]. Another possibility to define

transformation rules make use of graph grammars [57] and declarative pattern languages [108].

Model transformations can be classified into endogenous and exogenous transformations, some-

times also referred to as model rephrasing and translation, respectively [81]. Examples of endoge-

nous transformations include optimizations, model refactorings and normalization. Examples

for exogenous transformations are synthesis, migration and reverse engineering. Furthermore,

model transformation can change models in-place, in which case source and target models are

the same, and out-place, where new models are created.

2

1.1.2 The FTG+PM Formalism

The FTG+PM is a framework to guide developers through the MDE lifecycle, including activi-

ties such as requirements development, DSML design, simulation, analysis and code generation

[71]. It consists of the Formalism Transformation Graph (FTG) and the Process Model (PM).

While the FTG describes the different formalisms and their relationships by means of transfor-

mations, the PM models the control and data flow between the different MDE activities. In

essence, the FTG is a hypergraph with languages as nodes and transformations as edges. The

PM is a subset of the UML 2.0 activity diagram. Hereby, all activities in the PM are typed by

a transformation in the FTG and all model artifacts in the PM conform to a language in the

FTG.

The FTG+PM has been implemented in AToMPM, A Tool for Multi-Paradigm Modeling [109],

which supports executing the defined transformations by using its explicitly modeled rule-based

graph transformation language [72]. Furthermore, it has been successfully applied to a non-

trivial use case from the automotive domain [90]. We use FTG+PM models throughout this

thesis to describe workflows and processes.

1.1.3 Top-Down DSML Design

Within the MDE community, the most commonly used process to develop a DSML from scratch

is executed in a top-down manner [73][107]. It typically starts with gathering and analyzing

requirements from domain experts. These domain experts are engineers that want to use a

DSML to describe a system, but do not necessarily have the expertise to create such a lan-

guage. Therefore, dedicated language engineers define the abstract and concrete syntax and

the semantics based on the input of the domain experts. After the development and testing of

the language is finished, the domain experts verify if it meets their initial requirements. If not,

another iteration of the development cycle can be executed. Figure 1.1 depicts the different

roles and activities that are commonly involved in the top-down DSML creation process. This

process is modeled as an FTG+PM and shows the different activities and artifacts involved in

the described process. Furthermore, we have annotated each activity to signalize if it is executed

by a domain expert or a language engineer.

1.2 Example-driven Metamodel Development

The described DSML design process exhibits flaws that can be attributed to the centralization of

the metamodel construction and to its strict top-down nature. Most noticeably, the metamodel

that describes the abstract syntax is directly derived from the requirements of the domain

experts. However, this approach is counter-intuitive for the domain experts since they may not

be aware of all requirements yet and might therefore fail to state them in a concise and complete

3

D
om

ai
n

ex
pe

rt

La
ng

ua
ge

en
gi

ne
er

Te
xt

ua
lR

eq
ui

re
m

en
ts

Sp
ec

ifi
ca

tio
n

D
efi

ne
R

eq
s

An
al

yz
e

Ab
st

ra
ct

Sy

nt
ax

C

on
cr

et
e

Sy
nt

ax
Se

m
an

tic
s

D
efi

ne
C

on
Sy

n
D

efi
ne

Se
m

D
SM

L

Te
st

C
as

es

D
efi

ne
Te

st
s

C
om

po
se

D
SM

L

D
efi

ne
Ab

sS
yn

Bo
ol

ea
nTe

st

:D
efi

ne
R

eq
s

:A
na

ly
ze

:T
ex

tu
al

R
eq

ui
re

m
en

ts

:S
pe

ci
fic

at
io

n

:D
efi

ne
Ab

sS
yn

:D
efi

ne
C

on
Sy

n

:D
efi

ne
Se

m
:C

on
cr

et
eS

yn
ta

x
:A

bs
tra

ct
Sy

nt
ax

:S
em

an
tic

s

:C
om

po
se

D
SM

L

:T
es

t
:D

SM
L

:D
efi

ne
Te

st
s

:T
es

tC
as

es

[T
ru

e]
[F

al
se

]

FT
G

La
ng

ua
ge

M
an

ua
l t

ra
ns

fo
rm

at
io

n

Au
to

m
at

ic
 tr

an
sf

or
m

at
io

n

PM
M

od
el

 a
rti

fa
ct

M
an

ua
l a

ct
ic

ity

Au
to

m
at

ic
 a

ct
ic

ity

:B
oo

le
an

F
ig

u
re

1
.1

:
F

T
G

+
P

M
d

ep
ic

ti
n

g
th

e
tr

ad
it

io
n

al
to

p
-d

ow
n

ap
p

ro
ac

h
fo

r
D

S
M

L
d

es
ig

n

4

manner. In reality, they often start drafting example models first and then abstract them into

elements and relations of the envisaged DSML to clarify the requirements [67]. Research has

also shown that such informal sketching is a vital aspect in creative problem solving methods

which are often used in early phases of the system development process [35][120][15]. Beaudouin-

Lafon et al. describe pen and paper prototyping as the fastest, cheapest and most widespread

prototyping method for interactive system design [10].

Another problem stems from the strict separation of domain experts and language engineers.

The creation of a DSML inherently requires domain knowledge, but domain experts often do

not have the required competence to design a metamodel for the language [51]. This results

in an expertise gap between the domain experts and the language engineers that introduces

communication problems and might be difficult to overcome [20]. It also shifts a lot of the work

to the language engineer and creates an imbalance in the workload of the involved engineers

[66]. There is currently very little tool support for creating a DSML without being familiar and

experienced with the concepts of metamodeling. This is especially important since MDE tools

are still considered a major hindrance for wide-spread industrial adoption [118][84].

Requirements

Design

Implementation

Verification

Maintenance

(a) Waterfall model for systems engineering

Requirements

Syntax

Semantics

Verification

Maintenance

(b) Waterfall model adapted for DSML design

Figure 1.2: Comparison between traditional waterfall model and adapted waterfall model for

top-down DSML creation

The described approach to design DSMLs bears strong similarities with early approaches for

software development processes and also shares their shortcomings. The iterative, but somewhat

rigid process depicted in figure 1.1 is comparable to the waterfall model, first formally described

5

by Royce [102]. Characteristic to this development process is that each stage must be executed

in its entirely before moving on to the next. Typical stages include requirements analysis, design,

implementation and testing. Figure 1.2 shows how the software development waterfall model

can be adapted for the construction of DSMLs. Similar to the process shown in figure 1.1, it

assumes a linear succession of the individual steps, starting from the requirements. Therefore,

the shortcomings of the waterfall model can also be applied to the currently established top-

down process of DSML creation and can be summarized as:

1. Requirements first: Both the waterfall model and the top-down process depicted in

figure 1.1 assume that all requirements for the software artifact to develop are completely

known beforehand. However, it is nowadays a generally acknowledged fact that often,

requirements are initially incomplete and may be contradictory and inconsistent [96].

2. Linear and rigid: The waterfall model imposes a strict sequence of the individual ac-

tivities and does in its original form not allow for any kind of iterations or incremental

development. It is therefore difficult and expensive to react to changing requirements in

later phases of the development. Also, if different developer roles for the activities are

assumed, the sequential nature of the waterfall model wastes a lot of time, for example

by letting the test engineers idle during the initial requirement engineering phase.

3. Late delivery and feedback: The waterfall model only produces results in the late

phases of the process. Therefore, users and stakeholders can give feedback only once the

product is finished. This may lead to expensive and long re-iterations of the complete

activities.

Altogether, these issues have resulted in the establishment of methodologies that belong to the

class of iterative and incremental development methods [63]. Most prominently, the family of

agile development methods promises to remedy the shortcomings of traditional approaches by

letting the requirements and product iteratively evolve over time [77]. One of the key elements

is the ability to quickly react to changing user requirements by shortening the time it takes to

execute one iteration of the development process. Another element is intensive communication

within the team by regular meetings and regular feedback from the stakeholders of the product

to develop [94]. Over the recent years, it has been discussed how the agile methodology can

be combined with MDE. This combination is commonly referred to as Agile Model-Driven

Engineering and has first been described by Ambler [2][1]. Since then, several concrete processes

have been proposed [78] as well as a multitude of applications [28], with preliminary research and

industrial case studies showing promising results [1][126]. However, these approaches mainly

focus on the agile development of software-intensive systems with general-purpose modeling

languages and not the DSML construction process itself.

A promising approach to overcome the issues of the linear top-down DSML creation process

is the field of example-based metamodel construction: by providing a set of example instance

6

models, it is tried to automatically infer a metamodel to which all these instance models con-

form to. Such a process bears similarities with the idea of Programming by Demonstration

(PbD, sometimes also called Programming By Example, PbE), a technique that appeared in

software development research in the mid 1980s [41][65]. Hereby, the main objective is to make

computer programming more accessible to end-users: if the user knows how to perform a task

on a computer, that should be sufficient to create a program that performs this task. Hence, it

should be unnecessary to learn an actual programming language. By recording what the user

does, the computer ”comes up” with a program that corresponds to the user’s actions. The

main challenge hereby is how to infer the user’s intent from his actions. Since the context and

data may change between executions of the program, it is important to acquire a correct set

of generalizations. Often, the intent can be derived by inspecting and comparing multiple user

recordings or letting the user manually select the right intention from a list of possible candi-

dates [24]. Several uses for PbD have been proposed, most noticeably in the field of robotics

[11] and machine learning [64].

By deriving a modeling language from examples, the principal idea of PbD has been transferred

to the field of DSML design. Figure 1.3 gives a generic FTG+PM for a DSML design process

based on example models. Since the exact process differs between various existing approaches,

we only captured a high-level overview of the process and refer to chapter 2 for an extensive

analysis of how this process is implemented in different tools. Compared to the bottom-up

DSML design process shown in 1.1, no formal requirements engineering phase is preceding all

other activities. Instead, engineers express requirements directly by creating a set of example

models. These example models give an initial idea of how models of the language could look like

and are the equivalent of informal sketches that are typically created during brainstorming and

initial system design phases. These example models are then used to automatically generate the

abstract syntax of the DSML, since they give information about the structure and the visual

representation of the language. Depending on the approach, this metamodel can be exported

to a format that can be imported into a metamodeling environment to obtain a modeling

tool which is tailored to the DSML. Another possibility is a self-contained environment where

example models and instance models are created within the same tool and the abstract syntax is

directly used to constrain the modeling activity. In this case, the metamodel does not have to be

exported. The example model artifacts are input to the modeling phase since the concrete syntax

of the language are implicitly defined by them. Therefore, the modeling environment requires

access to the example models to render models on screen. During modeling, the adequacy

of the generated DSML is verified. This step is similar to the testing activity in 1.1 with

the difference that no formal requirements were defined in the first place. As a result, this

verification step can be as simple as the engineers checking if all required constructs can be

modeled. If this is not the case, the language must be revised by either adapting the example

models or the metamodel. If the example models are changed, the metamodel typically has to

7

:C
re

at
eE

xM
od

el
s

:D
er

iv
eM

et
am

od
el

Ex
M

od
el

s:
 E

xL
an

g

M
et

am
od

el
:

M
M

La
ng

[E
xp

or
t]

[S
el

f-c
on

ta
in

ed
]

:E
xp

or
tM

et
am

od
el

M
et

am
od

el
Ex

p:
M

M
La

ng
Ex

p

M
et

am
od

el
Ex

p:
M

M
La

ng
Ex

p
:M

od
el

in
g

In
st

an
ce

M
od

el
s:

D
SM

L
:V

er
ify

[T
ru

e]
:R

ev
is

eD
SM

L
[F

al
se

]

[B
ac

kw
ar

d
ev

ol
ut

io
n]

[F
or

w
ar

d
ev

ol
ut

io
n]

:C
ha

ng
eE

xM
od

el
s

:C
ha

ng
eM

et
am

od
el

:Im
po

rt
M

et
am

od
el

FT
G

La
ng

ua
ge

M
an

ua
l t

ra
ns

fo
rm

at
io

n

A
ut

om
at

ic
 tr

an
sf

or
m

at
io

n

PM
A

rt
ifa

ct
M

an
ua

l a
ct

ic
ity

A
ut

om
at

ic
 a

ct
ic

ity

Ex
La

ng

C
re
at
eE

xM
od
el
s

M
M

La
ngD
er
iv
eM

et
am

od
el

M
M

La
ng

Ex
p

Ex
po
rtM

et
am

od
el

C
ha
ng
eE

xM
od
el
s

C
ha
ng
eM

et
am

od
el

D
SM

L

M
od
el
in
g

:B
oo

le
an

Im
po
rtM

et
am

od
el B
oo

le
an

Ve
rif
y

R
ev
is
eD

SM
L

:E
vo

lv
eM

od
el

s

Ev
ol
ve
M
od
el
s

F
ig

u
re

1.
3:

F
T

G
+

P
M

fo
r

th
e

b
ot

to
m

-u
p

,
ex

am
p

le
-d

ri
ve

n
ap

p
ro

ac
h

to
D

S
M

L
d

es
ig

n

8

be re-generated. In case the metamodel is changed, both the instance- and example models have

to co-evolve. Note that we assume an automated co-evolution of instance models, although this

depends on the implementation and the changes performed to the metamodel, as some of them

might require manual user intervention. This example-driven design process lessens the burden

of the language engineers which no longer plays a central role during the DSML development

process. Rather than actively carrying out the requirements analysis and the subsequent DSML

elements creation, they can supervise the whole process, define domain concepts, further refine

the metamodel and participate in reviewing the quality of the DSML during the validation and

revision process. Therefore, DSML development becomes more approachable for non-experts

that would be otherwise deterred by the formality and complexity of the top-down language

design approach.

Various names have been proposed and used interchangeably for the top-down metamodel

construction out of example models, among them ”example-driven metamodel development”,

”demonstration-based approach for domain-specific modeling language creation” and ”bottom-

up designing domain-specific modeling languages”. For the remainder of this thesis, we will

generally adhere to ”example-driven DSML design” to describe all approaches where a DSML

is designed by using examples.

1.3 Research Agenda

We believe that the example-driven DSML design process as described in 1.2 does not fully rem-

edy all issues of the top-down DSML design approach and still resembles the waterfall model

as shown in figure 1.2b. In particular, the process is limited in its agility, has a long iteration

loop for integrating new requirements and requires metamodeling expertise due to the fact that

a metamodel is explicitly generated. In chapter 2, we systematically analyze and compare ex-

isting solutions and detail on such limitations. The research goal of this thesis is to investigate

how current limitations in existing example-driven DSML design approaches can be overcome.

Our focus lies on improving the agility and reducing the cognitive load of the process by in-

tegrating it in a single metamodeling environment. Furthermore, we will investigate how the

problem of language evolution can be solved by inferring language constraints on-the-fly rather

than generating an explicit metamodel. Therefore, we can formulate the central research goal as:

Current example-driven DSML design processes focus on the automated gen-

eration of a metamodel as primary description for language structure and

make a strict separation between the language design and usage phases, of-

ten implemented in different environments. This increases the cognitive load

for the user, limits the agility and makes language evolution driven only by

9

manipulating the example models difficult. Is it possible to design an agile

process that is centric to the example models and implement it in a single

environment?

The remainder of this thesis is structured as follows. Chapter 2 gives an overview of the already

conducted research in the field of example-driven DSML design. It presents existing solutions

and analyzes their advantages and disadvantages. This analysis will later help to compare our

proposed solution to the existing ones. Chapter 3 presents the theoretical foundations and the

design of our approach. Chapter 4 gives details about the prototypical implementation of the

previously presented approach in the Modelverse, a multi-paradigm metamodeling environment.

Chapter 5 analyzes our solution with respect to existing tools and shows the novel advancements

and points out limitations. Lastly, chapter 6 concludes the thesis and suggests future work.

10

Chapter 2

Related Work

This chapter presents a literature review of existing approaches and tools that propose an

example-driven DSML creation process. It is a shortened reproduction of our previous work

[48] and is included in this thesis for the sake of completeness. Compared to the original material,

two changes were done to fit in the context of this thesis: chapter 2 was removed, since it only

gives extensive background information about individual challenges in example-driven DSML

design. Relevant parts that improve comprehension and explain key aspects were inserted into

the analysis chapter where needed. Furthermore, the challenge of “Metamodel Generation”

was renamed to “Metamodeling support”, since not all approaches focus on the generation of a

language metamodel. Lastly, the test cases for co-evolution support were extended by breaking

and unresolvable scenarios to allow for a more fine-grained analysis and comparison.

2.1 Overview of Existing Tools

Several authors have recognized the need for more flexible and agile processes in MDE and

identified example-based approaches as a possible alternative to established methods. Proposed

techniques do not only target the metamodel design, but can be applied to other MDE artifacts

as well. One area of research in MDE is concerned with model transformations, that is, the

transformation between one or more source models to one or more target models by following

a set of transformation rules [81]. As a consequence, research has been conducted that investi-

gates methods to determine such transformation rules by example [116][3][4][53]. Other areas

include model refactorings [34][33] and DSML validation [70]. Furthermore, the tool Muddles

[56] extends the idea of automated metamodel inference by adding support for example models

that can be processed by model management programs such as simulators, model-to-model and

model-to-text transformations. This enables engineers to develop additional early confidence

that the envisaged DSML fits its purpose.

11

Beside example-based approaches, there also exist tools that try to implement a more flexible

metamodeling process by mitigating the conformance relationship between instance- and meta-

model. While some of them rely on relaxing this relationship in the early phases of modeling

[49][105][83], others let the metamodel evolve together with the instance models [36][38]. Lastly,

it has been tried to make MDE more suitable for agile development processes by implementing

team collaboration and multi-view features [23][32]. For example, AToMPM is a multi-paradigm

modeling tool which elevates web-based technologies for a multi-user cloud-based architecture

[109]. Other tools which provide development environments running in web browsers are Clooca

[50], WebGME [76] and MDEForge [9]. However, all of these tools concentrate mainly on the

modeling phase and therefore do not fit in the category of sketch-based metamodel construction.

An overview of the tools that focus on the actual DSML creation process is shown in table

2.1. MLCBD1 (Modeling Language Creation By Example) provides a systematic and user-

centered approach for building visual DSMLs. It is capable of inferring a metamodel and static

constraints based on a set of domain example models and automatically generating instance

models from the metamodel to assist the user in exploring the model space. Scribbler2 focuses

on the sketching aspect in the early design phases of model-driven engineering. As such, it

aims to emphasize a collaborative and creative workflow where models can be drawn first as

free-hand sketches and are then transformed to formal models while being independent of a

predefined modeling language. A similar approach has been proposed and implemented in the

FlexiSketch3 tool. Its goal is to better integrate the early sketching and modeling activities

in the overall software engineering process. This is achieved by enabling the user to sketch

instance models without prior definition of a metamodel. Furthermore, a metamodel can be de-

rived semi-automatically from these instance models. The tool was later extended with support

for team collaboration. metaBup4 aims to simplify the DSML construction process and make

it more approachable for engineers without metamodeling expertise. It proposes an interactive,

iterative and example-based approach with automatic modeling environment generation. It lets

the user sketch example models by using informal drawing tools which are then used to infer

the abstract and concrete syntax. Finally, the Model Workbench5 has been used as a platform

to implement a bottom-up metamodel design process based on example models. Early work on

textual example models was extended to support arbitrary example models independent of a

concrete syntax.

1http://hcho7.students.cs.ua.edu
2http://sse-world.de/index.php/forschung/ergebnisse-im-video/scribbler-from-collaborative-

sketching-to-formal-domain-specific
3http://www.ifi.uzh.ch/en/rerg/research/flexiblemodeling/flexisketch.html
4http://jesusjlopezf.github.io/metaBup/index.html
5http://www.neu.uni-bayreuth.de/de/Uni_Bayreuth/Fakultaeten/1_Mathematik_Physik_und_

Informatik/Fachgruppe_Informatik/Angewandte_Informatik_IV/de/research/projects/983_

ModelWorkbench/index.html

12

http://hcho7.students.cs.ua.edu
http://sse-world.de/index.php/forschung/ergebnisse-im-video/scribbler-from-collaborative-sketching-to-formal-domain-specific
http://sse-world.de/index.php/forschung/ergebnisse-im-video/scribbler-from-collaborative-sketching-to-formal-domain-specific
http://www.ifi.uzh.ch/en/rerg/research/flexiblemodeling/flexisketch.html
http://jesusjlopezf.github.io/metaBup/index.html
http://www.neu.uni-bayreuth.de/de/Uni_Bayreuth/Fakultaeten/1_Mathematik_Physik_und_Informatik/Fachgruppe_Informatik/Angewandte_Informatik_IV/de/research/projects/983_ModelWorkbench/index.html
http://www.neu.uni-bayreuth.de/de/Uni_Bayreuth/Fakultaeten/1_Mathematik_Physik_und_Informatik/Fachgruppe_Informatik/Angewandte_Informatik_IV/de/research/projects/983_ModelWorkbench/index.html
http://www.neu.uni-bayreuth.de/de/Uni_Bayreuth/Fakultaeten/1_Mathematik_Physik_und_Informatik/Fachgruppe_Informatik/Angewandte_Informatik_IV/de/research/projects/983_ModelWorkbench/index.html

Name Year Implemented Resources

MLCBD 2012-2013
Yes

(MS Visio plugin)
[17][19][16]

Scribbler 2013
Yes

(Standalone)
[7][8][117]

FlexiSketch 2012-2015
Yes

(Android App)
[121][122][123][124]

metaBup 2012-2017
Yes

(Eclipse plugin)
[67][69][66][51][103][68]

Model Workbench 2013-2014
Yes

(Standalone)
[99][98][101][100]

Table 2.1: Overview of investigated tools

2.2 Analysis

In this chapter, the quality of each solution will be analyzed with respect to individual areas

as identified in our preliminary work on example-driven DSML design [48], namely Uncon-

strained input, Metamodeling support, Co-evolution and Tool support. In order to

establish a common ground for the analysis, concrete test scenarios are developed for every

of the challenges. These scenarios serve as a benchmark framework for each tool and make a

quantitative comparison between them possible. Each following section first introduces a test

scenario that reflects a individual challenge and then investigates if and how it manifests in

the different tools. It should be noted however that, since most tools were not available for

an actual hands-on evaluation, most of the analysis was carried out based on the information

found in the literature.

2.2.1 Unconstrained Input

This section assesses the quality of the input method for example models of each tool. This

both includes what kind of visual building blocks and variables are available to express the

user’s intent and how the tool uses this information to infer a metamodel. Such visual variables

include, but are not limited to the shape, color, textual annotation and spatial relationship

of a symbol [86]. Although rectangular shapes are the most predominantly used notation in

visual languages [95], it can not be anticipated what constructs the user will use for the example

models. Therefore, a good input method provides a wide variety of visual notations and is able

to recognize and differentiate between them.

In the existing tools, input methods can be distinguished between approaches that mimic pen-

and-paper drawing and approaches that use general-purpose sketching tools like Microsoft Visio

13

or yED6. For free-hand drawing, the drawn shapes must be recognized and classified as con-

crete syntax representations of metamodel elements. The automated recognition of hand-drawn

shapes is called sketch recognition and has been researched exhaustively with the applications

being multifold, ranging from the detection of hand-drawn chemical structures [93] to electric

circuit design [30]. In the scope of systems modeling, it has been used for example to recognize

hand-drawn UML shapes [42][13] or user interface design [61]. Generally, sketch recognition

algorithms can be classified into gesture recognition (how the sketch was drawn) and visual

recognition (what the sketch looks like), although combinations of both do exist as well [43].

Gesture recognition requires a shape to be drawn in a particular drawing style to achieve a high

detection rate while visual recognition depends on an accurate geometrical description of the

shape [22]. However, there is broad agreement that sketch recognition only works in domains

where a well-established lexicon of possible shapes exists and that unrestricted recognition (the

recognition of arbitrary shapes without prior definition of a lexicon) is not feasible [25]. This

poses an issue for example-driven DSML design where the goal is to give the user as much

freedom as possible while sketching the example models of the DSML.

In order to limit the amount of test cases needed analyze the input methods, only constructs that

are explicitly supported by any of the tools are used. This includes the three variables shape,

textual annotations and spatial relationships. For each of these variables, one example model

was developed that assesses these variables individually. Since the concrete representation of

such example models will differ between the tools, an external drawing tool not affiliated to any

of the tools was used to present the models in a neutral way.

