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Abstract: At the core of Model-Based Design, computational models have caused an autocat-
alytic trend to use computation in design by unlocking the potential of model transformations.
Precisely specifying a computational transformation requires well-defined semantics of the source
and target representations. In this regard, continuous-time behavior is an essential aspect
of time-based block diagrams that is typically approximated by numerical integration. The
corresponding theory, however, is mostly concerned with local error and the mathematical
semantics of long time behavior fails to be sufficiently precise from a computational perspective.
In this work, first a computational semantics is developed based on a multi-stage variable-
step solver. Next, the computational semantics of the discrete and continuous parts of hybrid
systems and their interaction are formalized in a unifying framework. The framework exploits a
successful functional approach to defining discrete-time and discrete-event behavior established
in other work. Unification is then achieved by developing a computational representation of the
continuous-time behavior as pure functions on streams.
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1. INTRODUCTION

Over the past decades, the feature set of engineered sys-
tems has rapidly increased. To a large extent this in-
crease has been enabled by merit of the flexible realization
of functionality in embedded software. Simultaneously,
Model-Based Design (e.g., Friedman and Ghidella (2006);
Nicolescu and Mosterman (2009); Potter (2004)) has be-
come essential to competitively, if not just successfully,
engineer embedded systems (e.g., Jones (2005)). Computa-
tion can then be identified as the main driver that enables
(i) the design of modern systems and (ii) an unparallelled
feature differentiation. Moreover, in addition to theory
and experimentation, the President’s Information Tech-
nology Advisory Committee (2005) identified computation
as having become the third pillar of scientific discovery.
These combined observations underscore the importance
of, indeed, computational studies of computation.

Concentrating on Model-Based Design, of particular im-
portance is the status of computational models as first-
class deliverables to allow:

• An interconnected infrastructure for management of
design artifacts with support for fine-grain active
links. For example, requirements for production code

can be linked to the code lines with automatic tracing
between them.

• Generating behavior from specifications to provide
early insight into design decisions, share unambiguous
information between design teams, and automate
tasks such as optimization and experimental design.

• Verification of domain specific constraints that are
static as well as dynamic in nature. This includes stat-
ically checking not only static semantics (e.g., type
checks) but also dynamic semantics (e.g., array out
of bound indexing).

• Automated completion of a partial design and gener-
ation of an implementation by means of transforma-
tions. For example, data types of variables in a design
can be automatically determined while imperative
source code for an implementation can be generated
from a declarative design.

If not solely, design deliverables used to primarily be pa-
per documents. Simulation engineers would code a docu-
mented design specification in FORTRAN for design en-
gineers to study its behavior. After several such iterations
the design specification would then be implemented by
software engineers, for example in ADA.

Computational models have, to a large extent, eliminated
the strict boundaries between these different activities. As



a result, models are now being shared at an enterprise level
as primary elements of communication between groups,
departments, and even companies. This trend instilled
a desire to establish open compendia (e.g., Adam et al.
(2008)) or repositories (e.g., Mosterman et al. (2008))
of models that are well documented, fully tested, and
possibly certified or accredited.

In turn, the rapid increase in available computing power
has given rise to the design productivity gap, documented
by the Semiconductor Industry Association (1999) as
the discrepancy between the computations that can be
manufactured versus the computational functionality that
can be designed. To close this gap, design must be enabled
at a more abstract level. A related manifestation is the
software producibility problem that has been identified by
Sullivan (2005) as one of the causes for the F-22 delivery
delays and budget overruns. At present, there is isolated
evidence of the significance of raising of abstraction levels
from the source code to the model level. For example,
fixed-point data type determination can now be performed
at the model level, which unlocks the benefits of simulating
fixed-point behavior before coding an implementation. A
more systematic and structured approach, however, is
needed with its success contingent upon the availability
of compilers and platforms.

Evaluating these observations exposes two computation
related trends. In a horizontal sense, models are shared by
user communities within and across organizations, often
as a container of intellectual property (IP). In a vertical
sense, models are exploited in ‘lowering’ a specification
to an implementation, promoting model transformations
(e.g., Mens and Gorp (2006)) to critical ingredients in
modern engineered system design. As outlined by Moster-
man and Vangheluwe (2004), research at the confluence of
(i) modeling of model transformations to enable (ii) use
of multiple (domain-specific) formalisms at (iii) varying
levels of abstraction has given rise to the field of Computer
Automated Multiparadigm Modeling (CAMPaM), which
attempts to provide a sound reasoning framework across
these dimensions, supported by model-based tools.

