<) The MathWorks MATLAB'&SIMULINK®

Introduction—How do control system design
engineers use models and simulation?

Pieter J. Mosterman

G00Z 'SHIOMUIBIN 8YL ©

<) The MathWorks MATLAB& SIMULINK®

Panelists

- Lennart Ljung, Linkdping University, Sweden

- Albert Benveniste, INRIA/IRISA, France

- Jonathan Sprinkle, University of California,
Berkeley, USA

<) The MathWorks MATLAB*& SIMULINK®

Introduction

= Let’s look at a body electronics example
—~ A power window

— We have a few requirements:
. We want the window to go up and down
. We want it to start moving within 200 [ms] after pressing a button
. We want it to open and close within 4 [s]

<) The MathWorks

MATLAB*& SIMULINK®

Plant Design — System ldentification

ldentify some door measurements

—> length, weight, heigth

Devise a lift mechanism

v_window

m_holder
— l_ Lo
t_in m_main

Select a preliminary actuator

IIIIIIII

RRRRRRR
Po%igg MMMMM +
electronics
O7DOWN
NEG MMMMMMMMMMMMMMM

RRRRRRR D-C Motor

<) The MathWorks MATLAB'& SIMULINK®

Dynamic System Ildentification

= Obtain coefficients of dynamic behavior

—~ A power window
voltage, position

force, curre

— Design dynamic model

— |cs3
cs1 B
cs2| ——
— |CC F cs1
ma@ cs3 L)
e "
rotate iti

voltage, position . Eﬁ_ —_ measurem ent force, current
w5

angle
> measurement :
\ > < >
cs3 F B = !
F B CS1
B oor
B

<) The MathWorks MATLAB’& SIMULINK®

Hardware Design

= Actuator

— DC motor
[e

= Sensor
— Armature current

e
'J
=

— Window force

<) The MathWorks MATLAB*& SIMULINK®

Initial Control Design

= State transition behavior of the window control

"---II--III-III--II--III-III-III--II--III-III--II--II--III-III--II-.'.

»*) obstacle e
& function ; [endstop | after(100,ticks)] ‘ [] e

o /)

-

[]

[]

u

merNeutral passengerNeutraI [passenger[2] =
assenger[3 ~ -\ u

[p gerl3] [endstop](_‘>k [passenger[1]] [endstoN .
[passenger[1]] u

passengerup =

passengerDown [n,passengerDown] |n|PassengerUpJ .
[]

after(100,ticks) after(100,ticks .
[passenger[1]] [passenger[1]] .
assenger[2 H

toPassengerDow@ [manPassengerDowrﬂ(‘ [P ger2) (manpasse”gerUp][autoPassengerUpj .
[passenger[3]] .

& =i

[driver[3]] [endstop] [en dstop] l[driver[Z]] E
driverDown N dr|verUp iniDriveUp :
iniDriverDown .
(nibriverbown] (ariver(T]
[driver[1]] ¢

f 1 ick after(100,ticks)
after(100ticks) / [driver[1]]
[driver[2]] -
- V manDriverU h
autoDriverDown [manDriverDown\ § P

. [driver[3]] _ 10
“+
‘.-.III--II--III-III--II--II--III-III--II--III-III--II--II--III-III--“‘

V ||

[driver[1]]

<) The MathWorks MATLAB*& SIMULINK®

Feedback Control Loop

= Control the velocity of window movement

— Continuous-time model of the physics
voltage position

=

— Synthesize a controller

<) The MathWorks MATLAB*& SIMULINK®

Control Implementation

= Assign sample times for discrete-time computer

-

L=

—
>l _,_’E

||'? Rl
[l

= Assign computations to tasks
— Include (thread) scheduler

el R T B TR NE IR 1T I0 T NN TD NR T1 NO J1 | I-1

g9
I

|
|

L
L
|

<) The MathWorks MATLAB'& SIMULINK®

Verify the Design

= Generate Hybrid Automaton
—~ Make models explicit

X >= top

free
inv: bot < x <= top
du: dx/dt = fOO(x,u,t

top
inv: X >= top
du: dx/dt = f10(x,u,t)

¥ > bot X < X DbjEGt UbjECt && -
X <= bot - X >= X_object
ottom obstruct
inv: X <= bot inv: x >= x_object

du: dx/dt = f01(x,u,t) du: dx/dt = f11(x,u,t)

» __l The MathWorks

MATLAB®&

SIMULINK®

Generate Code

= For example, C code

28 |* Function prototypes for chart <S1> /confrol */

29 static void exit_intfemal c2 s2 safe(SFpower window_con_rtw_c2instancesStruct
30 *chartinstance);