An example model for the shape variable is shown in figure 2.1. It consists of named entities

representing network devices and connectors as the links between them. No textual annotations

or spatial relationships like intersections or containments are present. Therefore, the tool only

has to provide means to input and recognize different shapes and connections. By adding

annotations to the entities and typing the connectors as shown in figure 2.2, the example model

becomes graphically more complex. The tool has to be able to not only recognize different

shapes, but must also support textual annotations. Furthermore, there are now two different

types of links present: a solid line which denotes an Ethernet connection and a dashed line for

wireless connections. Finally, the last and most complex example model in figure 2.3 adds spatial

information to the sketch. Network devices can now reside in different rooms (containment)

and the router has overlapping circles representing ports. Consequently, the tool must possess

a notion of layers so that shapes can overlap and contain each other.

1. Scribbler allows for unconstrained input by providing a canvas that lets the user freely

draw shapes by hand using a human input device such as a mouse or a digital drawing

tablet. The shapes are then recognized by a sketch recognition engine, given that they

are already registered in the lexicon of available shapes. To register new shapes, Scribbler

6https://www.yworks.com/products/yed

14

https://www.yworks.com/products/yed

Figure 2.1: The most basic example model

with entities and relations

Figure 2.2: More advanced example model

with annotations

provides a recognition training dialog where the user can repeatedly draw the shape of an

element that should be recognized. The recognition process itself is done by computing

the minimal Levenshtein distance between the drawn shape on the canvas and the shapes

registered in the lexicon. This suggests that with Scribbler, it is possible to draw the basic

example model of figure 2.1. However, no evidence could be found that implies support

for more advanced constructs like annotations or spatial relationships as shown in the

figures 2.2 and 2.3, respectively.

2. MLCBD is capable of both sketch recognition of hand-drawn shapes and modeling with

predefined icons. It comes with an authoring tool to register new shapes that should be

recognized later. The sketch recognition itself is based on SUMLOW, a tool for recognizing

UML diagrams sketched on an electronic whiteboard [14]. SUMLOW features both a

multi-stroke recognizer for UML shapes and a text recognizer for annotations of the UML

elements. The multi-stroke recognizer makes use of a database that describes inherent

features of the various UML shapes and how they are typically drawn. It therefore not

only captures the shape itself but also records the strokes that were executed to draw

it. As a result, it can only detect shapes when they are drawn in a specific order (for

example, the Actor shape needs to be drawn with the head as a circle first), but with very

high detection rate. As soon as a UML shape is recognized, it is automatically extended

with empty text fields for the annotations. When the user writes inside the text fields,

a separate text recognition transforms the handwriting in text. MLCBD uses the same

technique as it requires the user to register new shapes first. However, it also defines a

set of predefined shapes that cover commonly used shapes such as circles, rectangles and

arrows. Analogous to SUMLOW, the user has to remember the order of the strokes that

15

Figure 2.3: Complex example model with spatial relationships

are needed to draw a specific shape.

Given the fact that the tool is implemented as a plugin for Microsoft Visio, a commercial

diagram and vector graphics application, the user is not forced to stick to hand-drawn

shapes only, but can also use icons similar to the ones that are present in the test example

models. Therefore, it can be assumed that example models with the complexity of the

model in figure 2.3 can be sketched. However, the tool does not support the actual

detection and processing of spatial relationships.

3. FlexiSketch tries to mimic the traditional pen and paper scribbling by supporting large-

screen touch devices and electronic whiteboards. While also featuring sketch recognition

of shapes in a lexicon, it does not require an explicit learning phase: as soon as a drawn

shape can not be recognized, the user is asked to either manually pick a type from the

lexicon or introduce a new type for the shape. The sketch recognition itself is again based

on a Levensthein distance comparison [121]. Furthermore, shapes can be also be annotated

with text as shown in figure 2.2. However, such annotations are purely visual information

and have no influence on the actual metamodel. Spatial relationships are not supported,

thus making it impossible to input any example models such as the one depicted in figure

2.3.

4. metaBup relies on external general-purpose drawing tools for the sketching process. It

features an importer that can read the file formats of these external tools and transform

them into an internal representation of example models. To map the elements in the sketch

16

to metamodel objects, the importer also requires a legend of shapes that connects every

shape with a type identifier. Therefore, the input is unconstrained but more laborious

due to the fact that external tools need to be used for the sketching process. On the

other hand however, the user is not constrained to one tool since the importer supports

multiple of them, including yED. Such editors typically come with a set of predefined

icons for various domains and also support the import of custom icons. Therefore, it is

possible to sketch example models with the complexity of 2.3. The tool also supports the

detection of spatial relationships and translates them to metamodel constructs such as

compositions and inheritance.

5. The Model Workbench implements a bottom-up DSML creation process for mainly textual

languages. It provides an IDE-like text editor which allows the user to freely enter example

models. Every key stroke triggers an analysis of the tokens, their types and the structure

of the entered text. The result of this analysis is a concrete syntax tree that describes

the structure of the example model. While later work suggests that support for visual

languages has been added [98], the focus still lies on textual languages. As such, the test

example models would have to be translated to a textual representation first. In that

form, both attributes and spatial relationships can be represented, making the Model

Workbench suitable for complex example models such as the one shown in figure 2.3.

The results of the analysis of the unconstrained input are summarized in table 2.2. metaBup

and the Model Workbench support all test cases with their regarding graphical challenges. The

Model Workbench primarily supports textual example models, where constructs like attributes

and hierarchy can easily be expressed. Scribbler and FlexiSketch allow freehand sketching on

a canvas object whereas MLCBD and metaBup make use of general-purpose vector graphics

programs. While freehand sketching might be preferable due to being closer to natural pen-

and-paper doodling, it is inherently limited in its power to express complex visual notations

that go beyond basic shapes such as rectangles, circles and lines [86]. Furthermore, for the

sketch recognition algorithm to work effectively, hand-drawn shapes need to be sufficiently dis-

tinguishable from each other. This restriction is not present when using an icon-based language

of annotated vector graphics as done by for example metaBup.

2.2.2 Metamodeling Support

A metamodel captures the abstract syntax and the static semantics of a DSML and constrains

the structure of the language elements. One of its purposes is to define which models belong

to the language. A model that belongs to a language constrained by the metamodel is said

to conform to the metamodel. Therefore, a key aspect of example-driven DSML design is to

infer conformance rules from a set of example models. Typically, this is done by generating a

metamodel from these example models. Ideally, such a metamodel inference algorithm can use

17

Tool Language type Input
Entities and

relationships

Textual

annotations

Spatial

relationships

Scribber Visual Freehand Yes No No

MLCBD Visual Editor Yes Yes Yes (draw only)

FlexiSketch Visual Freehand Yes No No

metaBup Visual Editor Yes Yes Yes

Model Workbench Textual and visual Text editor Yes Yes Yes (textual)

Table 2.2: Tool support regarding example model input capabilities

a large set of concise and consistent input models. In reality however, the input models might

be incomplete, inconsistent or not reflect all aspects of the language appropriately. Therefore,

the generation algorithm must be able to handle all of these potential issues.

Metamodel inference is also used in areas outside of DSML design. For example, MARS [52] is

a system that tries to recover a lost metamodel from domain models by using a semi-automatic

grammar inference engine. It induces a metamodel by first translating the set of domain models

into a custom model representation language which then is used to translate the domain mod-

els into a context-free grammar. From this grammar, the metamodel is generated. Although

being rather constrained to the specific environment and format of the domain models, it shows

promising results in an experimental study. However, in this approach, the lost metamodel

has already been defined in the past and the set of domain models can therefore be considered

consistent and unambitious.

Beside imposing structural constraints to the language, metamodeling support in the scope of

example-driven DSML design can be defined by the following aspects:

1. Is it possible to perform MDE activities such as code generation, model analysis or simu-

lation to the instance models?

2. If yes, can such activities be performed in the same environment, or must an additional

export step precede?

3. Lastly, can the example models be reused as instance models and be subject to the same

MDE activities as the instance models?

To evaluate how language constraints are generated from the example models, the same test

models that were presented in paragraph 2.2.1 are used. Obviously, the overall complexity of a

generated metamodel (if one is generated in first place) is directly linked to the expressiveness

of the example model: if a tool only supports shapes and links as depicted in example model

2.1, the resulting metamodel will only contain those entities. Another aspect to the analysis

is the support for modeling concepts like inheritance, abstract classes or compositions which

18

have a direct influence on the expressiveness and quality of the metamodel. For example, the

metamodel for figure 2.2 could include an abstract class for the link, from which the two types

”Ethernet” and ”WiFi” are inherited as concrete classes. Finally, the level of automation and

required user input is taken into account as well. The other factors are assessed based on the

information given in the literature.

1. Scribbler requires the user to externally define the metamodel of the DSML within the

Eclipse Modeling Framework (EMF) as an Ecore model [7]. The user then has to manually

map the previously defined sketch elements of the language to the metamodel objects.

After this, the user can sketch instance models that can be exported to the EMF for

further usage. This mapping is bidirectional since Scribbler also supports the import of

EMF models which then get represented as sketches again [8]. Therefore, Scribbler is well

suited for language experts that are able to define the metamodel of the DSML within

EMF but rather like to sketch their models by hand. However, due to the maturity and

wide-spread use of the EMF as a metamodeling framework [106], advanced metamodels

can be built. Furthermore, since all models of Scribbler can be exported to the EMF, all

MDE activities that are supported by this environment can be used.

2. MLCBD supports the semi-automatic inference of the DSML metamodel. Proceeding

from the recognized sketches, it defines an algorithm that incrementally builds the meta-

model with user interaction where necessary [19]: First, the so-called Graph Builder trans-

forms the sketched example models into representation-independent undirected graphs by

using graph transformations. The Concrete Syntax Identifier then traverses the gener-

ated graphs and tries to identify candidates for the concrete syntax of an element. The

candidates need to be reviewed and annotated by the user during this step, thus making

the approach semi-automatic. The annotations help to further specify the nature of the

elements (e.g. is a link bidirectional or unidirectional). After the concrete syntax has

been identified, the Graph Annotator takes the previously made annotations and applies

them to the graph representations of the example models generated in the first step of

the process. It renames the elements from their generic to the concrete syntax names,

changes the graphs to directed graphs if necessary and optimizes the graph structures by

merging nodes with the same names and attributes. The optimized graph structures are

handed over to the actual Metamodel Inference Engine that infers the abstract syntax

and outputs the metamodel of the input models. This is done by first merging the graph

representations into one single graph that represents all aspects of the input models and

then performing a (sub)graph isomorphism test between instances of known metamodel

design patterns and the merged graph. These design patterns are a result of a survey con-

ducted by the same authors [18]. In his PhD thesis, Cho extended the described approach

with model space exploration [17]: After the metamodel is successfully inferred, a set of

models is automatically instantiated from it. The user then plays the role of an oracle

19

and decides if the generated model is valid in the DSML. This information is then fed

back into the Inference Engine to incrementally update and further refine the metamodel.

This approach also helps to identify the current quality of the induced metamodel and

possibly spot mistakes that otherwise would only appear later when the DSML is used in

production. However, the metamodel cannot be accessed or modified by the user and only

exists in the form of an internal graph structure. Once a metamodel and its constraints

have been inferred, the user can use the application to further create instance models

that conform to the metamodel which was described by means of example models. MDE

activities are not supported, since the tool is implemented as a self-contained application

within the drawing and diagram application Visio. Additionally, no evidence was found

that models can be exported to other metamodeling environments.

3. FlexiSketch combines the freehand sketching aspects of Scribbler with the hidden meta-

model construction of MLCBD. Users can draw symbols, links and annotations on a canvas

and are required to provide type information and a name for every shape. For symbols,

the user can choose to either use already registered types or add the symbol as a new

type. Therefore, the set of available metamodel classes typically grows during the sketch-

ing process. For links, the user can select their types from a set of given options such

as unidirectional or bidirectional as well as their visual representation (solid or dashed).

This limits the amount of possible link types and permits symbol overloading. Lastly,

the cardinalities are automatically set and updated when needed. However, the user can

also select a link and set the lower and upper bounds explicitly as long as they do not

violate any other cardinality rules. Finally, to ensure consistency of the sketched model,

a wizard can be used during sketching or when the model is saved to fix issues such as

missing type information for symbols and links. The metamodel is incrementally built

in the background while the user sketches. By locking the metamodel, it can no longer

be updated through any sketching activity. In this mode, the tools essentially becomes a

metamodeling environment where instance models can be drawn the same way as example

models. However, the metamodel generation does not support advanced constructs such

as inheritance, abstract classes or compositions. Since the tool is implemented as a stan-

dalone application, it does not feature any support for MDE activities. Also, it does not

seem to be possible to export model artifacts from the tool. Therefore, no metamodeling

support beyond inferring basic language constraints is supported.

4. metaBup is capable of automatically deriving an explicit metamodel which is transparent

to the user and can be manipulated. Starting from the sketches, an importer generates

a textual fragment that describe the classes, links and hierarchies. This importer first

converts the sketch to a model that conforms to the sketch metamodel of metaBup. It

then uses a model transformation to transform the model into a text fragment. This

process is necessary to stay technology agnostic when different sketching tools like Dia

or yED are used. To effectively support a model transformation from the sketch to the

20

text fragment, metaBup also features a metamodel for the text fragments language: a

text fragment consists of objects with attributes and references with both of them being

able to be annotated. The elements of the sketch metamodel are mapped to the elements

of the fragment metamodel to carry out the model transformation. Particularly, spatial

information about overlapping shapes that is present in the example model gets translated

to textual annotations in the fragment.

After the transformation, the metamodel inference engine iterates through all text frag-

ments and creates a new meta-class for every object found, if it does not exist already.

Similarly, an annotation is created for every reference found in the fragments. The car-

dinalities are set to the respective minimum and maximum numbers as found in the

fragment. The resulting metamodel can then be viewed and edited by the user. To guide

the metamodel inference process, the user can also manually annotate either the sketches

or the text fragments. Such annotations are either domain or design annotations: domain

annotations give the inference engine knowledge about further domain knowledge and re-

sult in OCL constraints attached to the generated metamodel while the design annotations

affect the structure and organization of the metamodel. However, these annotations are

optional and the inference process can be executed from the sketches to the final meta-

model in a completely automatic manner.

Since metaBup supports detection of spatial relationships, a metamodel derived from ex-

ample model 2.3 would contain compositions (i.e. the Router class is composed of multiple

ports). Further supported are inheritance and abstract classes which, in case the example

model importer does not recognize them through their spatial information, can either be

implied at example model level via annotations or applied to the metamodel directly.

Through its integration in the EMF, metaBup features extensive metamodeling support:

since the actual modeling of language instances is performed in the EMF itself, all instance

models can be subject for typical MDE activities without the need to export them first.

Furthermore, example models can be reused as instance models as well by importing them

into the modeling environment.

5. Unlike the other discussed tools, the Model Workbench focuses on example-driven DSML

design where the input models and the generated metamodel are of textual nature. Simi-

lar to abstract syntax trees, the solution proposes the use of a concrete syntax tree (CST)

that is built gradually while the user enters a textual example model. It also provides a

metamodel that describes the structure of such a CST: a base class called ”Cell” serves as

an abstract class for the tokens and containers classes. Both tokens and containers have an

associated ”TypeClass” that determines their type. To effectively support token recogni-

tion, several assumptions are made about the format and the semantics of the tokens. For

example, a whitespace character is assumed to be a delimiter, a list of comma-separated

tokens is an enumeration and braces or indentation are used to set the scope. These tokens

are building blocks for containers which can be statements, complete blocks or expressions.

21

The recognition itself is performed semi-automatic with regular expressions and manual

user interaction. Regular expressions are able to identify single tokens and distinguish

between literals such as integer and floats, but not between different types of tokens such

as keywords, identifiers or references. In these ambiguous cases, user interaction is needed

to determine the type of a specific token and register it in the CST. Once the CST is built,

it can be used to derive the abstract syntax for the DSML as described in a seperate paper

that concentrates on a method to derive a concise metamodel from example models [99].

In contrast to other approaches that focus on sketched input models, the described solu-

tion is independent from the concrete syntax of the example models. Similar to MLCBD

[17], it supports three types of refactorings that are applied to the generated metamodel

to reduce its complexity: Single inheritance, multiple inheritance and enumeration. The

inference process itself only requires a notion of concepts, assignments and attributes that

in principal can come from any previously executed recognition process such as the CST

that was described earlier. The inference is then done in 4 steps: First, for every identi-

fied unique type, a new meta concept is created. Second, for each assignment in the type

bodies, a new attribute is created for the corresponding meta concept. This can be done

in a straight-forward fashion for literals such as strings or integers but is more complex

for references to other meta concepts since the cardinality has to be taken into account.

As a general rule, the lower bound is set to 1 if each instance of the same type contains

such a reference, otherwise 0. The upper bound is set to 1 if only one value is assigned

every time, otherwise to *. In the third step, duplicate attributes are merged. Finally,

the fourth step optimizes the metamodel by introducing inheritance and enumerations.

The metamodel can be accessed and changed by the user and the literature suggests that

structural optimizations in the form of inheritance and abstract classes are supported.

Due to the fact that no literature about the Model Workbench as a metamodeling environ-

ment seems to exist, assessing the support for MDE activities within the environment is

not possible. Although the Model Workbench is advertised as a modeling platform for the

definition and use of modeling languages, no resources could be found that prove support

for model transformations, which serve as the backbone for many MDE activities.

The features and capabilities of each tool regarding the metamodeling capabilities and the

metamodel inference process in particular are summarized in table 2.3. metaBup and the Model

Workbench explicitly derive a metamodel which can be inspected and modified by the user.

The other tools build an implicit metamodel which is then used to constrain further modeling

activities.

2.2.3 Co-Evolution

Software evolution is a subdomain of software engineering that investigates ways to adapt soft-

ware to changing requirements and operating environments as well as the change process itself

22

Tool
Language

Constraints

Advanced

Meta-Constructs
Automation MDE activities

Scribbler
Manual metamodel

definition
None Manual Supported by EMF

MLCBD
Implicit metamodel

generation
None Semi None

FlexiSketch
Implicit metamodel

generation
None Full None

metaBup
Explicit metamodel

generation

Inheritance, abstract classes,

compositions
Full Supported by EMF

Model Workbench
Explicit metamodel

generation
Inheritance, abstract classes Semi Not assessable

Table 2.3: Tool support regarding the metamodeling capabilities of each approach

[80]. Due to the general-purpose nature of most programming languages, only the programs

evolve, while the languages themselves do not. This is contrary to MDE where modeling lan-

guages are often tighly bound to a specific domain. Therefore, both the instance models and

the language itself are subject to frequent changes due to changing requirements or refactorings.

Due to the importance of the topic, the MDE community has conducted intensive research to

find solutions for what is often referred to as the co-evolution of models [46]. In their recent

survey, Hebig et al. give an overview of 31 different approaches that investigate metamodel

co-evolution [47]. Meyers and Vangheluwe present a taxonomy for different evolution scenarios

within MDE and propose a structured, semi-automatic framework for the evolution of modeling

languages [82]. Lastly, Gruschko et al. [40] have classified metamodel changes by their effect

on the conformance relationship. Hereby, changes to metamodels can be either non-breaking,

in which case no instance models break, breaking and resolvable, where instance models break,

but the conformance can be repaired by automated means or breaking and unresolvable, where

instance models breaks and cannot be repaired by automatically. This taxonomy is nowadays

widely used to categorize metamodel changes.

Cho et al. identify the co-evolution of models as one of the key challenges in example-driven

DSML design [20]: Language evolution becomes particularly interesting because only rarely, all

language requirements are met or even known within the first development iteration. Changes to

the language are either induced by adapting the set of example models and then propagating the

changes to the language induction mechanism (which we will call forward evolution) or directly

manipulating the derived metamodel (backward evolution). Both cases carry the substantial

risk of models and metamodel diverging and therefore breaking the conformance relationship

between example models, instance models and the metamodel. Furthermore, a change to one

single example model might affect all other example models as well, making the evolution

23

problem even more of a challenge. For this reason, many solutions identify a need for a (semi-

)automated co-evolution of models.

This section discusses the different approaches to model co-evolution present in the investigated

tools. To assess the model co-evolution capabilities of every tool, we differentiate between the

following two evolution scenarios:

1. Forward evolution: A metamodel is inferred from two example models that describe

different aspects of the same language. After that, one example model is modified so that

the metamodel as well as the other example model need to co-evolve.

2. Backward evolution: A metamodel is inferred from a example model. The metamodel

is then modified by the user so that the example model needs to co-evolve.

To systematically assess the co-evolution capabilities of each tool, test cases for each scenario

were designed. These test scenarios are divided into forward- and backward evolution, but also

evaluate the level of automation and existence of a systematic classification. Therefore, test

cases for both breaking and resolvable and breaking and unresolvabe changes exist for both

directions. Non-breaking changes were not assessed, since they do not break any models and

thus have no significance for the co-evolution problem.

Using the sample language that was already utilized for the models in section 2.2.1, the test

cases for backward evolution are given in figure 2.4 and 2.5, respectively. The resolvable change

renames the metaclass “Router” to “DSL-Router”, effectively evolving the language. As a con-

sequence, neither the example models nor the instance models conform to the new metamodel

anymore and therefore need to evolve as well. The change is resolvable since the same rename

operation can be automatically applied to the models to repair the conformance relationship.

The unresolvable change adds the mandatory metaclass “Switch” to the metamodel and breaks

example- and instance models, since a router element cannot be connected to a PC any longer.

This change is considered as breaking and unresolvable because there exists no unambiguous

method to automatically instantiate and connect the new class in all models. These two sce-

narios can be transferred to forward evolution as well. Figure 2.6 shows how a class instance

is renamed in all example models. Although no classification of changes for example models

seem to exist in the literature, the change is resolvable since the metaclass can be renamed ac-

cordingly in both the metamodel and the instance model in an automated manner. Analogous,

figure 2.7 shows the addition of an obligatory class instance to both example models. As a

result, the metamodel does not reflect the example models anymore. Although automatically

adding the new class to the metamodel might be possible, the instance model has to evolve as

well, making this change unresolvable without manual intervention.

The remainder of this section investigates if and how the different tools support the two co-

evolution scenarios. Since only metaBup, the Model Workbench and Scribbler expose the meta-

24

F
ig

u
re

2.
4:

R
es

ol
va

b
le

b
ac

k
w

ar
d

ev
ol

u
ti

on
te

st
ca

se
:

A
m

et
ac

la
ss

is
re

n
am

ed

25

F
ig

u
re

2.
5:

U
n

re
so

lv
ab

le
b

ac
k
w

ar
d

ev
ol

u
ti

on
te

st
ca

se
:

A
n

ob
li

ga
to

ry
m

et
ac

la
ss

is
ad

d
ed

26

F
ig

u
re

2
.6

:
R

es
o
lv

a
b

le
fo

rw
a
rd

ev
ol

u
ti

on
te

st
ca

se
:

A
cl

as
s

in
st

an
ce

is
re

n
am

ed
in

al
l

ex
am

p
le

m
o
d

el
s

27

F
ig

u
re

2.
7:

U
n

re
so

lv
ab

le
fo

rw
a
rd

ev
ol

u
ti

on
te

st
ca

se
:

A
n

ob
li

ga
to

ry
m

et
ac

la
ss

is
ad

d
ed

to
th

e
ex

am
p
le

m
o
d

el
s

28

model to the user (see section 2.2.2), backward evolution is not applicable to FlexiSketch and

MLCBD.

1. Scribbler supports manual backward evolution since the metamodel needs to be defined

in the Eclipse Modeling Framework by hand and therefore can be changed at any point

by the user. However, the mapping between sketched models and metamodel needs to be

updated as well. Regarding the scenarios depicted in figure 2.4 and 2.5, the user has to

manually retain the conformance relationship by renaming the example model elements

and introducing the new ”Switch” element, respectively. Furthermore, no systematic

classification of evolution scenarios could be found in the literature.

2. MLCBD supports forward evolution by re-iterating the metamodel inference process. In

both scenarios 2.6 and 2.7, after the example models are changed, the metamodel can be

updated by re-generating it. However, no information is given about if and how existing

instance models are co-evolved when the metamodel is re-generated. Furthermore, no

classification of possible evolution scenarios could be found. Lastly, backward evolution

is not supported due to the metamodel being generated implicitly only and therefore not

being exposed to the user.