Common to the computation trends, then, is a distinct
need for well-defined semantics of the models so as to:

• be able to decouple the IP captured by a model from
its implementation,

• design domain-specific formalisms and raise the ab-
straction level, and

• enable domain-specific formalisms by providing au-
tomation support for lowering.

However, while the abstract syntax of textual formalisms
can be well defined in a Backus-Naur Form and of graph-
ical formalisms by a metamodel (e.g., Engstrom and
Krueger (2000); Flatscher (2002)), Zhang and Xu (2004)
posit that so far there is no like generally accepted solution
for rigorously, consistently, and unambiguously capturing
semantics.

In previous work, Denckla and Mosterman (2006) defined
the computational semantics of discrete-time modeling for-
malisms such as time-based block diagrams in SimulinkR©

(2008) as a composition of pure functions on streams.
Because of the time sampled nature of embedded control

and signal processing systems, discrete-time formalisms
are often used in modeling. The strict functional approach
allows capturing the meaning of a model in a denotational
sense (i.e., what it does) as opposed to an operational sense
(i.e., how it does something) (e.g., Nielson and Nielson
(1992); Zhang and Xu (2004)). This decouples a specifi-
cation from its implementation and in general provides
a representation that is easier to reason about, for one
because with pure functions there is no internal state to
account for.

With physics comprising an essential part of embedded
systems, there is an interest in also defining the semantics
of the corresponding modeling formalisms as denotational
composition of functions on streams. Since physics is well
modeled by differential equations (e.g., Breedveld (1984);
Cellier et al. (1996)), either ordinary differential equations
(ODEs) or differential and algebraic equations (DAEs),
a unifying framework must encompass the computational
semantics of discrete-time and continuous-time models.
Moreover, discrete state changes are often part of the
otherwise continuous-time models of physics, for example
to capture mode changes in models of a component such
as a valve or diode. Thus, the framework should further
support defining semantics of discrete-event models.

The work presented here attempts to formulate the compu-
tational semantics of the continuous-time part of a model
when it is specified by differential equations. It recognizes
that the numerical integration algorithms employed for
computational simulation are key in precisely capturing
how a model executes. In order to honor the continuity
requirements of differential equations (such as a continu-
ous domain and time-derivative constraints), a multi-stage
variable-step solver is studied.

The presentation is structured so that Section 2 first
provides a brief background of the challenges that the
mathematical theory of numerical integration is facing. In
Section 3, two numerical integration schemes are devel-
oped to constitute the basis of a computational semantics.
Section 4 then presents a functional representation of a
variable-step solver based on these integration schemes. In
Section 5, a case study combines the variable-step solver
with discrete-time and discrete-event model parts. Sec-
tion 6 evaluates how the presented work advances previous
achievements as well as its more general contribution.
Section 7 concludes and outlines future work.

2. BACKGROUND

As stated by the High Confidence Software and Sys-
tems Coordinating Group (2009), a critical challenge in
the design of high-integrity embedded systems, especially
when they are of a self-configuring nature, is modeling
the environment. An important motivation is the poten-
tial role of accurate physics models of the environment
in the certification (e.g., SC-167 (1992)) of such variable
structure systems. Similarly, in control system design, a
model of the physical system under control is indispensable
for the synthesis of control algorithms (e.g., Åström and
Wittenmark (1984)).

Given the macrophysical principles of conservation of
energy and continuity of power (e.g., Paynter (1961); Falk



and Ruppel (1976)), dynamic models of physical systems
are often represented by differential equations, possibly
supplemented with algebraic constraints (e.g., to formulate
balance equations). These models can be designed based
on first principles, such as the laws of physics. Parameters
are measured or estimated and once a system of equations
is arrived at, it is common to further tune the parameters
to best fit the model to measured data. In the extreme
of empirical models, only the order of a model may be
provided as an approximation of required detail.

Generally, the parameters are fit based on computational
simulation of the differential equations. As a testimony to
the absence of an innate and unique separation between
solver and model, the ultimate model then incorporates
the computational characteristics of the numerical solver
that generates the simulation. So, parts of a model may
be moved to the solver and vice versa.