31 static void

32 exit_intemal_c2 s7 driverNeufral(SFpower_window _con_rtw_c2InstanceStruct

33 *chartinstance);

35 #define IN_NO_ACTIVE_CHILD (0)

36 #define IN_c2_s1_emergencyDown 1

37 #define IN_c2_s2_safe 2

38 #define IN_c2_s3 _driverDown 1

39 #define IN_c2_s7 _driveNeutral 2

591 /* Logic:'<S3> either' */

592 b_either = power window_con_B.passenger_control_b
593 || power_window_con_B.passenger_control_a;
594

595 /*Logic: '=S13 >/allow_action' incorporates:
596 * Inport: '<Root> /driver_up'

597 * Logic:'<S13> Joverrule'

598 */

599 1Mb_temp34 = power_window_con_U.driver_up
600 && (I(rtb _either));

= Many different code formats (‘targets’)
—~ Emulate fixed point
— Real-time
— Instrumented for debugging
— Highly optimized

<) The MathWorks MATLAB*& SIMULINK®

Go (back) to hardware

= Different hardware implementations
— General purpose PC

=

— Rapid real-time prototype platform (includes I/O)

<) The MathWorks MATLAB*& SIMULINK

Control System Design Overview

control detail plant
<~ .

Control Design Engineers

A

force, current : ation
1
: voltage, position
. . 1
System Design Engineers J_E .U,
1
© ! e [
[1
Qo 1
is] 1)
=] ! I
o 1 TE W
e 1
o 1
< 1
—{«. B} !
[oier | Bpusrundou conbpouege contolo 1
' Software Design Engineers :
J— 1
§ 1
D
©
force, current : force, cupr
g s,
2
i
o

Plant Design Engineers

%% Optimal Solution

voltage, position force, Currefw LR SR force, current

W Ceptiean f1n e rircor

, b i (e o

- — MW P emre ot Sative Winer fireer
yw = filter(bw.1,v2);
PR s

Signal Proc'essing Engineers

Architecture Design Engineers

Communications Engineers

Test & Tune

Calibration Engineers

Engineers

Hardware Design Engineers

v_window

electronics

<) The MathWorks MATLAB& SIMULINK®

An Industrial Design Process

requirements
specification tield diagnosis
calibration
modeling)
rests :: { , _ hardware
simulation - » in the
loop
. rocessor
rapid : " L
/)" % fest
prototype L
on-farget software
rapid <«— i the
prototy pe loop
-

production . .
code T ation implementation

Pieter J. Mosterman, Sameer Prabhu, and Tom Erkkinen,
"An Industrial Embedded Control System Design Process," in
Proceedings of The Inaugural CDEN Design Conference (CDEN'04), July 29
- 30, Montreal, Quebec, Canada, 2004.

http://msdl.cs.mcgill.ca/people/mosterman/papers/cden04/fp.pdf�

</} The MathWorks MATLAB& SIMULINK®

‘Issues’

= Multi-Formalism Questions

— Is there an underlying set of semantic notions onto which a
sufficiently broad set of modeling languages used in the control
system design process can be mapped?

— Isthere an API for a general computing machine that would be
sufficient to combine models in different formalisms typically used in
control system design.

— What is the best approach to quickly generating different modeling
formalisms? Libraries? Meta-modeling? Programming against an
API?

— Is there an optimal formalism to translate between modeling
formalisms? In particular, what is the preferred formalism to go from
controller model to embedded and/or real-time code for different
targets?

<) The MathWorks MATLAB'&SIMULINK®

More ‘Issues’

= Industry Related Questions

— Is there a need for users in industrial control system design to
configure and/or restrict usage of modeling languages and how is this
best achieved? How can style guides be enforced?

— What needs are there to support enterprise-wide modeling? What
requirements are sufficient to guarantee composability of models?
Is composability a requirement?

— Is there a need to allow users to configure their tools specifically for
controller design? How should this be supported?

<) The MathWorks MATLAB'& SIMULINK®

Further ‘Issues’

« Model Transformation Questions

— Is there a way to get to explicit models that are used in control law
synthesis (e.g., ordinary differential equations, state transition
diagrams, hybrid automata) from models that are designed using more
intuitive and practicable methods (e.g., implicit differential and
algebraic equations, integrated legacy code, guarded equations).

— Are there methods to generate models from scenarios? In other
words, can we derive declarative models from axiomatic
specifications?

— Are modern-day model reduction techniques sufficient to handle the
complexity of industrial models so control synthesis methods can be
applied?

= Behavior Generation Questions

— Is simulation a sufficiently powerful technology for control system