3. FlexiSketch does not expose a metamodel to the user and therefore only supports for-

ward evolution. The tool mitigates issues during forward evolution by implementing two

different synchronization mechanisms: First, for every example model, a corresponding

metamodel is stored. Two or more metamodels can me merged into a generalized model

as long as only non-breaking changes have to be performed. Merging metamodels with

breaking changes does not seem to be possible. Second, a lock mechanism can be trig-

gered by the user that disallows any modifications to a metamodel. Therefore, instead

of evolving the model, non-conforming parts of an example model will be highlighted.

When considering the resolvable forward evolution scenario 2.6, FlexiSketch maintains

one metamodel for every example model. Therefore, a resolvable change, such as the de-

picted renaming of a class instance automatically evolves the underlying metamodels. The

same holds true for unresolvable changes, such as the one depicted in 2.7. However, no

information is given on how instance models that conform to the generalized metamodel

can be evolved, especially after the lock mechanism is removed and the language evolved

by changing example models.

4. metaBup supports metamodel refactorings of the generated metamodel [67][66] and must

therefore provide a mechanism for backward evolution. The refactoring process is guided

by a visual assistant that provides several predefined metamodel improvement suggestions

to the user, ranging from simple renames to pulling up common features to a common

superclass. These refactorings stem from those found in traditional object-oriented pro-

gramming as exhaustively described by Fowler [31] and Demeyer et al. [27]. The approach

29

follows a taxonomy described by Gruschko et al. [40]: metamodel changes are classified

into non-breaking, breaking and resolvable, and breaking and unresolvable. The solution

supports automatic updating of the imported example model fragments (but not the

sketched example models since they reside in an external drawing tool) if the metamodel

refactoring is either non-breaking or resolvable. For the unresolvable ones, the user is

asked to provide additional information or simply discard fragments that no longer con-

form to the updated metamodel. The solution also allows for forward evolution where

the metamodel is changed by changing the set of example models and re-generating the

metamodel. If an example model is altered in a way that it now includes contradictory

information, the assistant raises a conflict and notifies the user about the issue. If the

conflict is resolvable, it tries to automatically resolve the issue. For instance, changing an

attribute to a string while another object already defines the same attribute as an integer

results in an automatically resolvable issue since all integers can be represented as strings

as well. However, the other way around presents an unresolvable conflict that requires

manual user intervention since not all strings can be represented by integers.

In metaBup, the generated metamodel is used to automatically generate a modeling en-

vironment using Eclipse Sirius. In this environment, the user can instantiate instance

models that conform to the language. However, at this point it is difficult to evolve the

metamodel by changing the example models, since the environment then needs to be re-

generated and instance models need to be migrated manually.

Considering the test cases for backward evolution, a resolvable change to the metamodel

as shown in 2.4 is supported since metamodel refactorings are classified and supported.

However, only the textual example model fragments do evolve, but not the example mod-

els themselves, since they were generated in an external drawing application and only

exist as a collection of image files for metaBup. Unresolvable changes, such as the one

depicted in 2.5 raise an issue and the user is asked to manually repair the example model

fragments.

Forward evolution is supported as long as no metamodeling environment has already been

generated from the metamodel. By providing an updated set of example models, metaBup

can re-generate the metamodel to reflect the changes. During this process, contradicting

example models are detected and issues can be raised, thus requiring user intervention.

Therefore, both 2.6 and 2.7 are supported by re-generating the metamodel. However, if

an instance model has already been created using the old metamodel, it must be manually

migrated to the new metamodel.

5. The Model Workbench supports co-evolution features comparable to metaBup. For for-

ward evolution, resolvable changes such as the rename in figure 2.6 are applied automati-

cally upon metamodel regeneration. For every other changes, the user is asked to resolve

them manually. Backward evolution supports non-breaking changes only. For both sce-

nario 2.4 and 2.5, the tool notifies the user about the broken conformance relationship

30

Tool
Forward

Evolution

Backward

Evolution
Classification

Scribbler No Manual None

MLCBD Manual No None

FlexiSketch Yes No None

metaBup Yes Yes

Non-breaking

Resolvable

Unresolvable

Model Workbench Yes Yes
Non-breaking

Breaking

Table 2.4: Summary of co-evolution features

between the modified metamodel, the example models and the instance model.

Table 2.4 summarizes the co-evolution support of the tools. metaBup and the Model Workbench

feature the most complete implementation and use the commonly found taxonomy of diving the

evolution scenarios in non-breaking, breaking and resolvable and breaking and unresolvable at

least to some extend. In every case, if a change is unresolvable, the user is notified and asked

to resolve it manually.

2.2.4 Tool Support

The quality of a tool is assessed in multiple dimensions: implementation, integration, us-

ability and its collaboration support. The results are shown in table 2.5.

1. Implementation: Every tool was implemented with different frameworks and technolo-

gies, making the results rather diverse. The area of focus of each tool is reflected in

the design and implementation choices. For example, while metaBup emphasizes meta-

modeling and DSML design aspects and therefore is implemented as a plugin to Eclipse,

FlexiSketch focuses on unconstrained sketching and supports touch-based input devices.

2. Integration: Integration with other metamodeling tools is an important factor for the

actual value of a tool when used in the scope of real-world projects. It answers the

question about how the abstract and concrete syntax can be used after they are defined

and considered ready to use. Three possible methods are used in the presented tools:

providing an exporter to external metamodeling frameworks, automatically generating

such a framework or a self-contained environment where seamless DSML definition and

usage is possible. The latter is done by the Model Workbench that provides a unified

environment to define and use a DSML. metaBup is capable to generate a modeling

31

S
c
ri

b
b

le
r

M
L

C
B

D
F

le
x
iS

k
e
tc

h
m

e
ta

B
u

p
M

o
d

e
l

W
o
rk

b
e
n

ch

Im
p

le
m

e
n
ta

ti
o
n

J
av

a
A

p
p

li
ca

ti
on

M
S

V
is

io
p

lu
gi

n
A

n
d

ro
id

A
p

p

J
av

a
A

p
p

li
ca

ti
on

E
M

F
p

lu
gi

n
J
av

a
E

E
A

p
p

li
ca

ti
on

In
te

g
ra

ti
o
n

E
M

F
-

-
E

M
F

m
et

aD
ep

th
S

el
f-

co
n
ta

in
ed

U
sa

b
il
it

y
In

d
u

st
ri

al
u

se
r

st
u
d

y
C

as
e

st
u

d
y

U
se

r
st

u
d

y
U

se
r

st
u

d
y

-

S
c
a
la

b
il
it

y
N

ot
as

se
ss

a
b
le

N
ot

as
se

ss
ab

le
L

im
it

ed
Y

es
N

ot
as

se
ss

ab
le

C
o
ll
a
b

o
ra

ti
o
n

C
li

en
t-

S
er

ve
r

-
C

li
en

t-
S

er
ve

r
-

C
li

en
t-

S
er

ve
r

T
ab

le
2.

5:
S

u
m

m
ar

y
of

to
ol

su
p

p
or

t
ev

al
u

at
io

n

32

environment with the abstract and concrete syntax as defined by the example models.

This is made possible by using EMF’s capabilities to build a custom modeling environment

out of a metamodel. For FlexiSketch, an exporter is planned that generates a MetaEdit+

compatible file for the metamodel. However, no such functionality could be found in the

tool. Scribbler provides an importer and exporter for EMF: Ecore metamodels can be

imported to link elements to shapes and sketched models can be exported to represent

them in EMF. MLCBD does not feature any kind of integration with other metamodeling

tools.

3. Usability: The usability of most tools has been evaluated in user studies with varying

size and scope. Scribbler was made available to industrial users that were asked to use

the tool in their daily work and report about their experiences. It was found to be

generally helpful and valuable with a good recognition rate of the hand-drawn shapes.

MLCBD was not evaluated in a user study. However, a case study was presented [17]

where a concrete DSML for finite state machines and a network diagram language was

developed and the workflow compared with two other metamodeling tools, the Generic

Modeling Environment (GME)7 and the Eclipse Modeling Framework. In summary, it was

found that the DSML development complexity has reduced and, in contrast to GME and

EMF, no metamodeling expertise is required. Language evolution and metamodel analysis

and debug capabilities have been identified as shortcomings of MLCBD. The usability of

FlexiSketch was analyzed in a user study with 17 participants coming from the academic

and industrial context. The vast majority of the users found the tool to be useful and

stated that they would use a polished version of the tool in their daily work to replace

whiteboards and flipcharts. metaBup was analyzed in a study with 11 participants with

varying background. The participants were asked to design a DSML which requirements

were provided as text. The overall usability of the tool was rated as good. Furthermore,

no correlation between metamodeling experience and time needed to develop the language

was found, suggesting that non-experts benefit greatly from the example-based approach.

Finally, the Model Workbench was not assessed in any user or case study. Therefore, no

statements about its usability can be made.

4. Scalability: This criteria is concerned with the adequacy of the tool to handle large

real-world data which goes beyond the scope of a demonstration. In the context of

example-driven DSML design, this means designing a complex language that requires

a large amount example models. Due to the unavailability of most tools, this feature was

assessed on existing user studies, if available.

The user study conducted with the Scribbler tool does not give any information about

the size of the used languages and models. Similar holds true for MLCBD, where two use

cases were presented with a purely demonstrative purpose. The scalability of FlexiSketch

was not explicitly assessed during the user studies as they focused on the usability of the

7http://www.isis.vanderbilt.edu/Projects/gme

33

http://www.isis.vanderbilt.edu/Projects/gme

tool and only feature small-scale examples. Due to the touch-based input method and

the limited screen size of touch devices, it can nonetheless be concluded that FlexiSketch

is mainly suited for quickly sketching high-level models of a language. The user study

of metaBup included a maximum of six example models to describe the language, with

an average of 12 elements and 9 edges per example model. Since the example models

get drawn individually in an external general-purpose graphics vector program and with

EMF, an established metamodeling framework is used, the scalability of metaBup can be

considered suitable for industrial-sized projects. Lastly, the Model Workbench could not

be evaluated with regards to scalability since neither the tool itself or further information

is available nor a user study has been conducted.

5. Collaboration: Multi-user support is a vital aspect in example-driven DSML design

since, typically, the process involves multiple domain experts and language engineers that

actively collaborate together. Scribbler supports multiple users working together on one

sketch model in parallel. One running instance of the tool functions as server to which the

clients connect to. In a multi-user session, mouse movements and events are distributed

to all participants, making collaborative sketching possible. FlexiSketch has been evolved

into FlexiSketch Team [123] which extends the original tool with collaboration features

similar to Scribbler : one tool instance is configured as server to which all clients connect

to. To prevent inconsistent states, a locking mechanism prohibits concurrent modification

of the same element. Additionally, the sketch sharing mechanism can be disabled by the

user to have a private workspace. The Model workbench is implemented as a client-server

architecture and makes use of modern web technologies. A ReST API connects clients to

the server and provides access to the models saved in a database. No further information

about collaboration mechanisms could be found that indicates real team support like

locking and parallel manipulation of the same elements.

2.2.5 Comparison

Figure 2.8 shows the results of the evaluation as a radar chart. It points out the maturity of each

solution in the individual areas Unconstrained Input, Metamodeling Support, Co-Evolution and

Tool Support. For the rating, a point-based system was used, based on the previous analysis.

Section 2.2.1 evaluated the visual expressiveness of the input method. Weak support means

that only conceptually simple (that is, no textual annotations or spatial information) example

models can be expressed with the provided input method whereas advanced support includes

support for visual constructs like spatial relationships. Section 2.2.2 analyzed the metamodel-

ing support of each tool in various dimensions. Weak support signifies only basic support for

metamodeling activities, where for instance models first have to be exported to a different envi-

ronment to make use of MDE activities. On the opposite, good support means that the whole

approach is integrated and build around MDE principles. This includes the reusability of exam-

34

ple models and the equal access of MDE activities such as transformations to all model artifacts.

Section 2.2.3 compared the co-evolution support of the tools. A distinction between forward

evolution backward evolution was made. Furthermore, it was investigated if a classification of

changes exist and how the approaches handle test scenarios that are considered resolvable and

unresolvable. Weak support in this area means that no proper classification exists and the tool

is not capable of handling any test cases while advanced support indicates the presence of a

systematic classification and full co-evolution support among all model artifacts. Lastly, section

2.2.4 analyzed the tools with regard to their usability, scalability and collaboration features.

Weak support in this area implies that only one of these factors were tested or implemented.

In contrast, advanced support means all three areas are covered.

Figure 2.8: Summary of strengths and weaknesses of analyzed solutions

The following findings can be deducted from the comparison:

35

• In all areas, a high diversity between the tools and their support for specific features

exists. This indicates that example-driven DSML design is still in its infancy and no best

practices have been established yet.

• For sketching example models, multiple methods have been implemented, with either

mimicking traditional pen-and-paper sketching on a digital canvas or icon-based editors.

• Two tools explicitly generate a metamodel that can be inspected and manipulated by the

user. The others, albeit allowing to sketch models and implicitly building a metamodel to

constrain the modeling process, do not expose the metamodel to the user. Advanced meta-

modeling support is only present in metaBup, which allows the instantiation of models in

a generated metamodeling environment based on the Eclipse framework and additionally

allows to reuse example models.

• Support for model co-evolution is rather diverse, spawning from no support at all to

intermediate levels. Naturally, a correlation between metamodel generation and evolution

maturity exists: if the metamodel can not be manipulated by the user, backward evolution

becomes impossible. Furthermore, not all solutions perform a systematic classification of

possible evolution scenarios. No solution does support evolving the language by changing

the example models once instance models have been created.

• Mostly being research prototypes, the tool support itself was the only area where no tool

achieved an advanced level. While all approaches were implemented as either plugins or

standalone applications, most of them are unavailable, making a throughout evaluation

difficult.

2.3 Conclusion

This chapter has given an overview of the approach to create a DSML metamodel definition in

a bottom-up way, starting from a set of example models. Furthermore, it investigated existing

solutions by classifying them using several criteria: sketch recognition, metamodeling capabili-

ties, evolution of the DSML and tool support. These criteria were used to analyze and compare

the different solutions in an effort to find open research questions. We conclude the following:

– Full automation for both metamodel inference and co-evolution is not possible due to the

fact that the user’s intention has to be captured and manual intervention is required for

ambiguous scenarios. Further work in this area is not considered conducive.

– Tools either impose language constraints by either explicit or implicit metamodel genera-

tion. The advantages and disadvantages of both approaches have not been systematically

investigated yet, thus permitting a statement about one approach being generally superior

to the other.

36

– Concrete syntax is seldom touched topic, as it is implicitly defined by the example models.

Most solutions force the language designer to specify a single shape for each meta-concept.

Therefore, the mapping between concrete and abstract syntax is mostly manually defined

as a one-to-one relationship. As a consequence, a concrete syntax representation for a

concept is difficult to alter once it has been introduced.

– Support for model co-evolution exists within the scope of metamodel refactorings, but is

mostly basic without structured approaches implemented. No clear distinction between

forward and backward evolution is made. Missing support for automated co-evolution

limits the user’s ability to freely manipulate both example models and the metamodel to

quickly adapt it to changing DSML requirements. Furthermore,

– No solution provides seamless integration of language design and usage. Mostly, a strict

separation between the metamodel construction and the model instantiation environment

exists. This makes it difficult to use the generated metamodel in the early design phases

to acquire knowledge about its usability and adequacy. Also, some solutions rely on

exporting the metamodel to external metamodeling tools and therefore discourage the user

to continue evolution within the example-based framework once such an export has been

performed. In order to implement a holistic agile DSML design process, co-evolution must

consider the complete development chain, from the example models to the metamodeling

environment.

– Tool support was perceived as rather poor since the majority of them are either prototypes

or unavailable. Adoption of the example-driven DSML design approach would benefit from

easy to use, mature and stable tools.

– The usability and added value of bottom-up metamodel construction was only investigated

in small-scale user experiments. Currently, no detailed experience reports at the scope

of large projects exist, suggesting that the approach has not attracted attention in the

industrial context yet.

Further research concerning these issues will help remedy the remaining problems that inhibit

wide-spread acceptance of example-driven DSML design as a method for developing domain-

specific modeling languages.

37

Chapter 3

Theoretical Concepts

In this chapter, the theory of our approach gets explained in detail. First, section 3.1 frames the

chapter by introducing requirements that will serve as goals for our approach. Then, section

3.2 presents individual key aspects of the approach that are used to fulfill one or more of

the previously defined requirements. In particular, it describes how example models can be

elevated to the primary descriptive element of a modeling language by defining a conformance

relationship between instance and example models. Furthermore, it discusses all operations

that can be performed on both example- and instance models by defining a common graph-

like data structure for these model artifacts. Section 3.3 shows how the problem of language

evolution can be solved by performing language changes on the level of example models only.

Section 3.4 elaborates on the role of the concrete syntax and presents an approach to store the

representation of model artifacts independently from the conceptual models, thus improving

the agility of the design and making it possible to evolve the concrete syntax together with the

abstract syntax. Lastly, 3.5 consolidates the previously presented concepts to an agile process

for integrated language design by example.

3.1 Introduction to Moodling

One of the main shortcomings of the existing example-driven DSML design approaches that

were investigated in section 2 is the strict separation of the language design and usage phases.

This separation is not only present on a conceptual level, but also manifests itself in the use of

different tools for each phase. For instance, general-purpose drawing tools are used to sketch

example models, which are then imported in a meta-modeling environment. This separation

impedes language evolution driven by changing the example models, since they reside in a

different environment than the metamodel and the instance model. Other solutions implement

a stand-alone application that build a metamodel during sketching and thereby iteratively

38

constrain the user. However, such solutions rarely implement any metamodeling features such

as model transformations or process modeling, as they focus on the sketching aspect. As a

result, they require exporting the metamodel to metamodeling environments to support the

aforementioned activities. Either way, model artifacts are separated between different tools or

phases, resulting in a disintegrated design process with a high cognitive load. Furthermore,

it makes language evolution complex, since almost always, either the example models or the

instance models diverge from the evolved language and need to be updated manually.

We therefore see the need for an example-driven DSML design process which adopts the agile

principles of incremental and iterative software development. We propose the name Moodling

for our envisaged approach as a blend of words between “Doodling” and “Modeling”. This

emphasizes the aspect of combining a fast and agile language design process with established

metamodeling fundamentals. Since one main aspect of our process is the integration of all avail-

able activities in a single environment, we do not explicitly generate a metamodel and expose

it to the user, as this would have multiple negative implications: first, it would increase the

cognitive load of the whole process, since language design would be possible on the level of

instances (the example models), but also on meta-level (the metamodel). This entails the risk

to confuse the user, especially if they have no experience of metamodeling concepts. Second,

exposing a metamodel to the user increases the number of artifacts that need to be considered

during co-evolution, since language changes could be triggered by either changing the meta-

model or the example models. While existing solutions partially solve this by re-generating the

metamodel in case the example models have changed or co-evolving instance models in case the

metamodel was adapted, both approaches force the user to manually migrate either the instance

models (when a new metamodel was generated) or the example models (when the metamodel

was directly manipulated).

Implicitly generating a metamodel reduces the cognitive load but does not solve the co-evolution

issue: language changes are triggered by adapting the example models, but still requires to co-

evolve the metamodel as well as the instance models. Even more, an implicit metamodel can

be seen as merely an intermediate representation of the example models with the purpose to

impose restrictions on further modeling activities. For these reasons, we propose the use of

example models as first-class entities to describe the DSML throughout the whole process. To

capture the implications of this decision and to frame the theoretical foundations presented

in this chapter, we formulate the following key requirements for Moodling that we believe are

required to eliminate the shortcomings of existing approaches:

R1: Throughout the whole process, the example models are the primary artifact to describe

the language’s abstract and concrete syntax. This is possible since we aim for an integrated

approach where all artifacts reside in the same modeling environment.

R2: As a consequence of R1, language evolution can only be driven by changing the example

models. This includes both the abstract and the concrete syntax.

R3: Example models are full-featured models on their own and, on a conceptual level, do not

39

differ from instance models. In particular, example models can be reused as instance models.

R4: To gain immediate feedback over the adequacy of the language, the feedback loop between

designing and using the language must be as short as possible. This also enables fast reaction

to changing requirements.

R5: To reduce the cognitive load and make DSML design accessible for non-experts, meta-

modeling activities must be hidden from the user whenever possible. This is also reflected in

R1 and R2, since the only exposed artifact are example models.

These requirements will be used as a foundation for the remainder of this chapter to reason

about design decisions and referenced to whenever an introduced concept helps to meet the

respective requirement.

3.2 Elements and Activities

Although the goal is a single, integrated approach to an example-driven DSML design process

that fulfills requirements R1-R5, the process consists of various elements which, combined, will

form the building blocks for our approach. The following subsections subsequently introduce

these individual elements of Moodling before they are combined into an actual process.

3.2.1 A Common Metamodel

One key element of our approach as well as a criterion for requirement R3 is a data structure

that can describe the structure of both the example and instance models. Generally, it can not

anticipated what kind of language the user wants to design. For that reason, the data structure

must be as generic as possible and be able to capture a wide range of model properties. Within

the MDE community, there is general consent that even complex systems can be modeled by

means of graphs, which provide a powerful, yet intuitive approach with a strong mathematical

foundation [79]. In particular, graphs can be manipulated by graph rewriting techniques, which

are a fundamental concept for model transformations [39]. In fact, many of today’s modeling

languages are graph-based in their nature. Examples for such languages include Petri nets,

statecharts, and activity diagrams. It was also noted that many initial sketches that are used

to reason on a new project are intrinsically graph-like [5].

For these reasons, a graph structure was chosen as a common descriptor for all models in the

approach. We believe that a graph is capable of capturing all essential aspects of the language to

design and provides means to formally reason about certain model properties. Besides nodes and

edges, the graph must posses a notion of types, of which nodes (and possibly edges) are instances

of. This relationship is comparable to the relation between objects and classes in object-oriented

programming. Furthermore, nodes (and, again, possibly edges) can have attributes to capture

certain properties of a specific instance. In object-oriented programming, such attributes are

40

commonly described by a name and a type the value of the attribute has to conform to. Graph

structures with types and attributes do exist in the form of so-called attributed type graphs

(ATG). ATGs provide a powerful primitive to model real world entities and their relations and

are a well-researched domain with a strong mathematical foundation [29][97]. We define an

attributed type graph within the context of Moodling as follows:

Definition 1 (Attributed type graph). Let T be a non-empty set of types and L be a set of

labels. We define G = (V,E, T,A) as an attributed type graph (ATG) with node set V ⊆ L×T ,

edge set E ⊆ V × V and a set of attributes A of cardinality | V | with ω-dimensional attribute

vectors ai ∈ A.

We denote nodes (υ1, τ1) ∈ V by υ1 : τ1 and say that the node with label υ1 ∈ L is typed

by τ1 ∈ T . We furthermore denote edges by {υ1 : τ1, υ2 : τ2}. Note that two distinct nodes

υ1 : τ1, υ2 : τ2 ∈ V with υ1 6= υ2 can have τ1 = τ2 (i.e. can have the same type). The ω-

dimensional attribute vectors ai ∈ A are paired with their corresponding nodes υi : τi ∈ V and

represent attribute identifiers of that particular node. For instance, if υi : τi ∈ V represents

a person, then the associated attribute vector ai of dimension ω = 2 could contain two values

with ai1 as ”name” and ai2 as ”gender”. Note that for the remainder of this chapter, we assume

the elements aij of every attribute vector ai, i = 1, ..., |V | to be unique, i.e. @k, l ∈ N | aik = ail .

Both the example and instance models in Moodling will be expressed as attributed type graphs

and therefore do conform to the same metamodel which describes such an ATG. A common

metamodel is possible under the premise that all models reside within the same modeling

environment which holds the ATG metamodel. Note that the definition of an ATG does neither

define a type system nor attributes for edges, which can be emulated by modeling the edge as

a typed and attributed node.

Figure 3.1 shows an example of two ATGs, using the common representation for graphs with

circles as nodes and lines as edges, where the nodes are annotated with their labels, types and

optionally attributes. While the left subfigure describes the structure of a home network from

the same DSML already used in chapter 2, the right subfigure depicts a Causal Block Diagram

(CBD). CBDs are a common formalization for blocks and connections which can be used to

describe the relationship between input- and output signals in physical systems [37]. The CBD

example shows the previously mentioned limitation of our ATG, where edges are neither typed

nor attributed and always unidirectional. For that reason, a directed edge is modeled using a

node of type ”Edge” with source and target attributes.