Though the mathematical derivation of solver equations
provides an estimate of the error bounds, and as such it
can be claimed that the solver semantics are defined at
the mathematical level, these error bounds are only local.
Guckenheimer (2002) elaborates that the global error
of numerical integration is unknown for most practical
cases. For example, consider an ideal inductor/capacitor
oscillator

{

p = −q̇
q = ṗ

(1)

where p may represent flux, q may represent charge, and
where the mass and capacitance parameters are chosen to
be 1. The initial flux is chosen p0 = 1 and the initial charge
q0 = 0. This system of equations can be solved in Simulink
with a variable-step Dormand-Prince integration method
(ode45) that computes fourth and fifth order Runge-Kutta
solutions and adapts the step size based on the difference.
The solution exhibits a decrease in energy over time, as
shown by the solid line in Fig. 1.
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Fig. 1. Numerical simulation of total energy in an ideal
oscillator

Numerical dissipation is typical for integration schemes,
where the mathematical theory is mostly concerned with
the accuracy of the integration algorithm as the discretiza-
tion tends to 0. Dynamic systems theory in turn, is more
concerned with asymptotic behavior but finds it difficult to
determine the long time error in general. Qualitative anal-
yses exploit structure in the underlying problem and may
be the best approach. For example, Sanz-Serna (1992) pro-
vides an overview of how symplectic integrators preserve
the properties of Hamiltonian systems such as the ideal
oscillator in (1). Figure 1 illustrates this by the dotted line,

which is a solution generated by numerical integration with
the modified trapezoidal scheme in Simulink (ode23t) that
according to Shampine et al. (1999) eliminates numerical
damping.

Shampine et al. (1999) continue to state that numerically
damped behavior at infinity may, in fact, be desirable.
Indeed, symplectic integrators have limited applicability in
general, which brings about a situation where mathemat-
ical semantics of the long time error behavior of general-
purpose solvers are still not well developed. This is even
more pronounced for solvers with variable step and so-
phisticated error control (e.g., Bujakiewicz (1994); Petzold
(1982)). Heuristics to improve performance for classes of
systems further exacerbate the matter. Moreover, to be
able to efficiently handle continous-time behavior inter-
spersed with discrete changes, these solvers interact with
algorithms to accurately detect and locate when discrete
events occur. The delicate interplay between these differ-
ent algorithms with different error bounds and convergence
characteristics makes it difficult to establish a compre-
hensive mathematical analysis. This holds especially true
in the face of potentially infinite sensitivity because of
discrete state changes. In order to precisely define the
semantics of a model that relies on a given solver, though,
an accurate definition of the solver behavior is imperative.
A computational semantics then provides a representation
for analysis at a useful level without attempting to solve
the dynamic systems problems.

Not any less important a ground for developing a com-
putational semantics is the intent to establish a frame-
work that allows integrating continuous-time semantics
with discrete-time and discrete-event semantics of various
formalisms. In this regards, a computational representa-
tion of a solver may facilitate capturing the semantics
of combined formalisms, which enables a sound approach
to the study of the intricacies that emerge from such
combinations. Given that discrete-time behavior is well
defined by functions that operate on streams (e.g., Caspi
and Pouzet (1997); Reekie (1994)), unification can be
achieved by choosing stream-based functions to capture
the computational semantics of continuous-time behavior
as well. From an analytic point of view, this allows a
comprehensive consideration as a functional composition.

3. A COMPUTATIONAL REPRESENTATION OF
CONTINUOUS TIME

To obtain a computational representation of time, a fixed-
step Euler and trapezoidal integration scheme are first
reviewed. Next, a variable-step approach is outlined.

3.1 Fixed-Step Integration

Numerical integration is performed in a number of stages
at which the dynamic system is evaluated. A single-stage
and a multi-stage approach follow some preliminaries.

Preliminaries Disregarding the forcing function for now,
a continuous-time function can often be represented as an
ODE

dx

dt
= ẋ = f(x); f : Rn → Rn (2)



where x is the state vector. The vector field (2) that
this defines is assumed to be Lipschitz continuous and to
satisfy the usual conditions for existence and uniqueness
of a solution. In a neighborhood of Rn × 0, this field
then has a unique flow Φ : Rn × R → Rn such that
Φ(x, 0) = x and Φ̇(x, t) = f(Φ(x, t)). Since there rarely are
explicit formulae for Φ in terms of f , iterative numerical
integration algorithms are the norm for obtaining solutions
over time based on discrete approximations.

