Methodology for Efficient Design of Continuous/Discrete Co-Simulation Tool

G. Nicolescu, H. Boucheneb, L. Gheorghe, F. Bouchimma

Ecole Polytechnique de Montréal Tel : (514) 340 4711 ext 5434 Fax: (514) 340 3240 Email : gabriela.nicolescu@polymtl.ca

Continuous/Discrete Systems

- Two types of components integration
- Continuous timed
 - Discrete event
 - Illustrative systems
 - Electro-mechanical
 - Mixed-signal
 - Radio
 - Hybrid
 - •

Continuous/Discrete Systems Design

- Collaboration between different teams
- Incremental refinements through different abstraction levels with specific execution models
- Validation requires joint execution of heterogeneous execution models
 - Co-Simulation Technique

Challenges for Continuous/Discrete Co-Simulation

- Defining new tools facilitating cooperation between different teams
 - Exploiting powerful existing tools (Simulink, SystemC, ...)
 - Taking into account implementation choices
 - Enabling easy specification, automatic generation for cosimulation interfaces

Outline

- Introduction
- Methodology for co-simulation tool design
- Application for CODIS tool design
- Conclusions

Continuous/Discrete Systems <u>- Heterogeneous Execution Models -</u>

Concept Model	Time	Communication means	Processes activation rules
Discrete	It advances discretely	Set of events	Processes are sensitive to events
Continuous	It advances by integration steps (IS)	Piecewise- Continuous signals	Processes are executed at each IS

Events exchanged between the two models the discrete models

- Sampling events
- Update signal events
- State events

Continuous/Discrete Systems - Heterogeneous Execution Models -

G. Nicolescu

Methodology for Co-Simulation Tool Design

Outline

- Introduction
- Methodology for co-simulation tool design
- Application for CODIS tool design
- Conclusions

Synchronization <u> — Operational Semantic —</u>

Based on DEVS DEV = < X, S, Y, δint, δext, λ, ta >

 $X = \{ (pd, vd) \mid pd \in InPorts, vd \in Xpd \}$ - set of input ports and their values in the discrete domain

 $Y = \{(pd, vd) | pd \in OutPorts, vd \in Ypd \}$ - set of output ports and their values in the discrete domain

S = is the set of sequential state (locations)

e = the elapsed time from the last transition

 $\mathbf{Q} = \{(s,e) | s \in S, 0 \le ta(s)\}$ is the total state set

\overline{o}int : S \rightarrow S - internal transition function

\overline{o}ext : Q x X \rightarrow S - external transition function where:

 λ : S \rightarrow Y - output function

ta : time advance function – real and positive, can be 0 and ∞ .

Synchronization <u> — Operational Semantic —</u>

> DESS = $\langle X, Y, Q, f, \lambda \rangle$

X = {(p_c , v_c)| p_c ∈ InPorts, v_c ∈ ℜ } set of input ports and their values in the continuous domain

Y = {(p_c , v_c)| $p_c \in OutPorts$, $v_c \in \Re$ } set of output ports and their values in the continuous domain

Q = set of states

- f: Q x $X \rightarrow Q$ is the rate of change function
- λ: Q(+X) → Y output function

Hétérogénéité continu/discret

Hétérogénéité continu/discret

17

Distribution de la fonctionnalité de synchro aux interfaces de co-sim.

HLSLA 2007

G. Nicolescu

Distribution de la fonctionnalité de synchro aux interfaces de co-sim.

HLSLA 2007

Verification of Co-Simulation interfaces using UPAAL

G. Nicolescu

HLSLA 2007

20

Verification of Co-Simulation interfaces using UPAAL

C:/Documents and Settings	s/Luiza lugan/Desktop/uppaal-4.0.2/demo/interface	2.xml - UPPAAL		
		→		
Editor Simulator Verifier				
Drag out	Name: IDiscret Parameters:			
Project → Declarations → 3 IContinu → 3 IDiscret → 3 SimOsc → 3 SimCont → 5 System declarations	Discrete Domain Interface	td = NextTime% 100. cp = cp%2 pmSlinDisc? DataToBus? DataToBus?		
	NevtTimeCoty	NoStateEvent		
	NextimeGou			
	StateEvent StateEvent==0			
		extTime= (td_cycle[i]) % 100,		
		Event?		
		WattEvent		

HLSLA 2007

G. Nicolescu

Verification of Co-Simulation interfaces using UPAAL

HLSLA 2007

G. Nicolescu

Verification of Co-Simulation interfaces using UPAAL

- Properties verification
 - No deadlock
 - Timing synchronization
 - All state events are detected
 - No false state events

Generic Architecture for Continuous/Discrete Co-Simulation

Generic Architecture for Continuous/Discrete Simulation

Définition architecture interne des intf. et éléments de la bibliothèque

CODIS Framework - Simulation Flow -

Generation of Continuous Model Interfaces

Simulink input specification - 🗆 × Simulation Format Tools Help □ ☞ ■ ● ※ 階 億 与 → ↑ 으 오 → ■ ■ ■ 器 出 2 参 田 🕽 ■ 🗟 🖩 😣 ※ 階 🕄 (クラ 介 | ユ 오 | 🕨 = 10.0 🔢 🖽 🖉 🧇 🎬 🐌 ode45 2 | 🕨 = 🔟 🛛 🔛 🔛 🔛 🔛 🔛 🐨 🥵 美国副会会会の Simulink Specification with co-simulation interfaces

Co-Simulation Library

Simulink Co-Simulation \succ Library Blocks

- State-Event detection and signalling
- Integration Step ۲ Adjustment
- Synchronization with • sampling and update events
- Communication

Generation of Discrete Model Interfaces

- Based on a SystemC Co-Simulation Library
 - State events management blocks
 - Communication blocks
- Automatic generation of co-simulation interfaces by a code generator that has as input userdefined parameters
 - Data types
 - No. and type of ports
 - Synchronization model

CODIS

- Continuous/Discrete simulation -

SystemC/Simulink accurate simulation

• Easy integration, generic library elements

CODIS - Applications -

- Control applications Robot arm manipulator, Bottle filling system
- > Mixed signal application: Σ/Δ Converter
- Wireless application: Radar system

Conclusions

- Continuous/discrete systems designs requires global validation
 - Co-simulation Technique
- Challenges for continuous/discrete co-simulation
 - Definition of global execution models
 - Automatic generation of co-simulation interfaces
- Methodology for co-simulation tools design
 - Application for SystemC/Simulink

Performances analysis

- Inter-Simulators Communication overhead
 - 20% of the total simulation time
- Overhead caused by the Simulink integration step adjustment
 - max. 5% of total simulation time
- SystemC Synchronization overhead
 - max. 0.2% of the total simulation time

Continuous/Discrete Systems - Synchronization Models -

Synchronization model	Synchronization Step	Advantages	Inconvenient
Full synchronisation mode	Each discrete step and/or state event occurrence	General	Synchronization overhead
Predictible events mode	Each update/sampling events and/or state event occurrence	Improve performances	The prediction of update/sample events is required
Unpredictable events mode	Each update/sampling events and/or state event occurrence	Non-periodic update/sample events	Rollback may be required