ATG transformations

Graph transformations are the underlying concept for model transformations. Model transfor-

mations allow, among others, for model manipulation, analysis, execution and code generation.

41

1
Router

2

PC

3

AP

4Tablet

5

User

name
gender

(a) An ATG describing a home network

3

InPort

2

Edge

1

ConstantBlock

4

NegatorBlock

value source
target

(b) An ATG describing a CBD

Figure 3.1: Example of two ATGs

Since all our models are describable by an ATG, we can define all model manipulation oper-

ations using rewriting rules for graphs. Such rules are also called transformation rules [104].

Generally, they consist of a matching graph, commonly referred to as the left-hand side (LHS),

and a replacement graph, called the right-hand side (RHS), which replaces the matching LHS.

Additionally, if a preceding negative application rule (NAC) also matches the graph, the trans-

formation is not executed. Figure 3.2 shows an example of such a rule in the established concrete

syntax. The pink numerical annotations are used to link LHS elements to elements of the RHS.

As long as the LHS is found in the graph, the transformation rule is applied. In this case, every

node typed by ”Router” is connected to a ”PC” node, if such a link does not exist already.

Finding a LHS match in the graph requires to solve the subgraph isomorphism problem, which

is considered to be NP-complete [26]. Therefore, no efficient algorithm for matching an iso-

morphic subgraph exists. State-of-the-art algorithms are capable of handling graphs with up to

a few thousand nodes [125]. However, since the graphs in the presented approach are usually

created by hand, they are unlikely to exceed a size where the performance of subgraph matching

becomes an issue.

1
Router 1

1

2

Router

PC

1

3

2

1 Router

2
PC

1

3

2

Figure 3.2: Example of a transformation rule with NAC, LHS and RHS

42

The LHS, RHS and NAC patterns of a transformation are models of a language which can be

derived automatically from the metamodel the models that are subject to the transformation

conform to. This approach was introduced by Kühne et al. [60] and proposes to Relax, Augment

and Modify (RAMify) the metamodel in order to arrive at a modified version of the original

language which is suitable to model the patterns of transformation rules.

3.2.2 Model Consistency and Conformance

In metamodeling, every model has to conform to another model. Usually, such a conformance

relationship exists between instance models and metamodels, but also between metamodels and

meta-meta-models. For example, the Meta Object Facility (MOF) describes four abstraction

levels M0-M3, whereby M3 is the meta-metamodel which is capable of describing metamodels

and additionally can describe itself. This property is sometimes referred to as metacircularity.

M2 contains metamodels, which are instances of the M3 model. M1 contains instances of M2

models and M0 holds actual real-world data [92].

The definition of the conformance relationship between instance models, metamodels and meta-

metamodels has been extensively covered in the literature [59][58], with recent research going

towards explictly modeling the conformance relationship to increase flexibility [112]. However,

one key aspect of our presented approach is the use of example models as primary description of

the structure of the language. In that sense, it differs from various existing approaches presented

in chapter 2, where a static metamodel is generated from the set of example models. There, the

generated metamodel captures a set of constraints that each instance model has to satisfy in

order to be a valid instance of the metamodel. For UML class diagrams, such well-formedness

constraints include element multiplicities or attribute and association typing. For our approach

however, we decided against explicitly generating a metamodel from the example models for the

following reasons: First, a metamodel would serve as an intermediate proxy element between

instance and example models and therefore violate requirement R1, since the metamodel would

become the primary artifact to describe the language structure. Second, if such a metamodel is

exposed to the user, it becomes possible to perform language evolution on metamodel-level. This

conflicts with requirement R2, which states that language evolution should only be possible by

changing the example models. Lastly, an explicit metamodel increases the amount of artifacts

involved in the process and therefore both increases the cognitive load (R5) and the length of

the feedback loop (R4) since an extra metamodel generation step is required.

In Moodling, all constraints, which together decide about the well-formedness of an instance

model, are inferred directly from the example models. There is hence a need for a definition

of such constraints and for a method to verify the consistency of an instance model against a

set of example models using these constraints. For our approach, we investigated the following

structural language properties which can be constructed from a set of example models described

by ATGs:

43

1. Node typing

2. Type cardinality

3. Attribute typing

4. Attribute cardinality

5. Edge typing

6. Edge cardinality

The constraints derive their origin from the linguistic conformance check between metamodels

and instance models as it can be commonly found in metamodeling tools [113]. They will

be used to define the conformance relationship between an instance model and the example

models, i.e. define a set of rules to decide whether an instance model conforms to example

models. The next paragraphs elaborate on each of these properties and present constraints

that the instance model has to fulfill. Hereby, we assume the existence of an an instance model

Gim = (Vim, Eim, Tim, Aim) and a set of example models Sxm = {Gxm1 , Gxm2 , ..., Gxmn} of

cardinality n ∈ N > 0 with Gxmi = (Vxmi , Exmi , Txmi , Axmi), i = 1, ..., n.

Node Typing

Every element in an instance model must be typed by an element on meta-level. In object-

oriented programming, this corresponds to verifying the type of objects with regard to the

available types. In Moodling, type information is available from the typing of a node. Therefore,

the node typing constraint for an instance model can be defined as follows:

Definition 2 (Completely typed instance model). An instance model Gim is completely typed

by Sxm if

Tim ⊆
n⋃

i=1

Txmi

On other words, for every node in the instance model, there must be at least one node with

the same type in any example model. If that constraint is violated, the instance model does

contain one or more incompletely typed nodes and is therefore invalid.

Type Cardinality

At metamodel-level and using class diagrams, the cardinality of class instances is usually defined

by additional constraints associated with the class, where a lower bound denotes the minimum

number of objects and the upper bound the limit of the maximum objects. A lower bound of

0 implies an optional object that does not have to occur and a ∗ signifies an unlimited number

of possible occurring objects.

For ATGs, we define the node cardinality attribute based on the node typing information:

44

Definition 3 (Type cardinality). Given an ATG G = (V,E, T,A), the cardinality of a type

τ ∈ T is defined as the number of nodes υi : τi ∈ V | τi = τ .

In Moodling, such cardinality information needs to be inferred from the example models. Here,

it is impossible to calculate the intended cardinalities without further meta-information given

by the user. This is because the example models only capture the state of the system to model

at a specific time as opposed to a metamodel which captures all possible states. Especially

the upper multiplicity limit poses an issue since it is impossible to model ∗ and unfeasible to

construct example models that reflect a particularly high cardinality of, for instance, 1000. For

that reason, some existing approaches allow the user to review and manually correct the inferred

cardinalities, while others do not infer such information at all and simply use the most general

cardinality information 0..∗. Since asking the user to provide additional information about the

intended multiplicities conflicts with requirement R5 and setting all multiplicities to 0..∗ does

not infer any information at all, we decided for a compromise where the upper bound is always

unlimited and only the lower bound inferred.

There are two possible ways to infer the lower bound for the type cardinality: either as binary

value with 0 meaning an optional type and 1 a mandatory type or an absolute value which reflects

the minimum type cardinality found for the type in all example models. In our approach, we

decided for only inferring the binary value and therefore deciding if a type is mandatory or

optional. The main reason for this is that essentially, example models are sketched fragments

which might get created during a quick sketching session without systematical analysis and

therefore should be treated with a fuzzy factor whenever possible.

To decide if the lower bound of the type cardinality is 0 (meaning optional) or 1 (mandatory),

we introduce the mandatory property for types:

Definition 4 (Mandatory type). A type τm ∈
⋃n

i=1 Txmi is mandatory if τm ∈
⋂n

i=1 Txmi.

Based on that definition, we can formulate the final type cardinality constraint as follows:

For every mandatory type τm, there must exist at least one node in the instance

model that is typed by τm. Otherwise, the instance model is invalid and does not

conform to the example models.

Attributes

In class diagrams, the name and type of every attribute of a class is defined at meta-level. To

verify the attribute conformance of an instance, it is sufficient to check if the name definition

and the attribute’s value type correspond to the attribute definition found in the metamodel. In

our approach however, attributes only exist as attribute vectors which are associated to nodes.

The vector elements correspond to the attribute name in class diagrams and are unique for

45

every vector. Furthermore, no information about the actual type of the attributes is available,

making an actual type checking of the attributes impossible. Nevertheless, it is still possible to

infer two attribute constraints from the example models: first, every attribute in the instance

model must have a corresponding attribute in any example model. More precisely, we define a

valid instance model attribute value as follows:

Definition 5 (Valid attribute value). An instance model attribute value aij ∈ ai, ai ∈ Aim

associated with its corresponding node υi : τi ∈ Vim is valid if and only if ∃ υx : τi ∈
⋃n

k=1 Vxmk

with an associated attribute vector ax that contains a value axl
with aij = axl

.

Second, an attribute value can be mandatory and therefore must occur in the instance model.

Similar to the mandatory definition for typed nodes (see definition 4), a mandatory property

for attributes is defined as follows:

Definition 6 (Mandatory attribute value). Let every node in
⋃n

i=1 Vxmi, that is typed by the

same type τ ∈
⋃n

i=1 Txmi, be associated with an attribute vector ai ∈
⋃n

i=1Axmi. Furthermore,

let SA a set that contains all those attribute vectors ai. An attribute value aij ∈ ai is mandatory

if and only if it is element of each attribute vector ai ∈ SA.

Based on definitions 5 and 6, we can formulate the final attribute constraints as follows:

Every attribute value of every attribute vector in the instance model must be

valid. Furthermore, for every mandatory attribute value associated with a node

typed by τ , there must exist an attribute vector associated with a node in the

instance model, also typed by τ , containing the same attribute value.

Edges

Edges define the connections between nodes, similar to associations define the connections be-

tween classes in class diagrams. In class diagrams, both ends of an association can have a

multiplicity constraint, which defines the number of objects that may participate in an associ-

ation. In our approach, we have already inferred object multiplicity information in 3.2.2, based

on the number of typed nodes in the example models. Inferring association multiplicities based

on a set of examples has been proven to be difficult, since the user’s intent usually cannot

be guessed [54]. Therefore, many example-driven DSML design approaches allow the user to

review and refine the association multiplicities manually after they have been guessed from the

examples.

Since one of the goals of Moodling is to hide all metamodeling aspects from the end-user,

we decided against trying to infer exact edge multiplicities that would require a manual post-

processing step. Similar to the mandatory type constraint, we set the upper cardinality to

46

infinity and infer the lower bound as either optional or mandatory. First, we define the type of

an edge as follows:

Definition 7 (Edge type). The type of an edge e = {υa : τa, υb : τb} is defined as the 2-set

{τa, τb} .

With this definition, we can define a mandatory edge as:

Definition 8 (Mandatory edge). An edge with type {τa, τb} is mandatory if in every example

model that contains at least one node of type τa and at least one node of type τb, there exists an

edge typed by {τa, τb} for every of these nodes.

Furthermore, we can impose the following constraint on an edge to decide whether its typing

and therefore the edge itself is valid:

Definition 9 (Valid edge). An instance model edge eim = {υa : τa, υb : τb} ∈ Eim is valid if and

only if there exists at least one edge exm = {υc : τc, υd : τd} ∈
⋃n

i=1Exmi with the same type.

Based on the definitions 8 and 9, we can formulate the final edge constraint:

Every edge in the instance model must be valid. Furthermore, for every manda-

tory edge typed by {τa, τb}, if there exist two nodes in the instance model also

typed by τa and τb respectively, there must exist an edge between these two nodes.

3.2.3 Example Modeling

In example-driven DSML design approaches, the first step is always the generation of one or more

example models. The example models do not necessarily need to reflect every aspect of the com-

plete language (which might not even be possible due to missing language requirements or uncer-

tainties), but can focus on singular aspects only. Since example models are ATGs, the outcome

of the example modeling step is always a set of example models Sxm = {Gxm1 , Gxm2 , ..., Gxmn}
of cardinality n ∈ N > 0 with Gxmi = (Vxmi , Exmi , Txmi , Axmi), i = 1, ..., n. Note that our

approach does not impose any kind of restrictions on the technique used to create the example

models. In particular, it does not exclude the use of purely textual example models. How-

ever, we define a set of operations that an environment needs to provide in order to be able to

effectively manipulate example models. The following paragraph elaborates on these operations.

Modeling Operations

The following modeling operations are available to manipulate an example model Gxm =

(Vxm, Exm, Txm, Axm) :

47

1. Add node: Add a node υ : τ with label υ and type τ to Vxm. Hereby, τ is not necessarily

element of T already, i.e. can be a new type.

2. Delete node: Delete a node, identified by its label υ ∈ L, from Vxm.

3. Retype node: Change the typing of an existing node υi : τi to τj . Hereby, τj must be a

new type, i.e. τj /∈
⋃n

i=1 Txmi .

4. Add edge: Add an edge {υa : τa, υb : τb} between the two existing nodes υa : τa ∈ Vxm
and υb : τb ∈ Vxm under the condition that no edge already exists between the two nodes.

5. Delete edge: Delete an existing edge uniquely identified by its two connecting nodes

{υa : τa, υb : τb}.

6. Add attribute: Add an attribute value to the attribute vector ai associated with the

node υi : τi, extending its dimension w by 1.

7. Delete attribute: Delete an existing attribute value aij from the attribute vector ai,

reducing its dimension w by 1.

8. Change attribute: Change an existing attribute value aij ∈ ai to a new value.

9. Delete model: Delete a model Gxmi ∈ Sxm. This includes to deleting all nodes of Vxmi ,

all edges Exmi , all types Txmi and all attributes Axmi .

Note that none of these operations is constrained in any way. Therefore, every operation can

be executed on every example model at any point in time. Furthermore, it is impossible to

create contradicting example models for the following reasons: first, we do not provide a type

system for attributes and edges. It therefore becomes impossible to define contradicting types

for the same element in different example models. Second, the type system for the nodes is

unambiguous, meaning that every node has exactly one type.

Most of the operations alter the structure of the language. As a consequence, the language can

evolve and might require the co-evolution of other example- and instance models. We refer to

section 3.3 for a detailed description of all evolution scenarios.

3.2.4 Instance Modeling

Conceptually, instance modeling does not differ from example modeling since instance models

can be described by the same ATG and therefore the same modeling operations that were

introduced in 3.2.3 can be applied to them as well. However, once the set of example models

Sxm has been created they are used to impose constraints to the instance modeling process to

maintain conformance as defined in 3.2.2. To ensure that no constraints are violated during the

instance modeling phase, the available modeling operations must be constrained, that is, they

48

are only valid if they fulfill certain criteria. The next section introduces the available instance

modeling operations alongside their respective constraints.

Modeling Operations

Given an instance model Gim = (Vim, Eim, Tim, Aim) and a set of example models Sxm =

{Gxm1 , Gxm2 , ..., Gxmn} of cardinality n ∈ N > 0 with Gxmi = (Vxmi , Exmi , Txmi , Axmi), i =

1, ..., n, we define the following constrained operations for an instance model:

1. Add node: Add a node υ : τ with label υ and type τ . This operation is only valid if

τ ∈
⋃n

i=1 Txmi , i.e. there exists a node in any example model which is also typed by τ .

2. Delete node: Delete a node, identified by its label υ ∈ L from Vim. Only valid if the

type is not mandatory.

3. Retype node: Change the type of an existing node υi : τi ∈ Vim to τj . This operation is

only valid if τj ∈
⋃n

i=1 Txmi .

4. Add edge: Add an edge {υa : τa, υb : τb} between the two existing nodes υa : τa ∈ Vim
and υb : τb ∈ Vim under the condition that no edge already exists between the two nodes.

For this operation to be valid, there must exist an edge between two nodes typed by τa

and τb respectively in any example model.

5. Delete edge: Delete an existing edge uniquely identified by its two connecting nodes

{υa : τa, υb : τb}. Only valid if the edge is not mandatory.

6. Add attribute: Add an attribute key to the attribute vector aij associated with the

node υi : τi, extending its dimension w by 1. Only valid if in any example model, there

exists a node, also typed by τi, which is associated with an attribute akl with akl = aij .

7. Delete attribute: Delete an existing attribute key aij from the attribute vector aij ,

reducing its dimension w by 1. Only valid if the attribute is not mandatory.

8. Change attribute: Change an attribute value aij of an associated node υi : τi ∈ Vim to

a new value. This is only valid if the new attribute value is valid.

9. Delete model: Delete the instance model Gim.

In accordance to requirement R2, it is impossible to change the structure of the language during

instance modeling as only instance models can be manipulated. For that reason, none of the

operations requires any kind of evolution handling.

49

3.3 Co-Evolution

As already described in section 2.2.3, language evolution is a frequently occurring scenario where

the definition of the DSML is altered to reflect changing requirements. It is of particular interest

in Moodling, which focuses on the incremental and agile definition of a DSML by example.

Therefore, the language is likely to be subject to frequent changes. Since no metamodel is

exposed to the user, all language evolution is induced by adapting the example models to

accommodate for the new language requirements. In accordance to section 2.2.3, we will refer

to this as forward evolution.

MATG

Sxm

R

MMM

Sim

R
R

′Sxm

R

SSim

identify

∈ ∈∈ ∈∈ ∈ ∈∈

R*

R*
T

change

′ , ...,Mex1
Mexn

, ...,Mex1
Mexn

, ...,Min1
Minm , ...,Min1

Mink

⊆ S ′Sim

R

evolve

′ , ..., ′Min1
Mink

∈∈

Figure 3.3: Overview of the co-evolution problem in Moodling

Figure 3.3 gives an overview of co-evolution in our approach. It shows a set of example models

Sxm and a set of instance models Sim. Both of these are composed of a number of models,

whereby all models in both sets conform to the ATG metamodel MATG. This conformance

relationship is denoted as R. Furthermore, there exists a conformance relationship R∗ between

every instance model and the set of example models, as described in 3.2.2. If the language

described by Sxm requires adaptations, these changes are carried out successively on the example

models, resulting in a changed set of example models Sxm
′. Such a change can be described

by the model transformation T , which transforms an example model in Sxm to a different

example model in Sxm
′. After that transformation took place, the instance models of Sim do

not necessarily conform to Sex
′ anymore, since the change could have violated one or more

constraints. As a consequence, the instance models need to evolve together with the language

50

definition provided by the set of example models. Since not necessarily all instance models

need to evolve, a subset of instance models SSim first needs to be identified. Then, every

instance model in SSim needs to be evolved to arrive at a set of instance models that conform

to the changed example models. Therefore, the main goal of co-evolution in Moodling is to

maintain the conformance relationship between the example and the instance models as defined

in 3.2.2 when the example models change. To achieve this, section 3.3.1 gives an overview of

the terminology which is used to classify example model changes and introduces the notion of

scope for every change. Then, section 3.3.2 classifies example model changes by their effects on

the conformance relationship. Lastly, section 3.3.3 explains how all conformance issues in the

approach can be resolved automatically.

3.3.1 Terminology

Moodling allows changes that alter the structure of the language only on the level of example

models. This however introduces an overhead when the structure of a language should be

changed as a whole. For instance, retyping a node in the whole language requires editing

every example model and manually retyping each candiate node. Depending on the amount

of example models, this can be an arduous process, especially when compared to approaches

that expose a metamodel (where such a change must only performed once at meta-level). To

avoid this and provide a method to change all example models at once, the example modeling

operations introduced in 3.2.3 can be extended with a notion of scope:

– The scope of a change is global if it is performed on all example models simultaneously.

– The scope of a change is local if it is performed on one example model only.

A global operation can be seen as a purely convenient method to avoid performing the same

change manually on all example models. Therefore, every global change conceptually equals to

performing it locally on every example model in an iterative manner. Furthermore, example

modeling operations can have different effects regarding the conformance relationship between

instance and example models. A prominent classification was introduced by Gruschko et al.

[40]. Here, the authors differentiate between non-breaking, breaking and resolvable and breaking

and unresolvable changes. Non-breaking changes do not break instance models, whereas break-

ing changes can either be automatically resolved (resolvable) or require manual intervention

(unresolvable). However, this classification is inadequate for our approach, since the potential

to break instance models does not only depend on the change itself, but also on the immediate

state of the example models. For instance, a global add node operation is a change that always

makes the type of the added node mandatory. Performing the same change locally on only one

example model can, but does not inevitably make a type mandatory. Figure 3.4 illustrates this:

two example models define the connection of a node representing a personal computer (PC)

51

with a router and an access point (AP). Since the PC type is present in both example models,

it is mandatory. When now a local add node operation with type “Router” is performed on the

second example model, the type becomes mandatory as well. When the node is deleted again

in only one example model, the mandatory constraint is removed again.

1
PC

2
Router

1
PC

2
AP

Ex 2Ex 1

(a) Two minimal example models

1
PC

2
Router

1
PC

2
AP

Ex 2Ex 1

3

Router

(b) After local add of node 3 with type ”Router”,

the type becomes mandatory

Figure 3.4: Example of a local add node operation that can break conformance.

Furthermore, it should be noted that the invalidation of an instance model by an example model

change also depends on the instance model itself: If, in the previous example, an instance model

already has a node typed by “Router”, it is not invalidated when the type becomes mandatory.

Therefore, a universal classification of evolution scenarios without considering the actual state

of the models is not helpful.

3.3.2 Classification of Scenarios

As pointed out in 3.3.1, every change at least carries the potential to break instance models,

disregarding the scope of the change. Additionally, the question whether a change invalidates

an instance model depends on the state of the example models as well as the instance model

itself. Therefore, we do not classify the change operations by their potential to break instance

models, but by their effects on the conformance relationship definition. Table 3.1 shows this

classification. For every example model operation, its effect and the affected part of the con-

formance relationship as defined in 3.2.2 are shown. For instance, deleting a node can make

the type of the node unavailable, potentially leaving nodes in the instance models untyped.

Deleting a whole example model potentially affects every part of the conformance relationship,

as it involves deleting all nodes, edges and attributes. In fact, an actual implementation could

iteratively use the three operations “delete node”, “delete edge” and “delete attribute” to delete

a complete model.

52

Change operation Potential effect Affected constraint

Add node Make type mandatory Type cardinality

Delete node Makes type invalid Node typing

Retype node Makes type invalid Node typing

Add edge Makes edge mandatory Edge

Delete edge Makes edge invalid Edge

Add attribute Makes attribute mandatory Attribute

Delete attribute Makes attribute invalid Attribute

Change attribute Makes attribute invalid Attribute

Delete model

Makes type invalid

Makes edge invalid

Makes attribute invalid

Node typing

Edge

Attribute

Table 3.1: Classification of example model changes

Of particular significance are changes that normally would be considered unresolvable when

performed on meta-level, such as adding obligatory elements or restricting metaproperties [21].

In our approach, these correspond to globally adding nodes, edges and attributes, since they

make the element obligatory and therefore need to occur in every instance model. One possibility

to handle these scenarios is to classify them as unresolvable as well and ask the user to manually

repair the conformance relationship by adding the obligatory elements to each instance model.

However, the user has already given hints on how new elements should be included in the model

by adding them to the example models. Therefore, it is possible to apply the same operation

pattern on the instance models as well, making the changes automatically resolvable.

3.3.3 Resolving Issues

Once a change has been performed, the goal is to repair broken instance models. This is done in

two steps: first, it is required to check if an instance model is broken. Second, if this is the case,

the conformance relationship has to be repaired. Checking the validity of an instance model

is possible by checking each of the conformance rules defined in 3.2.2. A naive method could

first perform the change and then verify the complete conformance relationship. However, the

classification also gives hints about which part of the conformance relationship is affected by

which change. Therefore, it is possible and more efficient to only check the affected constraint

for each instance model after a change. For instance, if an attribute has been deleted in an

example model, it is sufficient to check if this change completely removes the attribute from

the set of example models. If this is the case, the attribute becomes invalid. Therefore, every

instance model with this attribute is broken.

In the next step, broken instance models need to be repaired. One method for doing this is to

53

inform users about the broken instance model and require them to resolve the issue manually

by performing the necessary operations on the affected instance models. This treats all changes

as unresolvable. However, to lower the cognitive load and aid the user, this process should

be automated as much as possible. For every example model change, there is an equivalent

instance model operation defined in 3.2.4. Together with the property that instance models

do not conceptually differ from example models (and always conform to the same metamodel),

broken instance models can be repaired fully automated by applying the same transformation

that is used to alter the example model to the broken instance model. Table 3.2 extends the

classification of example model changes by listing how a broken instance model can be repaired

by applying the same operation to it.