Single-Stage Integration To compute the time, t, map
for each iteration, a Forward Euler integration scheme
approximates the state that results from making a time
step of magnitude h as

x((k + 1)h) = x(kh) + hẋ(kh) = x(kh) + hf(x(kh)) (3)

with k the natural numbers representing the iteration step.

To investigate the numerical accuracy of this method, the
Taylor series of f can be expanded around kh to determine
the value at (k + 1)h (note that (k + 1)h − kh = h)

x((k + 1)h) = x(kh) +
ẋ(kh)

1!
h +

ẍ(kh)

2!
h2 + . . . (4)

This agrees to the second degree with the Forward Euler
approximation in (3). The estimate of the error per time

step (the local error) then becomes
ẍ(kh)

2
h2 or O(h2).

The long time error can be investigated by first defining a
discrete map of step h, Eh(x) = x + h · f(x). To integrate
to a point in time, te, this map can be iteratively applied
Ek+1

h (x) = Eh(Ek
h(x)) with E0

h(x) = x. Now, by reducing
the step size h → 0 and taking l → ∞ steps such that
l · h = te, the iterative solution El

h(x) → Φ(x, te).

The compounded error bound at te becomes l
ẍ(kh)

2
h2.

Though the error can be made arbitrarily small by re-
ducing h, in turn l becomes arbitrarily large. A large l
has two complications: (i) an arbitrarily large error from
floating point computations is introduced and (ii) the
computational performance becomes arbitrarily slow.

Multi-Stage Integration To mitigate the error and per-
formance problems, at least to an extent, a multi-stage
solver can be applied. For example, a trapezoidal integra-
tion scheme employs the average of the gradient at the
beginning and end point of the integration step as

x((k + 1)h) = x(kh) +
h

2
(ẋ((k + 1)h) + ẋ(kh)) . (5)

This can be rewritten to
x((k + 1)h) = x(kh) + hẋ(kh) + . . .

h2

2

(

ẋ((k+1)h)−ẋ(kh)
h

)

(6)

and with a finite difference approximation ẍ(kh) =
ẋ((k + 1)h) − ẋ(kh)

h
+O(h) this matches the Taylor series

up to the third degree. The error term then becomes of
order O(h3). As a result, the solution converges an order
of magnitude quicker to 0, thereby reducing the size of l to
get to te with the same error bound, while only requiring
a linear increase in the number of computations.

The drawback is the use of ẋ((k + 1)h) on the right-hand
side, which because of k+1 leads to an implicit integration
scheme. This can be solved by computing a Forward Euler
approximation ẋ((k + 1)h) = f(x(kh) + hẋ(kh)) to obtain
an explicit scheme again.

It is important to note that the first-order and higher-
order derivatives impose continuity constraints on the
continuous-time behavior. Mixing discretized continuous-
time with discrete-time behavior may invalidate the math-
ematical assumptions and corresponding error bounds.

3.2 Variable-Step Solver

Because of the inverse relation between the step size h
and the rate of change in f(x), the step size h can be
varied over time as f(x) changes, without compromising
the local error bound. For x where f(x) changes with a
relatively high rate with respect to t, the system is said to
be stiff. The solver can thus selectively choose small steps
in stiff intervals, while larger steps can be taken elsewhere
to improve efficiency.

Integration schemes with an adaptive step size are typi-
cally referred to as variable-step solvers. An estimate of
the error term may be responsible for the change in step
size during integration. In some approaches, the error term
is approximated by evaluating the difference between the
change of x as computed by two different numerical in-
tegration algorithms (e.g., the Dormand-Prince method).
If this difference exceeds a given threshold, the step size
chosen is reduced and the evaluation performed anew.

4. A FUNCTIONAL VARIABLE-STEP SOLVER

Previous work by Denckla and Mosterman (2008) devel-
oped a combined stream-based and state-based approach
to defining the computational semantics of block diagrams.
A functional semantics (i.e., without explicit state), Bd-

Fun, and a systems semantics (i.e., with explicit state),
BdSys, were specified in the general lambda calculus
(e.g., Peyton-Jones (1987)) framework of computation.
The functional language Haskell (e.g., Jones (2003)) was
chosen for the implementation which allows defining a
stream as a potentially infinite (because of lazy evaluation)
list of values. Embedding state-based semantics into a
stream-based semantics was achieved by hierarchical de-
composition. This, in turn, supported the implementation
of a variable-step solver as a system with explicit state
so as to let the variable-step solver manipulate the state
freely.

The work presented here aims at eliminating the strict
decomposition boundary around the variable-step solver
by providing it as a stream-based representation. As such,
reasoning about the continuous-time aspects embedded in
a discrete-time model becomes completely transparent.

A variable-step solver is then represented as a pure func-
tion (i.e., without side effects), g, on an input stream, u,
returning an output stream, y, as in

y = g(u). (7)

To implement an explicit variable-step solver based on
the Forward Euler and trapezoidal integration schemes



of Section 3, a two-stage evaluation is required. The first
stage computes the Euler approximation and the second
stage employs this approximation to compute the average
gradient over the integration step for the trapezoidal
approximation. A functional implementation of the solver
cannot rely on internal state to reinstate the values at the
beginning of the integration step. Instead, the computed
change in state is subtracted if the step size must be
reduced. This results in the Euler integration scheme

yeuler(e) = . . .
{

∑e

i=1 u(i)h(i) − u(i − 2)h(i − 2)p(i) if odd(e)
yeuler(e − 1) otherwise

(8)

with e the evaluations as natural numbers larger than 0
and where p is 1 if the step size h must be reduced and
0 otherwise. The undefined initial values (u(−1), u(0),
h(−1), and h(0)) are taken to be 0. Note that the Euler
integration is computed every other evaluation to allow
the two-stage nature of the trapezoidal scheme.

The trapezoidal approximation adds the contribution at
the beginning and end of the integration step based on
the same integration step size. If necessary, the state is
reinstated at the beginning of the integration step by
subtracting the aggregate contribution computed for the
previous step. This results in the following integration
scheme

ytrap(e) =
∑e

i=1
(u(i−1)+u(i))h(i−1)

2 − . . .
(u(i−3)+u(i−2))h(i−3)

2 p(i − 1)
(9)

where undefined initial values can be taken to be 0.

The contributions of the Euler and of the trapezoidal ap-
proximations over the integration step are then compared
based on the difference in the contribution to each of the
states

d(e) = (u(e − 3) + u(e − 2))h(e−3)
2 − . . .

u(e − 2)h(e − 2)
. (10)

If the maximum of each of the absolute differences, |d(e)|,
is less than a predefined tolerance, tol, the step is ‘ac-
cepted’ and time moves forward. Otherwise, the time step
is reduced. The acceptance test is implemented by the
variable p as

p(e) =

{

0 if max(|d(e)|) < tol
1 otherwise

. (11)

The step size is adapted based on bisection, starting from
the maximum step size, hmax, as prescribed by the user

h(e) = hmax(1 − p(e)) +
h(e − 1)

2
p(e). (12)

The solver output, y, alternates between the Euler ap-
proximation (to enable the trapezoidal scheme) and the
trapezoidal approximation, where the trapezoidal approx-
imation is considered to be more accurate

y(2e + 1) = yeuler(2e + 1)
y(2e + 2) = ytrap(2e + 2)

(13)

These equations are implemented in Simulink, using the
Memory block as a ‘pre’ operator (a function y(e) =
gpre(u(e)) that produces y(e) = u(e− 1)). The evaluations
are performed iterating on a discrete evaluation step with
nominal value, 1.

5. SIMULATING A STIFF AND HYBRID SYSTEM

The behavior of the solver developed in Section 4 is studied
based on a controlled bouncing ball. The system combines
stiff behavior when the ball is in contact with the floor
with hybrid behavior because of continuous-time motion,
discrete-time control, and discrete-event switching logic.

5.1 A Computational Model

Consider the model of a controlled bouncing ball in Fig. 2.
A ball, a rigid body with mass m, is pulled off the floor by
a hoist with a controlled force Fpull. In addition, there is
a gravitational force, Fg, acting while the floor is modeled
as a stiff spring, C, and damper, R, that combine to exert
a reaction force, Ffloor.