Change operation Potential effect Resolve issue by

Add node Make type mandatory Add node with mandatory type (if

not exist yet)

Delete node Makes type invalid Delete nodes with invalid type

Retype node Makes type invalid Retype nodes with invalid type

Add edge Makes edge mandatory Add edge between nodes

Delete edge Makes edge invalid Delete edge between nodes

Add attribute Makes attribute mandatory Add attribute to node

Delete attribute Makes attribute invalid Delete attribute from node

Change attribute Makes attribute invalid Change attribute of node

Delete model

Makes type invalid

Makes edge invalid

Makes attribute invalid

Delete node

Delete edge

Delete attribute

Table 3.2: Resolving broken instance models by using equivalent changes

Using this straight-forward scheme, it is possible to resolve all occurring issues automatically.

Therefore, all instance models can be kept valid when the language changes. Figure 3.5 shows

this concept based on the introductory example of a changing example model: by applying the

same transformation T that was used to change the example model, the conformance relation-

ship R∗ between the instance- and the example model can be repaired. Since issues are resolved

automatically and instance models modified without explicit user interaction, an actual imple-

mentation could point out the consequences of an example model change prior to applying it

to raise the user’s awareness of co-evolution taking place.

3.4 Concrete Syntax Modeling

In example-driven DSML design, the concrete syntax is usually defined together with the ex-

ample models. Most already existing approaches presented in chapter 2 provide some kind of

54

MATG

Sxm

R

MMM

Sim

R
R

′Sxm

R

SSim

identify

T

∈ ∈∈ ∈∈ ∈ ∈∈

R*

R*
T

change

′ , ...,Mex1
Mexn

, ...,Mex1
Mexn

, ...,Min1
Minm , ...,Min1

Mink

⊆ S ′Sim

R

evolve

′ , ..., ′Min1
Mink

∈∈

Figure 3.5: The co-evolution problem can be solved by applying the same change to the instance model

visual sketching interface where first, the concrete syntax of elements is defined. After that,

these elements are enriched with type information, thereby establishing a link between abstract

and concrete syntax. In our approach, we have so far only considered the abstract syntax of the

language and deliberately refrained from imposing restrictions on how exactly example models

are defined. However, one of the main goals of example-driven DSML design is to make use of

the informal diagram sketching phase that typically happens during early system design and

brainstorming and take such sketches as prescription of the abstract, but also concrete syntax

of a modeling language. Therefore, a complete solution for DSML design must also take the

concrete syntax into account, as formulated in requirement R2. This chapter explains the role

of the concrete syntax in Moodling and argues that, just like the structure of the language itself,

must be considered in the language evolution process. Section 3.4.1 first reflects on the role of

visual concrete syntaxes in domain-specific languages in general. Then, section 3.4.2 describes

how concrete syntax is embedded in our Moodling approach and how concrete syntax evolution

is supported.

3.4.1 Visual Concrete Syntaxes

Visual languages consist of graphical symbols that together form the vocabulary of the visual

language. Symbols from the vocabulary can be combined to sentences that form diagrams [87].

In modeling language design, visual notations are often neglected, especially when compared to

the effort that is spent on defining the abstract syntax and semantics of a modeling language.

55

This is largely due to the lack of methods to measure the cognitive effectiveness and quality of

visual notations with respect to a specific domain [85]. Hereby, the cognitive effectiveness defines

how fast, accurate and easily a user can extract information from a visual symbol [62]. Often,

language designers (that rarely have experience in graphic design) use notations that resemble

established notations without questioning their cognitive effectiveness, leading to subpar results.

To overcome this issue, Moody has distilled a set of principles that help to design cognitively

effective visual notations [86]. One of these principles is the semantic transparency : symbols

should not only be different from each other, but also be visually linked to their meaning (for

example a stickman to denote an actor in a UML use case diagram). A symbol which fulfills

this requirement is called semantically immediate. If the symbol however has no relation to its

meaning, it is called semantically opaque. Lastly, a semantically perverse symbol is a symbol

that is adverse to its meaning, that is, a person that is not used to the notation would infer a

different meaning.

Another principle is the perceptual discriminability, which is defined as how easy and accurate a

user can discriminate between different symbols. This is largely influenced by the visual distance

between the symbols. The greater this distance is, the faster and more accurately they can be

recognized [119]. Moody argues that the shape should be the primary basis for discriminating

between symbols, as the shape of an object is the main variable by which humans identify

objects in the real world [86]. On the other side, he deems a differentiation between symbols of

different types based solely on text and its typographic characteristics such as bold or italic as

inefficient.

3.4.2 Concrete Syntax in Moodling

Overview

In contrast to traditional metamodeling tools, where the concrete syntax must be defined explic-

itly through e.g. icon languages [109], the concrete syntax in example-driven DSML design is

usually given implicitly through the visual representations of the objects in the example models.

In existing tools, two different methods have been used to define these example models: they

are either sketched on some kind of digital canvas and processed by sketch recognition algo-

rithms to identify individual symbols or the tool provides means to read image files generated

with external drawing programs. Free-hand drawing tends to be faster since it is closer to the

traditional pen-and-paper or whiteboard sketching, which is widely used to express ideas and

discuss designs [35]. However, free-hand sketching and the accompanying sketch recognition

algorithms almost always limit the user to the use of basic shapes with little visual detail. As a

consequence, both the perceptual discriminability as well as the semantic transparency is likely

to be reduced significantly. These problems can solved by using a general-purpose diagram edi-

tor such as Visio or yEd. They typically come with a rich set of predefined symbols for various

56

domains and allow for more detailed, pixel-precise drawing, which in turn makes it possible

to design symbols with high perceptual discriminability and semantic transparency. However,

using external visual editors introduces a disruption in the language design workflow as the

user has to work with multiple tools. Furthermore, it requires the modeling environment to

import and store the visual symbols used by the editor and provide a method to render them to

screen. Lastly, it hinders the evolution of the concrete syntax from the modeling environment

as the concrete syntax can only be manipulated by the diagram editor. When multiple example

models are present, concrete syntax changes to a symbol must typically be executed manually

on every example model. While in initial language design stages, the speed benefit resulting

from free-hand sketching is of great advantage, we believe that the concrete syntax must be

able to evolve together with the language’s structure without switching between different tools.

A common scenario that supports this argument is a user quickly sketching some symbols and

annotating them with type information. Only later, when the language has evolved to a usable

state, the user wants to replace the initial sketches with symbols that are cognitively more

effective. Thus, the concrete syntax must be adaptable for new and changing requirements in a

similar way the abstract syntax is.

Concrete Syntax Models

Back­end Front­end

MATG

mex mCS

MCS

MMM

MCS

min

MATG

min mex mCS

UI

edit constrain render

type

type

Figure 3.6: Overview of concrete syntax models in Moodling

Figure 3.6 gives an overview of an approach that enables concrete syntax evolution: the back-

end, which must be a modeling environment with a notion of metamodels and conformance,

stores both the instance- and example models as models of the ATG metamodel MATG. Addi-

tionally, it stores concrete syntax models, which conform to a concrete syntax metamodel MCS .

Therefore, all models reside in the same environment. The front-end retrieves these models

from the back-end and uses the concrete syntax model to render an ATG model. A concrete

syntax model holds information about the visual representation of a type of the ATG, i.e. how

a type is rendered on the user interface. Such information can be stored in a plethora of ways,

57

for example an encoded image file or a collection of lines elements as a set of start and end

positions. The user interface has to implement the corresponding methods to parse the model

information and perform the necessary draw operations to render a node. Thus, the front-end

must hold a copy of the concrete syntax metamodel MCS . To establish a link between ATG

models and concrete syntax models, the type information of a node is used as a unique identi-

fier: for every type, there must be exactly one concrete syntax model. Therefore, a one-to-one

relationship between a type and a concrete syntax model exists. For evolving concrete syntax

models, the front-end implementation must provide a functionality to change the concrete syn-

tax for a given type. A possible solution could be a concrete syntax editor, which is capable of

retrieving, parsing, editing and storing the concrete syntax model. In case the concrete syntax

model just describes image files, such an editor could be as simple as a small application which

takes the image file and a type identifier and uploads a model constructed out of this data.

3.5 An Agile Moodling Process

In this section, we present an integrated and agile process to design domain-specific modeling

languages. The process is agile in the sense that it is iterative and has a short feedback loop

between design and usage. This allows the user to rapidly react to changing or new requirements.

Furthermore, it is integrated as it considers all artifacts as models in the same environment that

can evolve together as the language requirements change.

Figure 3.7 gives a high-level overview of the complete Moodling FTG+PM, which combines the

activities and formalisms that were previously presented. Similar to the example-driven design

process of existing tools (shown in figure 1.3), no initial requirements engineering activity has

to be performed. Requirements are expressed directly by creating one or more example models.

The example modeling activity yields example models, typed by an ATG, and concrete syntax

models. Simultaneously, it also consumes the example models, since the types can be reused

among different example models. Thereafter, instance models can be created by the instance

modeling activity. This activity takes both the example models and concrete syntax models

to provide a restricted environment for instance modeling, similar to how a metamodel would

impose constraints on the instance modeling phase. During modeling, the engineer verifies the

adequacy of the language. Again, since no formal requirements were defined, this verification

step can be as simple as answering the question whether all aspects of the system to model can be

expressed. If this is not the case, the language has to be revised by editing the example models

and possibly the corresponding concrete syntax models. During this activity, all instance models

are automatically evolved together with the changing example models. After the example

models were changed accordingly, it is possible to immediately go back to instance modeling

and see the results of the changes. Therefore, the feedback loop between language design and

the actual usage is shorter when compared to approaches that explicitly generate a metamodel

58

ExampleModels: ATG

:ExampleModeling

:InstanceModeling

ATGConcrete
Syntax :ConcreteSyntax

FTG
Language

Manual transformation

Automatic transformation

PM Model artifact

Manual acticity

Automatic acticity

InstanceModels: ATG

:Verify
:Boolean

:ReviseDSML [False][True]

Boolean

ExampleModelingInstanceModeling

Verify
ReviseDSML

Figure 3.7: FTG+PM describing the top-level Moodling process

59

:NewExampleModel [New]

ExampleModel: ATG:LoadExampleModel

[Open existing]

:Sketch

:Group

:Annotate

:Type:ConcreteSyntax

:Connect

[Continue][End]

ATG

Concrete
Syntax

LoadExampleModel,
NewExampleModel

Type

Connect,
Annotate

FTG
Language

Manual transformation

Automatic transformation

PM Model artifact

Manual acticity

Automatic acticity

SketchLang

Sketch,
Group

:SketchLang

Figure 3.8: FTG+PM detailing on the example modeling activity

as an intermediate step. Therefore, we see requirement R4 as fulfilled. Since the example

models are used to constrain the instance modeling phase as well as to evolve the language,

requirements R1 and R2 are reflected in the process as well. In particular, since the example

modeling phase does not only yield example models, but also concrete syntax models, which

are manipulable as well, the concrete syntax can be evolved together with the abstract syntax.

Furthermore, no metamodeling expertise beyond a basic understanding of the model structure

and the constraints imposed by the example models is required to execute this process, which

fulfills R5. Lastly, example models do not differ from instance models on a conceptual level,

since both are typed by the same ATG metamodel. In fact, every example model can be used

as an instance model by simply creating a copy and editing it during the instance modeling

phase. Therefore, the process also reflects requirement R3.

Figure 3.8 details the example modeling activity. An example model can either be loaded (if it

60

exists) or a new one can be created. Both cases yield a model typed by the ATG metamodel.

After that, a succession of operations are carried out repetitively to express language constructs

in the example model: first, the sketching activity allows to create objects completely uncon-

strained, without the need to name or even structure them. Although the process does not

specify how exactly this activity has to be implemented, it typically manifests itself as some

sort of sketching functionality, where primitives can be drawn on a digital canvas. Therefore,

the aforementioned objects can be visual primitives such as lines, rectangles and circles. The

sketch activity yields a sketch, which is typed by a sketch language. After a set of objects have

been sketched, they need to be structured to mark affinity between them. For instance, a set of

primitives can represent one single element of the language. This is done during the grouping

activity and is a necessary step to signify which objects belong to the same class. Grouped

objects can be typed, that is, extended with information about the class they are instances of.

The typing activity creates a new concrete syntax model by capturing the objects of the grouped

sketch and persisting the information. By typing a group, a new node with the correspond-

ing type information is created in the underlying model. After that, nodes can be connected

or annotated. Connecting two nodes instantiates a new edge between them, while annotating

creates a new attribute. Finally, the process can be repeated to iteratively build the example

model. Note that during example modeling, neither the sketching nor the grouping activity are

metamodeling activities and therefore do not modify the underlying ATG model. This can also

be seen in the process model, since both activities do not produce the example model. On the

other hand, typing, connecting and annotating objects are activities that directly modify the

example model in-place.

Similarly, 3.9 shows an FTG+PM for the instance modeling activity of 3.7. Again, instance

models can either be created from scratch or loaded if they exist already. Both activities

produce an instance model that is typed by the ATG metamodel. Additionally, they also load

the example models which have been previously defined during the example modeling activity.

After an instance model has been loaded, multiple options are available. If the model is empty,

instantiating a node is the only activity that can be performed. If it already contains nodes, it

is also possible to instantiate edges and attribute nodes. All of these actions are executed in

three steps: first, the user performs a manual add activity, which is followed by an automated

verification step. It ensures that the corresponding operation is valid by querying the example

models and searching for support for this operation. For nodes, this equals to searching for

a node of the same type in any example model. For edges, any example model must contain

an edge between the two types associated with the nodes to connect. Lastly, the attributing

activity is verified by searching for an example model node with the same type and attribute.

Only after the verification is complete, the corresponding element is instantiated in the instance

model. Therefore, every activity in the instance modeling process is constrained. Furthermore

and in contrast to the example modeling phase, all modeling activities in this process directly

manipulate the ATG model.

61

:N
ew

In
st

an
ce

M
od

el

[N
ew

]

In
st

an
ce

M
od

el
: A

TG

:L
oa

dI
ns

ta
nc

eM
od

el

[O
pe

n
ex

is
tin

g]

:A
dd

N
od

e

AT
G

Lo
ad

In
st

an
ce

M
od

el
,

N
ew

In
st

an
ce

M
od

el

FT
G

La
ng

ua
ge

M
an

ua
l t

ra
ns

fo
rm

at
io

n

Au
to

m
at

ic
 tr

an
sf

or
m

at
io

n

PM
M

od
el

 a
rti

fa
ct

M
an

ua
l a

ct
ic

ity

Au
to

m
at

ic
 a

ct
ic

ity

Ex
am

pl
eM

od
el

s:
 A

TG

[E
m

pt
y]

[E
ls

e]

[A
dd

 n
od

e]

[E
ls

e]

:V
er

ify
N

od
e

N
od

e:
 A

TG

:A
dd

Ed
ge

Bo
ol

ea
n

[A
dd

 e
dg

e]

:A
dd

At
tri

bu
te

:V
er

ify
Ed

ge

N
od

e:
 A

TG

:V
er

ify
At

tri
bu

te

:B
oo

le
an

:In
st

an
tia

te
N

od
e

[E
ls

e]

[O
K]

:In
st

an
tia

te
Ed

ge

:In
st

an
tia

te
At

tri
bu

te

[O
K]

:B
oo

le
an

[O
K]

[E
ls

e]

:B
oo

le
an

At
tri

bu
te

: A
TG

Ed
ge

: A
TG

[E
ls

e]

Ta
rg

et
N

od
e:

 A
TG

So
ur

ce
N

od
e:

 A
TG

[E
nd

]
[C

on
tin

ue
]

Ve
rif

yN
od

e,

Ve
rif

yE
dg

e,

Ve
rif

yA
ttr

ib
ut

e

In
st

an
tia

te
N

od
e,

In

st
an

tia
te

Ed
ge

,
In

st
an

tia
te

At
tri

bu
te

Ad
dN

od
e,

Ad

dE
dg

e,

Ad
dA

ttr
ib

ut
e

[E
ls

e]

[A
dd

 a
ttr

ib
ut

e]

[E
ls

e]

F
ig

u
re

3
.9

:
F

T
G

+
P

M
d

et
ai

li
n

g
on

th
e

in
st

an
ce

m
o
d

el
in

g
a
ct

iv
it

y

62

Chapter 4

Implementation

This chapter presents a prototypical implementation of the theoretical concepts and the process

that are described in chapter 3. First, section 4.1 presents the Modelverse as the underlying

modeling framework for the implementation. Section 4.2 describes the ATG and concrete syntax

metamodels. Section 4.3 elaborates on the concrete user interface which supports the Moodling

process. In particular, it shows how sketches are subsequently transformed into example models

and constrain instance modeling. Section 4.4 explains the implementation of the evolution

transformations which ensure instance model conformance at every point in the process.

4.1 The Modelverse

The Modelverse1 is a meta-modeling framework and model repository with support for Multi-

Paradigm Modeling (MPM) [88][115]. In MPM, the goal is to ”explicitly model all relevant

aspects of the system using the most appropriate formalism(s), at the right level(s) of abstrac-

tion, while explicitly modelling the process”[114]. Therefore, the Modelverse supports language

engineering through meta-modeling, model operations through model transformations and pro-

cess modeling through process models. Hereby, every artifact is treated as a model itself. This

includes metamodels, model operations and processes.

Model operations can be expressed by either using an imperative, explicitly modeled action

language or declarative rules similar to the ones already presented in section 3.2.1. Model

transformation rules are best used when it is easy to provide a mapping from constructs of the

source language to constructs in the target language. In Moodling, retyping of a node could

be expressed through a simple transformation rule which matches nodes of the old type and

replaces them with nodes of the new type. On the other hand, using the action language is

1https://msdl.uantwerpen.be/documentation/modelverse

63

https://msdl.uantwerpen.be/documentation/modelverse

beneficial for operations where proven algorithms exist. For example, a reachability analysis of

a Petri net can be much easier expressed using the imperative action language.

The Modelverse is accessible through an Application Programming Interface (API) which allows

for CRUD operations, conformance checking and model and process execution [111]. Currently,

a Python wrapper exists which wraps all these operations for developing applications that

communicate with the Modelverse. For Moodling, we chose the Modelverse as underlying meta-

modeling framework since it provides a comprehensive environment for all modeling-related

activities and does impose very little constraints on the developer. Furthermore, we chose

Python as the implementation language since the only available API wrapper at the moment is

written in Python.

4.2 Underlying Metamodels

With the simple class diagram formalism, the Modelverse provides a self-conforming meta-

language for defining custom metamodels. For Moodling, two metamodels are required: one

for the ATG and one for the concrete syntax models. Both are modeled with the class diagram

formalism and explained in the subsequent sections.

4.2.1 ATG Metamodel

Figure 4.1 shows the metamodel for the ATG and therefore the structure of every instance and

example model. Every model consists of a set of nodes, has a name identifier “name” and a

boolean value “is example” to signify the role of the model. Nodes can be connected by edges,

have an identifier “ID” and a type identifier “typeID”. Hereby, the “ID” corresponds to the label

in the ATG and the “typeID” to the type of the node. Nodes can be connected to attributes

with the NodeAttribute association. Contrary to the ATG definition, attributes are a tuple of

key and value, whereby the key corresponds to the elements of the attribute vector from the

ATG.

4.2.2 Concrete Syntax Metamodel

Figure 4.2 show the metamodel for the concrete syntax models. Every model stores the visual

representation of a type from the ATG as an Icon. The “typeID” attribute of the Icon class

links the concrete syntax model to its corresponding type. An additional boolean attribute

“is primitive” indicates whether the Icon is an actual image file or a group of geometric prim-

itives. This shows the flexibility of the concrete syntax modeling approach, where an Icon can

either be a group of sketched primitives or an image. An image file is stored in the class Image

as a base64-encoded string attribute together with its scale factor. Groups of primitives are

64

Node

ID: Integer

typeID: String

Edge

Attribute

key: String

value: String

NodeAttribute

1

*

ATG Metamodel

1

*

Model

name: String

is_example: Bool

*

*

Figure 4.1: Metamodel for the attributed type graph

stored in the class PrimitiveGroup, which is associated with a set of Primitive classes. Hereby,

a Primitive can either be a Line, Rectangle or an Ellipse. Every of these primitives store their

position and shape size as attributes relative to the position of the Icon class itself.

4.3 The User Interface

The user interface (UI) of the implementation uses the Qt framework for displaying widgets

and interacting with the user. The main factors that contributed to this choice are its maturity

and wide-spread use, its extensive documentation, its rich set of predefined widgets and the

availability of a Python wrapper. In particular, Qt provides a framework for displaying 2D

graphical items, called the Graphics View Framework2. This framework forms the center of

the UI, which consists of a canvas for displaying and manipulating models as well as sketching

example model elements and a set of accompanying widgets to display attributes, available

types and to give textual feedback. The reactive behavior of the UI is implemented using

the Qt Statemachine Framework3, which seamlessly integrates with the event system of Qt.

The concepts and notations for the statemachines are based on Harel Statecharts [44] and the

semantics on SCXML [6]. State changes are triggered by selecting different tools from the

toolbar of the UI and enable or disable certain features such as dragging or selecting items.

The UI can be started in two different modes: Example modeling and instance modeling. Both

2http://doc.qt.io/qt-5/graphicsview.html
3http://doc.qt.io/qt-5/statemachine-api.html

65

http://doc.qt.io/qt-5/graphicsview.html
http://doc.qt.io/qt-5/statemachine-api.html

Icon

typeID: String

is_primitive: Bool

Image

data: String

scale: Float

PrimitiveGroup

Line

startX: Integer

startY: Integer

endX: Integer

endY: Integer

Rectangle

x: Int

y: Int

width: Int

width: Int

Ellipse

startX: Int

startY: Int

endX: Int

endX: Int

Primitive
*

1

CS Metamodel

Figure 4.2: Metamodel for the concrete syntax

modes support the respective model manipulation operations shown in the theoretical concepts

chapter 3. Additionally, an optional argument can be specified to open an existing model. If

this argument is not present, a new, empty model is created. Figure 4.3 shows the top level

behavior of the UI as a statemachine. While the example modeling state can be entered at any

point in time, there must be at least one example model for the instance modeling state. By

allowing the user to switch between the two modes, the iteration time becomes very short and

new language constructs can be introduced at example model level at any point in time.

The following subsections elaborate on the two modes the user interface can operate in and give

concrete examples based on the network DSML that has already been used in 2.

4.3.1 Example Modeling

In example modeling mode, the goal is to provide the user with a graphical interface to create and

manipulate example models with minimal restrictions. Hereby, all example model operations

66

sm: Top Level

Initial

Example
modeling

Instance
modeling

Instance modeling
[num_ex_models > 0]

Exit

Example
modeling

Return

Return

CRUD model

CRUD model

Figure 4.3: Statemachine describing the two UI modes

from 3.2.3 are implemented as model transformations in the Modelverse. As described in 3.3,

many of operations can be either executed locally on the currently opened example model or

globally on all example models and have the potential to invalidate instance models. Section 4.4

gives a more throughout explanation on how co-evolution is implemented. Concerning the UI,

figure 4.4 shows a state chart that models the behavior of the example modeling mode. When an

example model is opened, it is possible to freely sketch using the provided primitives. Primitives

can be selected and grouped together. These groups can then be typed and annotated. Lastly,

nodes can be connected via edges. The following paragraphs describe each of these states in

more detail.

Sketching

Sketching example models is a vital aspect and one of the main reasons for example-based

DSML design. Therefore, many already existing approaches try to mimic the pen-and-paper

drawing process for their model creation phase. As shown in chapter 2, a plethora of different

solutions were investigated for the sketching aspect, ranging from a simple drawing program to

electric whiteboards with automated sketch recognition for hand-drawn shapes.