Fpull

R C

m

Fg

x=0

Ffloor
x

Fig. 2. A controlled bouncing ball

The behavior can be represented as an explicit ordinary
differential equation on the position of the ball, x, and the
velocity of the ball, v,

ẋ(t) = v(t)

v̇(t) =
Fpull(t)−Fg+Ffloor(t)

m

(14)

with the forces as a forcing term. The differential equations
can be discretized by the solver of Section 4 based on the
following mapping of variables

u =

[

1
ẋ
v̇

]

, y =

[

t
x
v

]

, x0 =

[

0
0
0

]

(15)

where the first state variable, t, is included in order to
obtain time as a function of evaluations e, t(e). This allows
a unifying framework where all dynamics are represented
as functions of e.

For example, the pull force may be generated by a con-
troller that operates at a given sample rate of 0.5 (s) and
that can be modeled by a discrete-time representation with
integer clock. In case an initial pull force is chosen as 20,
then 10, and then 0 for the remainder of time, this leads
to the following equations

Fcontrol(k) =

{

20 if k = 0
10 if k = 1
0 otherwise

(16)

with k the natural numbers.

To combine (16) with the discretized differential equations,
the behavior must be represented as a function of e.
Because the control is only specified at isolated points in
time, a rate transition from discrete time to continuous



time is mandated. An often used zero-order hold (ZOH)
with sample time Ts (here Ts = 0.5) gives

Fpull(t) = Fcontrol(

⌊

t

Ts

⌋

) (17)

with b.c the floor function and t a function of the eval-
uations, e. Note that the ZOH rate transition introduces
side effects such as additional high frequency components.
In general, different rate transitions can be considered
(e.g., zero padding) and it is important for the modeler to
understand the implications to make an informed decision.

The stiff spring/damper system that models the floor com-
pression is activated when the ball reaches the floor level.
From a Computer Science perspective, hybrid systems
are often modeled as hybrid state machines (e.g., Alur
et al. (1994)) and sequential logic of finite state machines
captures the activation. From a first principles perspective,
modeling the physics as simultaneous constraints is a com-
mon approach (e.g., Otter et al. (2000)) and simultaneous
inequalities capture the activation. To compare these two
approaches, a detailed study follows.

Simultaneous Inequalities When represented by inequal-
ities, the activation is evaluated simultaneously with the
differential equations. The inequalities then hold on the
continuous time domain as

Ffloor(t) =

{

−
(

R · v(t) + x(t)
C

)

if x(t) < 0

0 otherwise
. (18)

As a cautionary note, in a more accurate model, in ad-
dition to position, the switching condition of the reaction
force by the floor is better expressed in terms of velocity
and force (e.g., Mosterman and Biswas (1996); Pfeiffer and
Glocker (1996)).

Finite State Machine An alternative approach models
the discontinuities as sequential logic in the form of a finite
state machine (e.g., Remelhe (2001)). For this case, a finite
state machine is a tuple 〈Ξ, ξ0, Σ, Θ, δ〉 with

Ξ = {ξfree, ξcontact} (19)

the set of two states, where the ball is either free, ξfree, or
in contact with the floor, ξcontact. The initial state is ξfree

ξ0 = ξfree. (20)

To detect a change in state, each time the differential
equations are evaluated, the finite state machine is as well.
Thus the event set consists of one event

Σ = {σevaluation} (21)

and the event is generated for each evaluation (i being the
natural numbers)

e = i → σevaluation. (22)

Transitions then occur based on conditions that guard the
transition to free, θfree, and to contact, θcontact,

Θ = {θfree, θcontact}. (23)

These conditions connect the discrete-event model part to
the continuous-time model part by inequalities to deter-
mine their truth value

θcontact = x < 0
θfree = x 6< 0

(24)

where 6< logically negates the result of the < expression.
A transition function δ : Ξ × Θ × Σ → Ξ with the current
state, the truth values of the conditions, and the event that
is generated, formalizes the transition behavior

δ :











ξfree ∧ σevaluation ∧ θcontact → ξcontact

ξfree ∧ σevaluation ∧ θfree → ξfree
ξcontact ∧ σevaluation ∧ θcontact → ξcontact

ξcontact ∧ σevaluation ∧ θfree → ξfree

. (25)

Finally, each of the discrete states corresponds to differ-
ent continuous-time behavior of the forcing term in the
differential equations as

ξcontact : Ffloor(t) = −R · v(t) + x(t)
C

ξfree : Ffloor(t) = 0
(26)