For our implementation, we provide a basic sketching canvas with support for graphical prim-

itives such as lines, rectangles and ellipses. Most modern drawing applications offer a much

richer set of graphical elements as well as the possibility to customize them with properties

such as color and thickness. However, as already mentioned in 3.4.1, the shape of a symbol is

the most fundamental visual variable for its perceptual discriminability. Therefore, we believe

67

sm
: E

xa
m

pl
e

M
od

el
in

g

In
iti
al

N
ew

 e
xa

m
pl

e
m

od
el

,
O

pe
n

ex
am

pl
e

m
od

el
R

et
ur

n

R
ec
ta
ng

le
Li
ne

El
lip
se

Ad
d

re
ct

an
gl

e
Ad

d
lin

e
Ad

d
el

lip
se

Li
ne

 m
od

e
El

lip
se

 m
od

e

Li
ne

 m
od

e

R
ec

ta
ng

le
 m

od
e

R
ec

ta
ng

le
 m

od
e

Ad
d

El
lip

se

sm
: S

ke
tc

hi
ng

Se
le

ct
 m

od
e

G
ro

up

[n
um

_s
el

ec
te

d
>

0]

Sk
et

ch
 m

od
e

Se
le
ct

Ty
pe

 g
ro

up

[g
ro

up
_s

el
ec

te
d]

Se
t t

yp
e

C
on

ne
ct

C
on

ne
ct

m

od
e

C
on

ne
ct

 n
od

es

[n
od

es
_s

el
ec

te
d]

D
el

et
e

Ty
pe

ex
it

/ r
ep

la
ce

_g
ro

up
_b

y_
no

de

Se
t a

ttr
ib

ut
e

A
ttr
ib
ut
e

At
tri

bu
te

 n
od

e
[n

od
e_

se
le

ct
ed

]

F
ig

u
re

4
.4

:
S

ta
te

m
a
ch

in
e

d
es

cr
ib

in
g

th
e

U
I

b
eh

av
io

r
w

h
en

in
ex

am
p

le
m

o
d

el
in

g
m

o
d

e

68

Figure 4.5: Screenshot of the tool in example modeling mode with sketches

that the basic primitives provided by our implementation suffice for sketching initial example

models.

Figure 4.5 shows the example modeling UI with a set of primitives that eventually will form the

nodes of the graph model. During sketching, the UI behaves like a general-purpose drawing tool,

which means that no sketching activity modifies the underlying model. This enables the user

to freely express ideas and concepts without being constrained by any meta-modeling aspects.

Primitives can be selected, deleted and moved on the canvas.

Grouping and Typing

At one point, individual primitives need to be consolidated to groups. Again, this grouping

is a purely graphical operation and does not modify the example model. One purpose of that

activity is that grouped primitives behave like one unit. Therefore, moving and deleting a group

affects all members of it simultaneously. Grouping primitives signalizes the user’s awareness of

type information and is a necessary prerequisite for subsequent modeling operations: once a set

of primitives is grouped, it can be typed. By typing a group, the group is transformed to an

actual ATG node. This activity includes the user to provide a type string, instantiating a new

node in the underlying example model and capturing the concrete syntax of the group. Hereby,

69

Figure 4.6: Screenshot of the tool in example modeling mode after typing

the type can either be a new type (that is, no other node in any example model already has

this type), or an already existing type. In case the type already exists, the operation overwrites

the concrete syntax of the type with the newly sketched group. This makes concrete syntax

evolution for already existing types possible, as it effectively replaces the representation of the

affected type in all models. Figure 4.6 shows the user interface after grouping and typing the

sketches. Since this step adds a new type to the set of example models, the list of available

types is updated accordingly. Furthermore, the sketches are replaced by the corresponding

concrete syntax models which have been captured during the typing process and scaled to fit a

fixed-width bounding rectangle that represents a node.

Edges and Attributes

Once groups have been typed and thereby been elevated to actual nodes in the model, they can

be connected with edges and extended with attributes. Both operations directly manipulate

the underlying model and are available as local or global change. Figure 4.7 shows the user

interface after adding edges and attributes to the nodes.

70

Figure 4.7: The tool in example modeling mode after connecting and attributing nodes

71

4.3.2 Instance Modeling

In instance modeling mode, the tool provides a constrained environment for creating instance

models. Since all constraints are evaluated directly from the example models, the behavior of

the UI directly depends on them. In this section, we first give a general overview of the UI

in instance modeling mode and then elaborate on how the conformance relationship of 3.2.2 is

implemented in our tool.

Overview

Figure 4.8: The tool in instance modeling mode

Figure 4.8 shows a screenshot of the UI with a loaded instance model. The list on the right is

populated with the existing node types from all example models. By double-clicking on an item

in this list, a new node of the respective type is instantiated in the model and its concrete syntax

rendered on the canvas by fetching the concrete syntax model from the Modelverse and calling

the appropriate Qt drawing functions such as addLine or addRectangle. The toolbar provides

a set of manipulation methods for the user. During instance modeling, these methods are

essentially selecting objects on the canvas and connecting them with edges. All other activities

such as deleting objects or attributing nodes are triggered via keyboard shortcuts.

72

sm: Instance Modeling

Initial

New model,
open existing Return

sm: Editing

InitAdd node Select
Select mode

Delete
[(node_selected or
edge_selected) and
is_valid]

Change attribute
[is_valid]

Attribute

Edit attribute
[node_selected]

Delete attribute
[is_valid]

Connect
Connect mode

Connect nodes
[nodes_selected and is_valid]

Figure 4.9: State machine describing the UI behavior when in instance modeling mode

73

Figure 4.9 depicts the UI behavior when in instance modeling mode as a statemachine. All

operations described in 3.2.4 are supported with their respective constraints: in essence, nodes

with the types from the example models can be instantiated, connected and attributed. This

is reflected in the three states Connect, Select and Attribute in the statemachine. Furthermore,

the constraints for certain operations are represented as transition guards. For instance, con-

necting nodes is a only valid if a connection between the same types exists in any example

model. Because of the constraints, the UI behaves much more like a traditional meta-modeling

environment. As a consequence, it is not possible to sketch on the canvas and introduce new

types or previously non-existing edges or attributes.

Implementation of the Conformance Relationship

During instance modeling, all constraints are evaluated on-the-fly from the example models.

For that, a wrapper around the Modelverse API was developed that provides a set of ATG-

related methods. For instance, it implements a method to check if an edge is valid between two

types by iterating through all example models and checking if such an any of them has an edge

between the two types. If this is not the case, the operation is invalid and not executed. In 4.1,

an implementation of the method is edge supported is shown. This method is called prior to

adding an edge to an instance model, takes two types as parameters and returns a boolean that

signifies if an edge between the two types is supported. For each example model, the method

retrieves all nodes with the corresponding types and checks if there exists an association between

them. If this is the case in any example model, the edge is valid.

1 def is_edge_supported(from_type , to_type):

2 for m in all_example_models ():

3 nodes_from = all_nodes_with_type(m, from_type)

4 nodes_to = all_nodes_with_type(m, to_type)

5 for nf in nodes_from:

6 for nt in nodes_to:

7 assocs = get_associations_between(m, nf, nt)

8 if assocs:

9 # somewhere in an example model , there is such an

association

10 return True

11 return False

Listing 4.1: Method to check if an edge between two types is valid

The method uses two helper functions: all nodes with type, to get all nodes with a specific type

from an ATG model and get edges between, which returns all edges between two nodes. Their

implementations are shown in 4.2 and 4.3, respectively. Both of them use methods provided

by the Modelverse API to directly access the underlying models. Note that get edges between

74

reads all outgoing and incoming edges from both nodes and returns the intersection of them,

since associations in the Modelverse Simple Class Diagram formalism are always directed.

1 def all_nodes_with_type(model , node_type):

2 all_nodes = mv.all_instances(model , "Node")

3 ret = [node for node in all_nodes if mv.read_attrs(model , node)["typeID"]

== node_type]

4 return ret

Listing 4.2: Helper method to return all nodes with a specific type in a model

1 def get_edges_between(model , node1 , node2):

2 edges_n1 = mv.read_outgoing(model , node1 , "Edge")

3 edges_n1.update(mv.read_incoming(model , node1 , "Edge"))

4 edges_n2 = mv.read_outgoing(model , node2 , "Edge")

5 edges_n2.update(mv.read_incoming(model , node2 , "Edge"))

6 return list(edges_n1.intersection(edges_n2))

Listing 4.3: Helper method to return all edges between two nodes

Figure 4.10 shows an example where the UI informs the user that an edge between two types is

not valid since no example model defines an edge between the elements “Router” and “Tablet”.

Figure 4.10: Example of the constrained instance modeling mode

However, constraining the modeling operations is not sufficient to ensure conformance, as the

75

following example illustrates: Consider a set of example models which together define a manda-

tory type τi. Then, any instance model which does not contain at least one node that is typed

by τi is invalid. In our approach, it is possible to construct such an instance model by creating

a new instance model, which will be initially empty. If a node with τi is never added by the

user, the instance model remains invalid.

The same holds true for mandatory edges and attributes. Therefore, it is necessary to verify

these constraints independent of any instance modeling operation (in fact, it is even impossible

to do so). Multiple implementations of such a verification method are possible: the instance

model could be verified continuously, before the model is closed (and the modeling phase exited)

or manually upon user request. Since the verification of the instance model is a potentially costly

operation, we decided against a continuous verification. Only validating the instance model once

before the modeling phase is exited disallows frequent feedback for the user during modeling.

Therefore, we implemented a verification upon user request, since it allows the user to verify

the currently opened instance model at any point in time. It can be triggered by an option in

the menu of the UI. The verification code itself is implemented as a dedicated class and accesses

model properties by using the wrapper. Listing 4.4 shows the code of the mandatory type

verification method. First, all mandatory types are computed by iterating through all available

types defined by the example models and checking for the mandatory attribute. Then, for all

mandatory types, it is checked if the instance model to verify contains at least one node of this

type. If not, the verification failed and the instance model is invalid. Note that this verification

has no consequences further than informing the user about the invalidity of the instance model.

As a consequence, it is still possible to exit the modeling phase and store an invalid instance

model in the environment. One strategy to counter this issue is to perform the verification

automatically prior to exiting the phase.

1 def verify_mandatory_types(self):

2 # get list of all mandatory types

3 type_mandatory = {t:False for t in self._available_types}

4 for node_type ,_ in type_mandatory.iteritems ():

5 type_mandatory[node_type] = commons.is_type_mandatory(node_type)

6 mandatory_types = [node_type for node_type , mandatory in

type_mandatory.iteritems () if mandatory]

7

8 # check if mandatory types are in instance model

9 for mtype in mandatory_types:

10 all_of_type = commons.all_nodes_with_type(self._instance_model , mtype)

11 if not all_of_type:

12 return {"OK": False , "error": "Mandatory type {} not

found".format(mtype)}

13

14 return {"OK":True , "error":None}

Listing 4.4: Code to verify mandatory type attribute for an instance model

76

Figure 4.11: The UI informs the user about a failed verification

In the front-end, the user triggers the verification process manually by selecting it from a menu.

While the algorithm runs, the UI is disabled and the result of the individual verification steps

are printed on the screen. If the verification fails, the user is notified about the exact error. In

figure 4.11, such a notification is shown for an instance model that does not contain a mandatory

type.

4.4 Co-Evolution

When in example modeling mode, all model operations requires a successive evolution step to

check and, if required, repair the conformance relationship between the changing example model

and the instance models. In our tool, all example model operations are implemented using model

transformations. Since all models conform to the same ATG metamodel, these operations can

be executed on instance models as well. This property is used to automatically repair the

conformance relationship if required: whenever an example model operation is executed, it

is checked if it invalidated an instance model. Then, the same operation is executed on the

instance model to repair the conformance relationship.

The Modelverse allows implementing model transformations as declarative graph transformation

rules or with an imperative action language. In our implementation, we investigated both

approaches and found them to be too static for our needs. Most transformations require one

or more arguments that are determined only at run-time, often from user input (for example,

77

retyping a node requires the new type as parameter). While passing data to the action language

is possible in theory, it introduces a significant overhead by requiring a communication model

as statechart. Therefore, we decided to use a manual transformation which is provided by the

Modelverse as a method to modify a model in-place using a callback function. This callback

function defines the transformation as a series of Modelverse API calls and therefore can use

all concepts of the underlying programming language.

Listing 4.5 shows the evolution code for adding a node to an example model. The class exposes

two methods to the caller, namely “execute” and “repair”. The execute method adds a node

with a specified type to a model. If the scope of the operation is local, the corresponding

manual model transformation is called with the model and the callback method as parameter.

The callback function then instantiates a new node in the given model and assigns the type

attribute to it. If the scope is global, the method iterates through all example models and calls

itself recursively on each model with local scope. The repair method, which is typically called

after the operation was executed on an example model, checks if the operation made the node

type mandatory. If this is the case, a node with that type is added to all instance models which

do not already have such a node. This is done by executing the model transformation again,

but this time on the instance model.

1 from wrappers import modelverse as mv

2 import commons

3

4 class NodeAdd(object):

5 def __init__(self):

6 self._node_type = ""

7

8 def execute(self , model , node_type , local):

9 self._node_type = node_type

10 if local:

11 mv.transformation_execute_MANUAL("graph_ops/add_node",

12 {"gm":model}, {"gm":model}, callback=self._callback)

13 else:

14 for m in commons.all_example_models ():

15 self.execute(m, node_type , True)

16

17 def _callback(self , model):

18 node_id = mv.instantiate(model , "gm/Node")

19 mv.attr_assign(model , node_id , "typeID", self._node_type)

20

21 def repair(self):

22 if commons.is_type_mandatory(self._node_type):

23 for im in commons.all_instance_models ():

24 if not commons.all_nodes_with_type(im, self._node_type):

25 self.execute(im, self._node_type , local=True)

78

Listing 4.5: Evolution handler for adding a node

Line 22 checks if the operation made the type mandatory by calling “is type mandatory”. This

method is implemented in a dedicated module called “commons”, which functions as a layer

between the Modelverse API and the model manipulation code. Listing 4.6 gives the source

code of this method. Essentially, it iterates through all the example models and retrieves a list

of nodes with the respective type. If no such nodes exist in any example models, the type is

not mandatory.

1 def is_type_mandatory(node_type):

2 for exm in all_example_models ():

3 nodes_with_type = all_nodes_with_type(exm , node_type)

4 if not nodes_with_type:

5 return False

6 return True

Listing 4.6: Method to check if a type is mandatory

All scenarios that were identified in section 3.3.2 are implemented in a similar fashion, resulting

in a total of eight classes for the eight different changing operations. An exception is the deletion

of an entire example model, which is done by iteratively calling the delete handlers for nodes,

edges and attributes on the example model. This ensures that instance models are evolved

automatically in case any objects become unavailable due to the delete operation. As described

in section 3.3, many example modeling operations can be executed locally (on the current model

only) or globally (on all example models). The UI implements this by querying the user prior to

executing an example modeling operation. Figure 4.12 shows such a query for deleting a node.

After the user has selected the scope of the operation, the corresponding evolution handler is

executed with the respective parameters.

Concrete syntax evolution is supported during the example modeling phase: when a group of

sketched primitives is typed and the type equals an already existing type, the concrete syntax

of the existing type is overwritten with the new sketch. Furthermore, we have implemented a

command-line tool to upload an image file as concrete syntax model. This makes it possible to

replace sketched symbols by visual notations with a richer set of variables than our sketching

interface currently allows. An example where all sketched symbols were replaced by icons can

be seen in 4.13.

79

Figure 4.12: Screenshot of the scope selection before performing a delete operation on a node

Figure 4.13: Concrete syntax evolution: sketched primitives are replaced by icons

80

4.5 Process Modeling

In 3.5, we presented a process that chains all the activities in the approach together. Since

the Modelverse supports process modeling through the FTG+PM formalism, we attempted to

explicitly model the process using the provided formalism. However, the Modelverse requires

fixed strings to describe the location and name of a model artifact that is consumed or produced

during an operation. An example of this is shown in 4.7, where the two activities to create and

edit an example model are linked together. First, the transformation new exm is executed

that produces a new model artifact in the Modelverse. This model artifact is an example

model located at the Modelverse path “models/example/exm1”. Then, the transformation

edit exm consumes this model and modifies it in place by producing it as the same output again.

Realistically, this transformation would start the UI with the consumed model as parameter to

allow the user to modify it.

1 Start start {}

2 Finish finish {}

3

4 Exec new_exm {

5 name = "process/new_exm"

6 }

7 Exec edit_exm {

8 name = "process/edit_exm"

9 }

10

11 Next(start , new_exm) {}

12 Next(new_exm , edit_exm) {}

13 Next(edit_exm , finish) {}

14

15 Data exm {

16 name = "models/example/exm1"

17 type = "formalisms/graphMM"

18 }

19

20 Produces(new_exm , exm) {

21 name = "new_example_model"

22 }

23 Consumes(edit_exm , exm) {

24 name = "example_model"

25 }

26 Produces(edit_exm , exm) {

27 name = "example_model"

28 }

Listing 4.7: Excerpt from the modeled process to create and edit an example model

81

Since our approach supports an unlimited amount of example models, it is impossible to an-

ticipate the amount of data nodes in the process model. This is not only limited to example

models, but also instance and concrete syntax models. Therefore, the current FTG+PM for-

malism as implemented in the Modelverse is well suited for processes with a fixed set of model

artifacts, all of which are known beforehand. For our approach however, the user currently has

to resort to executing our tool with the respective parameters by hand. Nevertheless, we give

an executable sample process with hard-coded model artifact paths in the appendix B. This

process also models the instance modeling and concrete syntax activities.

82

Chapter 5

Evaluation

This chapter evaluates the presented approach and the accompanying prototypical implementa-

tion. First, section 5.1 defines a set of research questions, based on the goals and requirements

set in 3.1. Section 5.2 discusses these questions individually and reflects upon whether the

presented approach meets the initial goals. Section 5.3 extends the scope of the evaluation by

linking back to chapter 2 and comparing our approach with other solutions.

5.1 Research Questions

In this work, we aimed to design and implement an agile and integrated process for example-

driven DSML creation. To evaluate our approach and verify that it meets the requirements we

formulated in 3.1, the following research questions are distilled:

1. R1: Is it possible to react quickly to new and changing language requirements?

2. R2: Can the approach be used without metamodeling experience?

3. R3: Is the process integrated in a single environment?

R1 is concerned with the agility of the approach. One goal of Moodling is to implement an agile

process that makes it possible to react to changing requirements by keeping iterations short

and building the DSML iteratively. This poses a particular challenge with regard to the co-

evolution problem, where instance models break when the definition of the DSML changes. R2

reflects on how suitable the approach is for users without meta-modeling experience. This is an

important question since example-driven DSML design aims to make domain-specific languages

more accessible for domain engineers that do not have language engineering experience. This

also includes the cognitive load of the approach, which is dependent on the number of model

83

artifacts exposed to the user. Finally, R3 aims at the integration of the process. All model

artifacts must reside in the same environment and be accessible throughout the whole process.

This implies that all models can be subject of model transformations that allow for analysis,

execution and code generation.

5.2 Results

R1: Agility We have implemented an agile, example-driven DSML design process that makes

short development iterations possible by omitting the metamodel generation step and inferring

all language constraints directly from the example models. The process is divided into two dif-

ferent activities, namely example modeling and instance modeling. During example modeling,

models that serve as examples of valid language models can be created in an unconstrained

manner. During instance modeling, the previously generated example models are used to con-

strain and impose restrictions to the modeling process. Furthermore, we have shown that fully

automated co-evolution is feasible with our approach, since all models conform to the same

metamodel and can evolve together by applying the same model transformations that change

the example models to the instance models. Lastly, our approach does not only consider the

abstract syntax, but also the concrete syntax of the DSML, which is stored as a set of concrete

syntax models and can evolve as well. As such, it is possible to react to changing requirements

by integrating them in the example models and letting the instance models evolve automatically.

R2: Required experience We do not expose a metamodel to the user and infer the abstract

syntax of the DSML directly from the example models. Therefore, users always work on the

level of concrete objects and not on meta-level. This limits the amount of manipulable artifacts

and is more natural for non-experts. Furthermore, we make a clear distinction between the

language design and modeling phases, which further helps to reduce the cognitive load of our

approach. Switching between these phases can happen at any point in the process, since all

instance models evolve automatically without requiring manual user intervention. However, a

basic knowledge of modeling in general and connection-based languages in particular is required

to use the approach, since all models are instances of a graph-like data structure. Furthermore,

to effectively use the tool during the example modeling phase, users must be aware of the im-

plications of their actions with regard to the constraints that are imposed on the succeeding

instance modeling phase. For instance, a mandatory type constraint can be modeled by includ-

ing a node of this type in every existing example model. Lastly, the implemented tool includes

elements to improve usability: When an instance model is verified, non-conforming parts are

highlighted and a warning about the violated constraint(s) is issued. Furthermore, textual

feedback is given during example modeling mode when an operation changed a constraint. For

instance, typing a node can result in creating the mandatory type constraint. However, creat-

ing example models generally consists of a finite iteration of the activities sketch, group, type

84

and annotate. Although these activities are represented in the user interface, their order is

not evident without knowledge about how the tool works. Lastly, a more throughout feedback

about the consequences of an example model operation, especially with regard to co-evolution

is required to increase the usability and the users’ awareness of their actions.

R3: Integration Our approach is designed for and implemented in a single metamodeling

environment, the Modelverse. Example models, instance models and concrete syntax models

are all stored at the same location. Since the Modelverse is a multi-paradigm metamodeling

environment, all common metamodeling activities such as code generation or model analysis

can be implemented and performed without needing to export any model beforehand. Further-

more, example models do not differ from instance models, since they conform to the same ATG

metamodel. Thus, example models are full-featured models on their own and can be reused as

instance models without the need to migrate them to a new metamodel or exporting them to a

different environment. Simultaneously, this shows a fundamental limitation of our approach and

the principle of not generating an explicit metamodel: the conformance definition of instance

models is wired into the validation and modeling logic of our implementation and, in contrast

to a metamodel, cannot be exported to other environments. Therefore, using existing instance

models in other tools requires to drop the constraints imposed from the example models, result-

ing in instance models that only conform to a generic graph metamodel. Lastly, the front-end

of our approach is implemented using the Modelverse wrapper API and therefore communicates

with the Modelverse over network sockets. This allows for a distributed deployment of front-

and back-end.

5.3 Comparison with Existing Solutions

In chapter 2, we analyzed existing solutions with respect to the following four areas:

1. Unconstrained Input: How are example models created and how much is the user

constrained while expressing the requirements? What input methods are available? What

visual variables can be used during this step?

2. Metamodeling Support: How are language constraints imposed and how much user

intervention is required?

3. Co-Evolution: How is the co-evolution problem solved? Does a systematic classification

exist?

4. Tool Support: Does an implementation exist? Was it evaluated? Is it integrated in a

metamodeling tool or a standalone application?

85

In the following paragraphs, we elaborate on how our approach supports these areas and point

out differences and similarities to the other solutions. A particular focus lies on comparing our

approach, where all language constraints are computed directly from the example models, to

solutions such as metaBup, where an explicit metamodel is generated.

5.3.1 Unconstrained Input

Our implementation provides a user interface that allows to create visual example models by

drawing them on a canvas. The available drawing primitives are basic, but sufficient to capture

a wide range of possible symbols. To map the underlying ATG data structure as closely as

possible, we constrained our approach to connection-based languages. Therefore, it is possible

to sketch example models with the visual expressiveness of figure 2.2, since entities and their

relationships can be expressed by nodes and edges. Furthermore, our approach supports at-

tributing these entities. However, spatial relationships between drawn symbols as implemented

in metaBup are not considered. Also, our implementation does not feature any kind of sketch

recognition, which is present in tools such as Scribbler and FlexiSketch and could speed up the

sketching process.

Compared to other solutions, we highlight the flexibility of our approach: it is possible to design

a different input method for example models by exchanging the front-end. Support for richer

visual variables such as color or line width can be added by modifying the concrete syntax

metamodel accordingly. Even purely textual example models can be supported as long as

they conform to the ATG metamodel. In fact, adding textual example models can be done by

uploading them as a text file to the Modelverse, using an already existing command line prompt.

Therefore, we see our implementation close to the Model Workbench, which supports similar

input methods, with the only difference that we do not support processing spatial relationships.

This is reflected in table 5.1, which aligns the input capabilities of our approach with the other

investigated tools.

Tool Language type Input
Entities and

relationships

Textual

annotations

Spatial

relationships

Scribber Visual Freehand Yes No No

MLCBD Visual Editor Yes Yes Yes (draw only)

FlexiSketch Visual Freehand Yes No No

metaBup Visual Editor Yes Yes Yes

Model Workbench Textual and visual Text editor Yes Yes Yes (textual)

Moodling Textual and visual Freehand Yes Yes No

Table 5.1: Tool support regarding example model input capabilities with our approach for

comparison

86

Tool
Language

Constraints

Advanced

Meta-Constructs
Automation MDE activities

Scribbler
Manual metamodel

definition
None Manual Supported by EMF

MLCBD
Implicit metamodel

generation
None Semi None

FlexiSketch
Implicit metamodel

generation
None Full None

metaBup
Explicit metamodel

generation

Inheritance, abstract classes,

compositions
Full Supported by EMF

Model Workbench
Explicit metamodel

generation
Inheritance, abstract classes Semi Not assessable

Moodling
On the fly

construction
None Full

Supported by

Modelverse

Table 5.2: Overview of metamodeling capabilities with our approach for comparison

5.3.2 Metamodeling Support

Table 5.2 classifies the metamodeling capabilities of our approach according to the criteria

already used in 2.2.2. Similar to MLCBD or FlexiSketch, our approach does not generate

an explicit metamodel. All language constraints are inferred from the example models on

the fly and in a fully automated manner. This increases the flexibility, reduces the cognitive

load and simplifies co-evolution, but decreases the performance and scalability, since for every

modeling operation, the constraints have to be computed again. Our implementation supports

an theoretically unlimited amount of example models and is implemented in a metamodeling

environment, thus all models can directly be used for MDE activities such as transformations,

analysis and code generation. In particular, this includes example models as well. As remarked

in 3.2.1, model transformations that rely on graph pattern matching and consist of a LHS to

match, a RHS to replace and a NAC as an apply condition require to construct a RAMified

metamodel for the patterns themselves. Although our approach does not construct an explicit

metamodel, a language for the patterns can be obtained by RAMifying the ATG metamodel,

to which both instance- and example models conform to. The drawback here is the generality

of the ATG metamodel, which results in a generic pattern language. As a result, it is possible

to construct patterns with elements that do not appear in any model. For instance, nodes in a

pattern can have types that do not appear in any example model. This is a contradiction to the

principles of MDE, where languages should be as constrained as possible to prevent mistakes

during modeling.

87

Advanced constructs such as inheritance, abstract classes and compositions, which are com-

monly found in metamodels that are based on class diagrams are not supported, as they require

the user to give additional hints about such notions and therefore require metamodeling exper-

tise. Implementing such constructs in our approach is possible by adapting the conformance

relationship accordingly and providing the possibility to give the required hints via e.g. anno-

tating nodes in the user interface, similar to metaBup. Furthermore, the issue of computing

multiplicities only from examples remains unsolved: While it is possible to determine exact

multiplicities by setting the bounds to the minimum and maximum cardinality of all example

models for every element, the user’s intent might have been a different one. This becomes

especially apparent for high multiplicities that only can be implicitly expressed by adding the

corresponding amount of elements to an example model. Therefore, this problem can only be

solved on meta-level. For our approach, we imagine a functionality similar to FlexiSketch, where

the user has the possibility to edit the multiplicities by hand.

Further limitations or our approach lie in the possibility to model additional constraints for

the DSML. For instance, UML defines the Object Constraint Language (OCL) to apply rules to

models in a declarative way [91]. Similar features can be found in the Modelverse, where the

action language can be used to impose additional constraints upon instances. As a result, it is

possible to further reduce the set of valid models of the DSML. A typical example is the number

of tokens in a Petri net place, where only positive numbers and zero should be allowed. Such

a constraint is difficult to model without using some sort of declarative language that restricts

the token attribute of a place. Currently, our approach does not exhibit any functionalities to

model such constraints as one principle is to hide as much metamodeling activities from the

user as possible. While it is feasible to allow the definition of constraints on the level of example

models, various changes are required: first, a type system for attributes needs to be introduced,

alongside with redefining an attribute as a tuple of a key and a (typed) value. Furthermore, an

input method for the declarative constraint language needs to be implemented in the front-end.

With these changes, imposing further constraints on node attributes would be possible. Global

constraints, such as refining the number of allowed nodes in an instance model suffers from the

fundamental issue that example models are instance models of a metamodel themselves and

therefore are affected by the constraints they would define. This could be solved by verifying

the constraints only for models that are not example models.

5.3.3 Co-Evolution

In our approach, the example models are elevated as the primary descriptive element of the

DSML. As a direct consequence, only forward evolution is supported. Again, this reduces the

cognitive load and is more intuitive for users without metamodeling experience, since it does

not require them to work on the level of metamodels. All possible changes are systematically

classified in regard to their effects on the conformance relationship between example- and in-

88

stance models. Furthermore, all breaking changes are automatically resolvable by applying

equivalent operations on the broken instance models. Thus, it is possible for the user to change

the language at any point in the process and let the instance models co-evolve without manual

intervention. We provide the possibility to execute structural changes locally on one example

model or globally on all example models simultaneously. The reason for this is to avoid man-

ually editing all example models and applying the same change all over again. This mitigates

an inherent disadvantage of a purely example-model-based approach, where the meta-level is

not exposed to the user: by introducing global operations, it is possible to perform changes as

if they would be performed on the metamodel of a language. In particular, this is effective for

language refactorings, such as renaming or deleting elements. In that sense, global operations

mimic their corresponding operations on meta-level.

In 2.2.3, we used a set of test cases to assess the co-evolution capabilities of the investigated

tools. In detail, a resolvable and an unresolvable scenario was constructed for both backward

and forward evolution. Our approach only supports forward evolution, but is capable of hand-

ing both the resolvable and unresolvable scenarios fully automated, as we will demonstrate

now. Figure 5.1 shows an instance model that conforms to the two example models shown in

5.2. When performing a global rename of the node “Router” to “DSL-Router”, the rename is

executed on all example models and successively on all instance models that have a node that

is typed by “Router”. The updated instance model can be seen in figure 5.3. Alongside the

node in the model, also the list of available types was updated accordingly to show the retyped

element.

In a similar fashion, the evolution scenario depicted in 2.7, which is referred to as unresolvable

in the scope of metamodel-centric approaches, can be handled by our approach. Based on the

same instance and example models of 5.1 and 5.2, the following operations on the example

models result in an automated evolution of the instance model:

1. Global add node operation with type “Switch”. This makes the type mandatory and

automatically adds it to the instance model.

2. Global delete edge of edge between “Router” and “PC” in example model 1 and between

“Router” and “AP” in example model 2. This results in the edges being deleted in the

instance model as well.

3. Global add edge between “Router” and “Switch”. This adds the same edge to the instance

model.

4. Global add edge between “Switch” and “PC” as well as between “Switch” and “AP”. This

adds the same edges to the instance models, since the edges became mandatory.

The resulting instance model with the added “Switch” element is shown in figure 5.4.

89

Figure 5.1: The instance model prior to retyping a node

(a) Example model 1 (b) Example model 2

Figure 5.2: Example models prior to retyping a node

90

Figure 5.3: The instance model after retyping the “Router” element in an example model

91

Figure 5.4: The instance model after adding a mandatory “Switch” node between the “Router”

and all its connecting nodes

92

Furthermore, also the concrete syntax can evolve. This is possible since the concrete syntax

representation of each type is stored as a model itself, alongside with the ATG models for the

example- and instance models. It is thus possible to replace inadequate concrete syntax symbols

by changing the corresponding concrete syntax model. This can be done by either sketching a

new set of primitives and typing the group by the existing type that should be replaced or by

uploading an actual image file as a concrete syntax model. For the latter, we have implemented

a command-line script that reads an image file and performs the necessary Modelverse API calls

to upload a concrete syntax model with the image file as data. After overwriting an existing

concrete syntax model, the new representation for a type can be and used immediately in both

the example- and instance modeling phase. To our knowledge, the only other tool that supports

similar features is FlexiSketch, where multiple representations for the same type can be sketched

and overwritten.

As a summary, Table 5.3 compares the co-evolution features of our approach with existing tools.

Although backward evolution is not possible by design, we provide global operations to make

structural changes to the language less cumbersome, especially with a large amount of example

models. All evolution scenarios are classified according to their effects on the conformance

relationship and can be resolved fully automated.

Tool
Forward

Evolution

Backward

Evolution
Classification

Scribbler No Manual None

MLCBD Manual No None

FlexiSketch Yes No None

metaBup Yes Yes

Non-breaking

Resolvable

Unresolvable

Model Workbench Yes Yes
Non-breaking

Breaking

Moodling Yes No
Effects on

conformance

Table 5.3: Summary of co-evolution features with our approach

5.3.4 Tool Support

Table 5.4 summarizes the tool support of our approach based on the evaluation in section 2.2.4.

We implemented our approach as a front-end for the Modelverse, a multi-paradigm metamod-

eling tool. Therefore, all models are contained in a full-featured metamodeling environment

93

and the need to switch between different tools such as in metaBup is eliminated. However,

the usability of our tool was not evaluated in a user study. Furthermore, due to the on-the-fly

construction of the language constraints, the performance is expected to decrease exponentially

when the size of the example model set increases. Additionally, no collaboration support was

implemented in the tool. However, the Modelverse allows for multiple parallel users and im-

plements a permission system with a notion of owners and groups. Therefore, it is possible to

extend our approach by features similar to FlexiSketch, where models can be shared between

different users and multiple users can sketch example models together. This includes the pos-

sibility to lock the example modeling phase, which can be done easily in our approach since

example modeling and instance modeling are clearly separated. Lastly, we want to mention

that, although the process is designed to switch between the unconstrained example model-

ing and constrained instance modeling phases, it is possible to never advance to the instance

modeling phase and construct all models during example modeling exclusively. In contrast to

other solutions where example models exist in a different environment, our example models are

full-featured models on their own and can be used in further MDE activities just like instance

models.

5.3.5 Result

In section 2.2.5, we presented the result of the initial evaluation of existing tools as a radar chart

with the four different key areas Unconstrained input, Tool support, Metamodel generation and

Co-evolution as axis. Figure 5.5 shows the same chart with the result of the evaluation of our

approach as a dashed line.

The weakest area of our approach is the tool support. Albeit implemented, the tool is in a

prototypical state and requires usability and performance improvements in order to offer a

satisfactory user experience. This includes responsiveness and interactive feedback, since oper-

ations such as the automated co-evolution of instance models are currently executed silently in

the background. Additionally, no user study was conducted. Such a study could further inves-

tigate the required experience, cognitive load and user friendliness of our approach, especially

compared to solutions that infer the language constraints by explicitly generating a metamodel.

Unconstrained input is related to the tool support: we have implemented a simple UI for example

model sketching, where arbitrary shapes can be constructed with geometric primitives such as

lines or rectangles. However, no support for additional visual features such as color or line

width is present, thereby limiting the visual expressiveness of the concrete syntax. However,

we support connection-based visual languages that with graph-like structures and allow for

annotations that function as attributes. Finally, no sketch recognition was implemented, as

new types are registered immediately and can be instantiated thereafter by double-clicking on

the corresponding item in the list of types.

94

S
c
ri

b
b

le
r

M
L

C
B

D
F

le
x
iS

k
e
tc

h
m

e
ta

B
u

p
M

o
d

e
l

W
o
rk

b
e
n

ch
M

o
o
d

li
n

g

Im
p

le
m

e
n
ta

ti
o
n

J
av

a
A

p
p

li
ca

ti
on

M
S

V
is

io
p

lu
gi

n
A

n
d

ro
id

A
p

p

J
av

a
A

p
p

li
ca

ti
on

E
M

F
p

lu
gi

n
J
av

a
E

E
A

p
p

li
ca

ti
on

P
y
th

on
A

p
p

li
ca

ti
on

In
te

g
ra

ti
o
n

E
M

F
-

-
E

M
F

m
et

aD
ep

th
S

el
f-

co
n
ta

in
ed

M
o
d

el
ve

rs
e

U
sa

b
il
it

y
In

d
u

st
ri

al
u

se
r

st
u
d

y
C

as
e

st
u

d
y

U
se

r
st

u
d

y
U

se
r

st
u

d
y

-
-

S
c
a
la

b
il
it

y
N

ot
as

se
ss

a
b
le

N
ot

as
se

ss
ab

le
L

im
it

ed
G

o
o
d

N
ot

as
se

ss
ab

le
L

im
it

ed

C
o
ll
a
b

o
ra

ti
o
n

C
li

en
t-

S
er

ve
r

-
C

li
en

t-
S

er
ve

r
-

C
li

en
t-

S
er

ve
r

C
li

en
t-

S
er

ve
r

T
ab

le
5.

4:
S

u
m

m
ar

y
of

to
ol

su
p

p
or

t
ev

al
u

at
io

n

95

The metamodeling support of our approach is on the same level as metaBup, since we im-

plemented our tool with the Modelverse as back-end. Therefore, all MDE activities that are

supported by the Modelverse can be directly applied to instance- and example models. Fur-

thermore, example models can be reused as instance models, since they both conform to the

same ATG metamodel. One major difference to all other tools is how the language constraints

are computed: instead of generating a metamodel to define the structure of the language, the

constraints are inferred on the fly during instance modeling from the example models. Al-

though this requires a re-definition of the conformance relationship between instance models

and the abstract syntax given by the example models, it removes the metamodel generation as

an intermediate step in the process and increases the agility by encouraging short development

iterations and rapid feedback.

Lastly, our approach has throughout support for model co-evolution. By removing the interme-

diate metamodel generation step, the language can only be evolved by changing the example

models. This reduces the cognitive load as it hides meta-level concepts from the user. All possi-

ble example model changes are classified with regard to their potential effect on the conformance

relationship to the instance models. Furthermore, all changes can be resolved automatically by

applying the same model transformation that was used to change the example model(s) to the

instance models. Therefore, all instance models evolve automatically as the language changes.

Compared to other solutions, the example models serve as the primary description of the ab-

stract syntax throughout the whole process, even when the language development has stabilized

and instance models have been created. This is in contrast to tools such as metaBup that explic-

itly generate a metamodel and where the metamodel eventually replaces the example models.

As a result, forward evolution carries the risk to break instance models, since the example and

instance models exist detached from each other.

96

Figure 5.5: Summary of strengths and weaknesses of solutions, including our approach

97

Chapter 6

Conclusion

This thesis presented an approach for domain-specific language design by example. In chapter

1, an introduction to model-driven engineering in general and example-driven language design

in particular was given. Chapter 2 elaborated on related work by systematically analyzing and

comparing existing solutions for the problem. The theoretical concepts of our approach were

discussed in chapter 3. In detail, it was shown how example models can serve as prescribing

elements for a domain-specific modeling language and how they can be used for an agile and in-

tegrated design process with focus on short iterations and incremental language design. Chapter

4 presented a prototypical implementation of our approach with a self-modeled multi-paradigm

metamodeling environment as basis. This implementation served as a proof for the feasibility

of our approach. It was evaluated and compared to existing solutions in chapter 5.

6.1 Summary and Contributions

In conclusion, an agile and integrated DSML design process was developed. It has been demon-

strated that it is possible to use example models as the primary description of a language. This

eliminates the need to design a DSML on meta-level and makes the process accessible for users

without in-depth language engineering experience. All language constraints are inferred directly

from the example models. Furthermore, we showed how the language can be incrementally de-

veloped by adapting the example models to reflect new or changed requirements, while letting

the instance models co-evolve in a fully automated manner. Additionally, we explicitly modeled

the concrete syntax in our approach. This makes it possible to evolve the representation of

a model alongside with the abstract syntax, which is of particular importance since initially,

example models and the concrete syntaxes of language concepts are sketched by hand and might

require iterative refinement during the process.

All aspects of our approach were implemented in the Modelverse, a multi-paradigm metamod-

98

eling tool. We provide a user interface, which allows for model creation and manipulation.

This user interface can operate in either an unconstrained example modeling mode, where re-

quirements for the DSML can be expressed by sketching example models, and in a constrained

instance modeling mode, which uses the example models to constrain the user in the available

modeling activities. Since all our models reside in the Modelverse, they can be reused for fur-

ther MDE activities without the need to migrate them to a different environment. This also

includes example models, since, in our approach, they do not differ from instance models on

a conceptual level. Therefore, our implementation allows to use example models as instance

models and vice versa.

6.2 Limitations and Future Work

Future work can be conduced in a plethora of directions:

• Expressible Languages During the design of our approach, we limited ourselves to

connection-based languages which can be expressed by a graph data structure. In par-

ticular, it is currently not possible to model edges without using additional nodes, since

edges are always untyped and undirected. This limits the user’s freedom, since edges

with a notion of type and direction are common elements in modeling languages. We

believe that our approach is flexible enough to accommodate for such extensions. The

ATG metamodel, to which example- and instance models conform to, inherits the flexibil-

ity of the class diagram formalism of the Modelverse and therefore, the edge association

can be modeled as class with a type and direction. The concrete syntax metamodel is

expressive enough to store different edge representations, since it is capable of describing

all geometric primitives by lines. However, the user interface needs to be extended to

render different kinds of edges, according to the concrete syntax metamodel. Addition-

ally, it must provide a method to sketch the different kind of edges and give the user the

possibility to annotate them, according to the type and direction properties.

Additional visual variables present in other approaches, such as the spatial relationship

of symbols or color were not investigated in this thesis and can be subject of future re-

search as well. This is especially interesting with regard to object-oriented concepts such

as inheritance, which could be expressed by a visual containment relationship.

• Phase Separation We strictly divide the process of our approach into an example-

and instance modeling phase and therefore make a clear distinction between an open and

a constrained environment for creating models. This means that whenever an operation

is invalid during instance modeling but should be allowed, the corresponding adaptions

have to be made by going back to the example modeling phase. We anticipate a frequent

occurrence of such a scenario, since, especially at the beginning of the process, the lan-

guage undergoes many revisions and requires steady changes to appropriately express the

99

aspects of the system to model. Therefore, an alternative to switching back and forth

between the language design and usage phases could be to automatically introduce the

required changes in the example models upon user request without leaving the instance

modeling environment. Essentially, this would blur the currently existing strict separa-

tion between the two phases, since changes to the language could be performed during

instance modeling as well. However, we see the danger of providing an unconstrained

modeling environment during instance modeling, which gives the user too much freedom

and increase the possibility to make mistakes. This issue could be addressed by using a

lock mechanism for the language development: when the lock is active, all changes that

alter the language are disallowed and therefore, the language can not evolve anymore.

Only when this lock is explicitly removed, changes to the language become possible again.

• Requirements Engineering In our approach, the language requirements are directly

expressed by sketching example models. Therefore, no formal specification of the require-

ments exists. As a result, both language testing and collaboration among multiple users is

difficult, since they might have differing ideas on how the language must look like. With-

out a preceding requirements engineering phase, reaching consent based solely on a set

of example models is a possible source of conflicts and increases the risk of miscommuni-

cation between the users. Since we aim for an agile approach for example-driven DSML

design, it could be investigated how methods from agile software development processes

can be used in this context.

• Performance The performance of our implementation is currently rather low, mostly

because of the Modelverse. During instance modeling, delays are particularly noticeable

since every operation has to be validated prior to its execution. During example modeling,

delays are introduced due to the language evolution handlers, which are called after every

change and keep the instance models in conformance. However, our approach is indepen-

dent from the underlying metamodeling environment and therefore can be implemented

with more efficient tools. Furthermore, we believe that the performance can benefit from

implementing key parts of our approach such as the instance modeling operator validation

and the conformance relationship directly in the Modelverse instead of in the front-end.

100

Bibliography

[1] Scott W Ambler. Agile model driven development is good enough. IEEE Software,

20(5):71–73, 2003.

[2] Scott W Ambler. The object primer: Agile model-driven development with UML 2.0.

Cambridge University Press, 2004.

[3] Islem Baki and Houari Sahraoui. Multi-step learning and adaptive search for learning com-

plex model transformations from examples. ACM Transactions on Software Engineering

and Methodology (TOSEM), 25(3):20, 2016.

[4] Zoltán Balogh and Dániel Varró. Model transformation by example using inductive logic

programming. Software & Systems Modeling, 8(3):347–364, 2009.

[5] Luciano Baresi and Reiko Heckel. Tutorial introduction to graph transformation: A

software engineering perspective. In International Conference on Graph Transformation,

pages 402–429. Springer, 2002.

[6] Jim Barnett, Rahul Akolkar, RJ Auburn, Michael Bodell, Daniel C Burnett, Jerry Carter,

Scott McGlashan, Torbjörn Lager, Mark Helbing, Rafah Hosn, et al. State Chart XML

(SCXML): State machine notation for control abstraction. W3C working draft, 2007.

[7] Christian Bartelt, Martin Vogel, and Tim Warnecke. Collaborative creativity: From hand

drawn sketches to formal domain specific models and back again. In A. Notle, M. Prilla,

P. Rittgen, and S. Oppl, editors, Proceedings of the International Workshop on Models

and their Role in Collaboration at the ECSCW 2013 (MoRoCo 2013), pages 25–32, 09

2013.

[8] Christian Bartelt, Martin Vogel, and Tim Warnecke. Scribbler: From collaborative sketch-

ing to formal domain specific models and back again. In Proceedings of the 16th Interna-

tional Conference on Model Driven Engineering Languages and Systems (Models 2013),

10 2013.

101

[9] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Amleto Di Salle, Ludovico Iovino,

and Alfonso Pierantonio. Mdeforge: an extensible web-based modeling platform. In

CloudMDE@ MoDELS, pages 66–75, 2014.

[10] Michel Beaudouin-Lafon and Wendy Mackay. Prototyping tools and techniques. In

Julie A. Jacko and Andrew Sears, editors, The Human-computer Interaction Handbook,

pages 1006–1031. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 2003.

[11] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal. Robot Programming

by Demonstration, pages 1371–1394. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[12] F. Brooks and H. J. Kugler. No silver bullet. April, 1987.

[13] Qi Chen, John Grundy, and John Hosking. An e-whiteboard application to support early

design-stage sketching of UML diagrams. In Human Centric Computing Languages and

Environments, 2003. Proceedings. 2003 IEEE Symposium on, pages 219–226. IEEE, 2003.

[14] Qi Chen, John Grundy, and John Hosking. Sumlow: Early design-stage sketching of UML

diagrams on an e-whiteboard. Softw. Pract. Exper., 38(9):961–994, July 2008.

[15] Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J. Ko. Let’s go to the white-

board: How and why software developers use drawings. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’07, pages 557–566, New York,

NY, USA, 2007. ACM.

[16] Hyun Cho. Creating domain-specific modeling languages using by-demonstration tech-

nique. In Proceedings of the ACM International Conference Companion on Object Ori-

ented Programming Systems Languages and Applications Companion, OOPSLA ’11, pages

211–212, New York, NY, USA, 2011. ACM.

[17] Hyun Cho. A Demonstration-based Approach for Domain-specific Modeling Language

Creation. PhD thesis, University of Alabama, Tuscaloosa, AL, USA, 2013. AAI3562407.

[18] Hyun Cho and Jeff Gray. Design patterns for metamodels. In Proceedings of the Compi-

lation of the Co-located Workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11,

NEAT’11, & VMIL’11, SPLASH ’11 Workshops, pages 25–32, New York, NY, USA, 2011.

ACM.

[19] Hyun Cho, Jeff Gray, and Eugene Syriani. Creating visual domain-specific modeling

languages from end-user demonstration. In Proceedings of the 4th International Workshop

on Modeling in Software Engineering, MiSE ’12, pages 22–28, Piscataway, NJ, USA, 2012.

IEEE Press.

[20] Hyun Cho, Yu Sun, Jeff Gray, and Jules White. Key challenges for modeling language

creation by demonstration. In ICSE 2011 Workshop on Flexible Modeling Tools, Honolulu

HI, 2011.

102

[21] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. Automat-

ing co-evolution in model-driven engineering. In Proceedings of the 2008 12th International

IEEE Enterprise Distributed Object Computing Conference, EDOC ’08, pages 222–231,

Washington, DC, USA, 2008. IEEE Computer Society.

[22] Paul Corey and Tracy Hammond. Gladder: Combining gesture and geometric sketch

recognition. In Proceedings of the 23rd National Conference on Artificial Intelligence -

Volume 3, AAAI’08, pages 1788–1789. AAAI Press, 2008.

[23] Jonathan Corley, Eugene Syriani, Huseyin Ergin, and Simon Van Mierlo. Cloud-based

multi-view modeling environments. In Modern Software Engineering Methodologies for

Mobile and Cloud Environments, pages 120–139. IGI Global, 2016.

[24] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby,

Brad A. Myers, and Alan Turransky, editors. Watch What I Do: Programming by Demon-

stration. MIT Press, Cambridge, MA, USA, 1993.

[25] R. Davis. Magic paper: Sketch-understanding research. Computer, 40(9):34–41, Sept

2007.

[26] Colin De La Higuera, Jean-Christophe Janodet, Émilie Samuel, Guillaume Damiand, and

Christine Solnon. Polynomial algorithms for open plane graph and subgraph isomor-

phisms. Theoretical Computer Science, 498:76–99, 2013.

[27] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object Oriented Reengineering

Patterns. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[28] J. Denil, R. Salay, C. Paredis, and H. Vangheluwe. Towards agile model-based systems

engineering. Flexible Model Driven Engineering Proceedings (FlexMDE 2017), 2017. to

appear.

[29] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental theory for typed

attributed graph transformation. In International conference on graph transformation,

pages 161–177. Springer, 2004.

[30] Guihuan Feng, Christian Viard-Gaudin, and Zhengxing Sun. On-line hand-drawn elec-

tric circuit diagram recognition using 2D dynamic programming. Pattern Recognition,

42(12):3215–3223, 2009.

[31] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[32] Mirco Franzago, Davide Di Ruscio, Ivano Malavolta, and Henry Muccini. Collaborative

model-driven software engineering: a classification framework and a research map. IEEE

Transactions on Software Engineering, 2017.

103

[33] Adnane Ghannem. Example-based model refactoring using heuristic search. PhD thesis,

École de technologie supérieure, 2015.

[34] Adnane Ghannem, Ghizlane El Boussaidi, and Marouane Kessentini. Model refactoring

using examples: a search-based approach. Journal of Software: Evolution and Process,

26(7):692–713, 2014.

[35] Vinod Goel. Sketches of Thought: A Study of the Role of Sketching in Design Problem-

solving and Its Implications for the Computational Theory of the Mind. PhD thesis,

University of California, Berkeley, Berkeley, CA, USA, 1991. UMI Order No. GAX92-

28664.

[36] Fahad R Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guerin, and Christophe Guy-

chard. Using free modeling as an agile method for developing domain specific modeling

languages. In Proceedings of the ACM/IEEE 19th International Conference on Model

Driven Engineering Languages and Systems, pages 24–34. ACM, 2016.

[37] Cláudio Gomes, Joachim Denil, and Hans Vangheluwe. Causal-block diagrams. Technical

report, University of Antwerp, 2016.

[38] Paola Gómez, Mario E Sánchez, Hector Florez, and Jorge Villalobos. An approach to

the co-creation of models and metamodels in enterprise architecture projects. Journal of

Object Technology, 13(3):2–1, 2014.

[39] Lars Grunske, Leif Geiger, Albert Zündorf, Niels Van Eetvelde, Pieter Van Gorp, and

Daniel Varro. Using graph transformation for practical model-driven software engineering.

In Model-driven Software Development, pages 91–117. Springer, 2005.

[40] Boris Gruschko, Dimitrios Kolovos, and Richard Paige. Towards synchronizing models

with evolving metamodels. In Proceedings of the International Workshop on Model-Driven

Software Evolution, pages 3–1. IEEE, 2007.

[41] Daniel Conrad Halbert. Programming by Example. PhD thesis, University of California,

Berkeley, 1984. AAI8512843.

[42] Tracy Hammond and Randall Davis. Tahuti: A geometrical sketch recognition system for

UML class diagrams. In ACM SIGGRAPH 2006 Courses, page 25. ACM, 2006.

[43] Tracy Hammond, Brandon Paulson, and Brian Eoff. Eurographics tutorial on sketch

recognition. In Eurographics (Tutorials), pages 1–4, 2009.

[44] David Harel. Statecharts: A visual formalism for complex systems. Science of computer

programming, 8(3):231–274, 1987.

[45] David Harel and Bernhard Rumpe. Meaningful modeling: What’s the semantics of ”se-

mantics”? Computer, 37(10):64–72, October 2004.

104

[46] Regina Hebig, Holger Giese, Florian Stallmann, and Andreas Seibel. On the complex

nature of MDE evolution. In International Conference on Model Driven Engineering

Languages and Systems, pages 436–453. Springer, 2013.

[47] Regina Hebig, Djamel Eddine Khelladi, and Reda Bendraou. Approaches to Co-Evolution

of Metamodels and Models: A Survey. IEEE Transactions on Software Engineering,

43(5):396–414, 2017.

[48] Lucas Heer. Sketch-based metamodel construction: A literature review. 2018.

[49] Nicolas Hili. A metamodeling framework for promoting flexibility and creativity over

strict model conformance. In Flexible Model Driven Engineering Workshop, volume 1694,

pages 2–11. CEUR-WS, 2016.

[50] Shuhei Hiya, Kenji Hisazumi, Akira Fukuda, and Tsuneo Nakanishi. clooca: Web based

tool for domain specific modeling. In Demos/Posters/StudentResearch@ MoDELS, pages

31–35, 2013.

[51] Javier Luis Cánovas Izquierdo, Jordi Cabot, Jesús J López-Fernández, Jesús Sánchez

Cuadrado, Esther Guerra, and Juan De Lara. Engaging end-users in the collaborative

development of domain-specific modelling languages. In International Conference on Co-

operative Design, Visualization and Engineering, pages 101–110. Springer, 2013.

[52] Faizan Javed, Marjan Mernik, Jeff Gray, and Barrett R. Bryant. Mars: A metamodel

recovery system using grammar inference. Inf. Softw. Technol., 50(9-10):948–968, August

2008.

[53] Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger, and Manuel

Wimmer. Model transformation by-example: a survey of the first wave. In Conceptual

Modelling and Its Theoretical Foundations, pages 197–215. Springer, 2012.

[54] Andreas Kästner. On the Transformation from Incomplete Object Diagrams to Incomplete

Class Diagrams. Master’s thesis, University of Bremen, Bremen, Germany, 2017.

[55] Steven Kelly and Juha-pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code

Generation. Wiley, 04 2008.

[56] Dimitrios S Kolovos, Nicholas Drivalos Matragkas, Horacio Hoyos Rodŕıguez, and

Richard F Paige. Programmatic muddle management. XM@ MoDELS, 1089:2–10, 2013.

[57] Alexander Königs. Model transformation with triple graph grammars. In Model Trans-

formations in Practice Satellite Workshop of MODELS, page 166, 2005.

[58] Thomas Kühne. What is a model? In Language Engineering for Model-Driven Software

Development, 29. February - 5. March 2004, 2004.

105

[59] Thomas Kühne. Matters of (meta-) modeling. Software & Systems Modeling, 5(4):369–

385, Dec 2006.

[60] Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and Manuel Wim-

mer. Explicit transformation modeling. In International Conference on Model Driven

Engineering Languages and Systems, pages 240–255. Springer, 2009.

[61] James A. Landay. Silk: Sketching interfaces like krazy. In Conference Companion on

Human Factors in Computing Systems, CHI ’96, pages 398–399, New York, NY, USA,

1996. ACM.

[62] Jill H Larkin and Herbert A Simon. Why a diagram is (sometimes) worth ten thousand

words. Cognitive science, 11(1):65–100, 1987.

[63] Craig Larman and Victor R Basili. Iterative and incremental developments. a brief history.

Computer, 36(6):47–56, 2003.

[64] Tessa Ann Lau. Programming by Demonstration: A Machine Learning Approach. PhD

thesis, University of Washington, 2001. AAI3013992.

[65] Henry Lieberman. Your Wish is My Command: Programming by Example. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[66] Jesús J. López-Fernández. An agile process for the example-driven development of mod-

elling languages and environments. PhD thesis, Autonomous University of Madrid, May

2017.

[67] Jesús J. López-Fernández, Jesús Sánchez Cuadrado, Esther Guerra, and Juan Lara.

Example-driven meta-model development. Softw. Syst. Model., 14(4):1323–1347, Octo-

ber 2015.

[68] Jesús J López-Fernández, Antonio Garmendia, Esther Guerra, and Juan de Lara.

Example-based generation of graphical modelling environments. In European Conference

on Modelling Foundations and Applications, pages 101–117. Springer, 2016.

[69] Jesús J. López-Fernández, Antonio Garmendia, Esther Guerra, and Juan de Lara. An ex-

ample is worth a thousand words: Creating graphical modelling environments by example.

Software & Systems Modeling, Nov 2017.

[70] Jesús J. López-Fernández, Esther Guerra, and Juan de Lara. Example-based validation

of domain-specific visual languages. In Proceedings of the 2015 ACM SIGPLAN Inter-

national Conference on Software Language Engineering, SLE 2015, pages 101–112, New

York, NY, USA, 2015. ACM.

106

[71] Levi Lúcio, Sadaf Mustafiz, Joachim Denil, Bart Meyers, and Hans Vangheluwe. The for-

malism transformation graph as a guide to model driven engineering. School of Computer

Science, McGill University, Tech. Rep. SOCS-TR2012, 1, 2012.

[72] Levi Lúcio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, and Maris Jukss.

FTG+PM: an integrated framework for investigating model transformation chains. In

International SDL Forum, pages 182–202. Springer, 2013.

[73] Janne Luoma, Steven Kelly, and Juha-Pekka Tolvanen. Defining domain-specific modeling

languages: Collected experiences. In 4 th Workshop on Domain-Specific Modeling, 2004.

[74] Raphael Mannadiar and Hans Vangheluwe. Domain-specific engineering of domain-specific

languages. In Proceedings of the 10th Workshop on Domain-Specific Modeling, page 11.

ACM, 2010.

[75] Raphael Mannadiar and Hans Vangheluwe. Debugging in domain-specific modelling. In

Proceedings of the Third International Conference on Software Language Engineering,

SLE’10, pages 276–285, Berlin, Heidelberg, 2011. Springer-Verlag.

[76] Miklós Maróti, Tamás Kecskés, Róbert Kereskényi, Brian Broll, Péter Völgyesi, László

Jurácz, Tihamer Levendovszky, and Ákos Lédeczi. Next generation (meta) modeling:

Web-and cloud-based collaborative tool infrastructure. MPM@ MoDELS, 1237:41–60,

2014.

[77] Robert C Martin. Agile software development: principles, patterns, and practices. Prentice

Hall, 2002.

[78] Reza Matinnejad. Agile model driven development: An intelligent compromise. In Soft-

ware Engineering Research, Management and Applications (SERA), 2011 9th Interna-

tional Conference on, pages 197–202. IEEE, 2011.

[79] Tom Mens. On the use of graph transformations for model refactoring. In International

Summer School on Generative and Transformational Techniques in Software Engineering,

pages 219–257. Springer, 2005.

[80] Tom Mens and Serge Demeyer. Software Evolution. Springer Publishing Company, In-

corporated, 1 edition, 2008.

[81] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic Notes

in Theoretical Computer Science, 152:125–142, 2006.

[82] Bart Meyers and Hans Vangheluwe. A framework for evolution of modelling languages.

Sci. Comput. Program., 76(12):1223–1246, December 2011.

[83] Mark Minas. Generating meta-model-based freehand editors. Electronic Communications

of the EASST, 1, 2007.

107

[84] Parastoo Mohagheghi, Miguel A. Fernandez, Juan A. Martell, Mathias Fritzsche, and

Wasif Gilani. MDE adoption in industry: Challenges and success criteria. In Michel R.

Chaudron, editor, Models in Software Engineering, pages 54–59. Springer-Verlag, Berlin,

Heidelberg, 2009.

[85] Daniel Moody. What makes a good diagram? improving the cognitive effectiveness of

diagrams in is development. In Advances in information systems development, pages

481–492. Springer, 2007.

[86] Daniel Moody. The physics of notations: toward a scientific basis for constructing visual

notations in software engineering. IEEE Transactions on Software Engineering, 35(6):756–

779, 2009.

[87] Daniel Moody and Jos van Hillegersberg. Evaluating the visual syntax of UML: An

analysis of the cognitive effectiveness of the UML family of diagrams. In International

Conference on Software Language Engineering, pages 16–34. Springer, 2008.

[88] Pieter J. Mosterman and Hans Vangheluwe. Computer automated multi-paradigm mod-

eling: An introduction. Simulation, 80(9):433–450, 2004.

[89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541–580, Apr 1989.

[90] Sadaf Mustafiz, Joachim Denil, Levi Lúcio, and Hans Vangheluwe. The FTG+PM frame-

work for multi-paradigm modelling: An automotive case study. In Proceedings of the 6th

International Workshop on Multi-Paradigm Modeling, pages 13–18. ACM, 2012.

[91] Object Management Group (OMG). Object Constraint Language (OCL) Specification,

Version 2.4. OMG Document Number formal/2014-02-03 (http://www.omg.org/spec/

OCL/2.4), 2014.

[92] Object Management Group (OMG). Meta-Object Facility (MOF) Specification, Version

2.5.1. OMG Document Number formal/2016-11-01 (http://www.omg.org/spec/MOF/2.

5.1), 2016.

[93] Tom Y. Ouyang and Randall Davis. Chemink: A natural real-time recognition system

for chemical drawings. In Proceedings of the 16th International Conference on Intelligent

User Interfaces, IUI ’11, pages 267–276, New York, NY, USA, 2011. ACM.

[94] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engineering and agile

software development. In Enabling Technologies: Infrastructure for Collaborative Enter-

prises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on,

pages 308–313. IEEE, 2003.

[95] Marian Petre. Why looking isn’t always seeing: Readership skills and graphical program-

ming. Commun. ACM, 38(6):33–44, June 1995.

108

http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/MOF/2.5.1
http://www.omg.org/spec/MOF/2.5.1

[96] Klaus Pohl. Requirements engineering: fundamentals, principles, and techniques. Springer

Publishing Company, Inc., 2010.

[97] Rodrigo C. O. Rocha. Typed graph theory: Extending graphs with type systems. Preprint

available at http://rcor.me/papers/typed-graph-theory.pdf.

[98] Bastian Roth. Beispielgetriebene Entwicklung domänenspezifischer Model-

lierungssprachen. PhD thesis, University of Bayreuth, 2014.

[99] Bastian Roth, Matthias Jahn, and Stefan Jablonski. A method for directly deriving a

concise meta model from example models, 2013.

[100] Bastian Roth, Matthias Jahn, and Stefan Jablonski. On the way of bottom-up designing

textual domain-specific modelling languages. In Proceedings of the 2013 ACM Workshop

on Domain-specific Modeling, DSM ’13, pages 51–56, New York, NY, USA, 2013. ACM.

[101] Bastian Roth, Matthias Jahn, and Stefan Jablonski. Rapid design of meta models. Inter-

national Journal on Advances in Software, 7:31 – 43, 2014.

[102] W. W. Royce. Managing the development of large software systems: Concepts and tech-

niques. In Proceedings of the 9th International Conference on Software Engineering, ICSE

’87, pages 328–338, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[103] Jesús Sánchez-Cuadrado, Juan De Lara, and Esther Guerra. Bottom-up meta-modelling:

An interactive approach. In International Conference on Model Driven Engineering Lan-

guages and Systems, pages 3–19. Springer, 2012.

[104] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and soul of

model-driven software development. IEEE software, 20(5):42–45, 2003.

[105] Jean-Sébastien Sottet and Nicolas Biri. JSMF: a javascript flexible modelling framework.

In FlexMDE@MoDELS, volume 1694 of CEUR Workshop Proceedings, pages 42–51, 2016.

[106] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse

modeling framework. Pearson Education, 2008.

[107] Mark Strembeck and Uwe Zdun. An approach for the systematic development of domain-

specific languages. Software: Practice and Experience, 39(15):1253–1292, 2009.

[108] Eugene Syriani and Hans Vangheluwe. A modular timed graph transformation language

for simulation-based design. Software & Systems Modeling, 12(2):387–414, 2013.

[109] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon

Van Mierlo, and Huseyin Ergin. Atompm: A web-based modeling environment. In Joint

proceedings of MODELS’13 Invited Talks, Demonstration Session, Poster Session, and

ACM Student Research Competition co-located with the 16th International Conference

109

http://rcor.me/papers/typed-graph-theory.pdf

on Model Driven Engineering Languages and Systems (MODELS 2013): September 29-

October 4, 2013, Miami, USA, pages 21–25, 2013.

[110] Simon Van Mierlo. A Multi-Paradigm Modelling Approach for Engineering Model Debug-

ging Environments. PhD thesis, University of Antwerp, 2018.

[111] Simon Van Mierlo, Bruno Barroca, Hans Vangheluwe, Eugene Syriani, and Thomas

Kühne. Multi-level modelling in the modelverse. In Proceedings of the Workshop on

Multi-Level Modelling co-located with ACM/IEEE 17th International Conference on Model

Driven Engineering Languages & Systems (MoDELS 2014): September 28, 2014, Valen-

cia, Spain/Atkinson, Colin [edit.]; et al., pages 83–92, 2014.

[112] Yentl Van Tendeloo and Hans Vangheluwe. Explicitly modelling the type/instance re-

lation. In Proceedings of MODELS 2017 Satellite Event, pages 393 – 398. Ceur-WS,

September 2017.

[113] Yentl Van Tendeloo and Hans Vangheluwe. Linguistic conformance check (as imple-

mented in the modelverse). MDE lecture notes, http://msdl.cs.mcgill.ca/people/

hv/teaching/MSBDesign/conformance_algorithm.pdf, 2017.

[114] Yentl Van Tendeloo and Hans Vangheluwe. The Modelverse: a tool for multi-paradigm

modelling and simulation. In Proceedings of the 2017 Winter Simulation Conference,

WSC 2017, pages 944 – 955. IEEE, December 2017.

[115] Hans Vangheluwe, Juan De Lara, and Pieter J. Mosterman. An introduction to multi-

paradigm modelling and simulation. In Proceedings of the AIS’2002 conference (AI, Sim-

ulation and Planning in High Autonomy Systems), Lisboa, Portugal, pages 9–20, 2002.

[116] Dániel Varró. Model transformation by example. In International Conference on Model

Driven Engineering Languages and Systems, pages 410–424. Springer, 2006.

[117] Martin Vogel, Tim Warnecke, Christian Bartelt, and Andreas Rausch. Scribbler—drawing

models in a creative and collaborative environment: from hand-drawn sketches to domain

specific models and vice versa. In Proceedings of the Fifteenth Australasian User Interface

Conference-Volume 150, pages 93–94. Australian Computer Society, Inc., 2014.

[118] Jon Whittle, John Hutchinson, Mark Rouncefield, H̊akan Burden, and Rogardt Heldal.

Industrial adoption of model-driven engineering: Are the tools really the problem? In

Proceedings of the 16th International Conference on Model-Driven Engineering Languages

and Systems - Volume 8107, pages 1–17, New York, NY, USA, 2013. Springer-Verlag New

York, Inc.

[119] William Winn. An account of how readers search for information in diagrams. Contem-

porary Educational Psychology, 18(2):162–185, 1993.

110

http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/conformance_algorithm.pdf
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/conformance_algorithm.pdf

[120] Yin Yin Wong. Rough and ready prototypes: Lessons from graphic design. In Posters and

Short Talks of the 1992 SIGCHI Conference on Human Factors in Computing Systems,

CHI ’92, pages 83–84, New York, NY, USA, 1992. ACM.

[121] Dustin Wüest, Norbert Seyff, and Martin Glinz. Flexisketch: A mobile sketching tool

for software modeling. In David Uhler, Khanjan Mehta, and Jennifer L. Wong, editors,

Mobile Computing, Applications, and Services: 4th International Conference, MobiCASE

2012, Seattle, WA, USA, October 11-12, 2012. Revised Selected Papers, pages 225–244,

Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[122] Dustin Wüest, Norbert Seyff, and Martin Glinz. Semi-automatic generation of metamod-

els from model sketches. In 2013 28th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 664–669, Nov 2013.

[123] Dustin Wüest, Norbert Seyff, and Martin Glinz. Sketching and notation creation with

FlexiSketch Team: Evaluating a new means for collaborative requirements elicitation. In

2015 IEEE 23rd International Requirements Engineering Conference (RE), pages 186–

195, Aug 2015.

[124] Dustin Wüest, Norbert Seyff, and Martin Glinz. Flexisketch: a lightweight sketching and

metamodeling approach for end-users. Software & Systems Modeling, Sep 2017.

[125] Stéphane Zampelli, Yves Deville, Christine Solnon, Sébastien Sorlin, and Pierre Dupont.

Filtering for subgraph isomorphism. In International Conference on Principles and Prac-

tice of Constraint Programming, pages 728–742. Springer, 2007.

[126] Y. Zhang and S. Patel. Agile model-driven development in practice. IEEE Software,

28(2):84–91, March 2011.

111

Appendices

112

Appendix A

Source Code

The source code repository for the implementation can be found at:

https://msdl.uantwerpen.be/git/lucas/modelverse

113

https://msdl.uantwerpen.be/git/lucas/modelverse

Appendix B

Sample Process

Listing B.1: Implementation of the Moodling process in the Modelverse Process Model formal-

ism

1 Start start {}

2 Finish finish {}

3

4 Exec new_exm {

5 name = "process/new_exm"

6 }

7

8 Exec edit_exm {

9 name = "process/edit_exm"

10 }

11

12 Exec query_another_exm {

13 name = "process/query_another_exm"

14 }

15

16 Exec new_im {

17 name = "process/new_im"

18 }

19

20 Exec edit_im {

21 name = "process/edit_im"

22 }

23

24 Exec query_revise_lang {

25 name = "process/query_revise"

26 }

27

28 Data exm {

114

29 name = "models/example/ex1"

30 type = "formalisms/graphMM"

31 }

32

33 Data im {

34 name = "models/instance/im1"

35 type = "formalisms/graphMM"

36 }

37

38 Data consyn {

39 name = "models/consyn/cs1"

40 type = "formalisms/consynMM"

41 }

42

43 Decision another_exm {}

44 Decision revise_lang {}

45

46 Next(start , new_exm) {}

47 Next(edit_exm , query_another_exm) {}

48 Next(query_another_exm , another_exm) {}

49 Then(another_exm , new_exm) {}

50 Next(new_exm , edit_exm) {}

51 Else(another_exm , new_im) {}

52 Next(new_im , edit_im) {}

53 Next(edit_im , query_revise_lang) {}

54 Next(query_revise_lang , revise_lang) {}

55 Then(revise_lang , edit_exm) {}

56 Else(revise_lang , finish) {}

57

58 Produces(new_exm , exm) {

59 name = "example_model"

60 }

61

62 Consumes(edit_exm , exm) {

63 name = "example_model"

64 }

65

66 Produces(edit_exm , exm) {

67 name = "example_model"

68 }

69

70 Produces(edit_exm , consyn) {

71 name = "concrete_syntax"

72 }

73

74 Produces(new_im , im) {

75 name = "instance_model"

76 }

77

115

78 Consumes(edit_im , im) {

79 name = "instance_model"

80 }

81

82 Consumes(edit_im , consyn) {

83 name = "concrete_syntax"

84 }

85

86 Produces(edit_im , im) {

87 name = "instance_model"

88 }

116

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Model-Driven Engineering
	Model Transformations
	The FTG+PM Formalism
	Top-Down DSML Design

	Example-driven Metamodel Development
	Research Agenda

	Related Work
	Overview of Existing Tools
	Analysis
	Unconstrained Input
	Metamodeling Support
	Co-Evolution
	Tool Support
	Comparison

	Conclusion

	Theoretical Concepts
	Introduction to Moodling
	Elements and Activities
	A Common Metamodel
	Model Consistency and Conformance
	Example Modeling
	Instance Modeling

	Co-Evolution
	Terminology
	Classification of Scenarios
	Resolving Issues

	Concrete Syntax Modeling
	Visual Concrete Syntaxes
	Concrete Syntax in Moodling

	An Agile Moodling Process

	Implementation
	The Modelverse
	Underlying Metamodels
	ATG Metamodel
	Concrete Syntax Metamodel

	The User Interface
	Example Modeling
	Instance Modeling

	Co-Evolution
	Process Modeling

	Evaluation
	Research Questions
	Results
	Comparison with Existing Solutions
	Unconstrained Input
	Metamodeling Support
	Co-Evolution
	Tool Support
	Result

	Conclusion
	Summary and Contributions
	Limitations and Future Work

	Bibliography
	Appendices
	Source Code
	Sample Process