5.2 Simulation

Simulation of the bouncing ball based on the specifica-
tions in Section 5.1 with the spring/damper modeled by
simultaneous inequalities, is shown in Fig. 3 for model
parameters m = 7, R = 5, C = 2.5 · 10−3 and solver
parameters hmax = 0.01 and tol = 7.5 · 10−4. Figure 3(a)
shows the position of the ball against time. After an initial
upward motion, the ball returns to the floor and upon
contact the floor is compressed till the velocity of the ball
reverses and it starts moving up again. The solid line is
the trajectory as computed by the solver developed in
Section 4. The trajectory compares well with the dashed
line, wich is the trajectory as computed by the Dormand-
Prince integration method (ode45) in Simulink with the
same relative tolerance and maximum step size. For longer
simulation times the discrepancy increases as expected
because the Dormand-Prince method is of higher order.
The solver of Section 4 can now be studied in more detail.

Discretized Continuous Behavior Figure 3(b) shows the
position of the ball as a function of evaluations. This
illustrates that the number of evaluations per distance
traveled increases significantly when the ball is in contact
with the floor (position < 0). Figure 3(c) further clarifies
this by showing time as a function of evaluations. The
discretization in time becomes finer grained, because the
variable-step solver reduces its step size to approximate
the stiff behavior of the floor. Moreover, when reducing
the step size, the solver moves time back, as Figure 3(d)
shows in more detail in around 0.5 (s).

Figure 3(d) also reveals how the two-stage nature of the
solver leads to time being held constant for two consec-
utive evaluations. After the pair of evaluations e = 100
(to complete the Euler approximation) and e = 101 (to
complete the trapezoidal approximation), time is reversed
as a consequence of the discontinuous change in control
force at time 0.5 (s). When such a discontinuity occurs in
an integration step, the Euler and the trapezoidal approx-
imations result in significantly different values for the ball
velocity. This is because the Euler approximation is based
on the values at the beginning of the integration step only
while the trapezoidal approximation is based on values at
both the beginning and end of the integration step. Cellier
(1979) observed this and employed a separate zero-crossing
function to locate the discontinuity in time. During an
integration step the discontinuity is not effected but an
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Fig. 3. Bouncing ball simulation.

extrapolation is used for the numerical integration (the
model is said to ‘lie’ to the solver). Note that such zero-
crossing functionality significantly adds to the complexity
of the solver (e.g., Park and Barton (1996)) thus making
a mathematical analysis yet more complicated. Also note
that the σevaluation event then is only generated once a
zero-crossing has been located within tolerance.

Contact Behavior in Detail With the stream-based func-
tional representation available, unlike in previous work by
Mosterman et al. (1998), all computations have become
completely exposed and the different implementations of
the contact behavior can be studied.

Figure 4 shows a simulation based on the simultaneous
inequalities when the state changes from free to contact.

Figure 4(a) shows how the system first attempts to switch
to contact at e = 533 and fails. The underlying reason is
clarified in the correlated position plot shown in Fig. 4(b).
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Fig. 4. Simultaneous inequality switching specification.

At e = 533, the trapezoidal stage first computes a position
below x = 0. The reaction force of the floor is sufficiently
low, though, for the velocity not to exceed the error bound
as determined by (11), see Table 1. At e = 534 and e = 535
the Euler and trapezoidal stages both compute positions
below x = 0 and the reaction force causes a difference
between them that exceeds the tolerance (tol = 7.5 ·10−4),
so the step size is reduced. Evaluation e = 536 and e = 537
reflect the computations at the new step size for the Euler
and trapezoidal stages, respectively, and the corresponding
error still exceeds the tolerance. The step size is reduced
three more times, till for e = 542 and e = 543 the difference
between the Euler and trapezoidal stage (d = 4·10−4) falls
below the error tolerance and a new step of size hmax can
be taken. At this point (e = 542) the Euler approximation
of the position has retreated to a value above x = 0. A like
scenario repeats around evaluation 550 and 560.

Table 1. Simultaneous inequalities switching

Eval Time Position Velocity Ffloor Error

532 2.5450 0.0037 -1.4381 0
533 2.5450 -0.0035 -1.4381 8.5888 0
534 2.5550 -0.0107 -1.4398 11.4717
535 2.5550 -0.0179 -1.4377 14.3430 0.0021
536 2.5500 -0.0035 -1.4348 8.5700
537 2.5500 -0.0107 -1.4369 11.4555 0.0021
538 2.5475 0.0001 -1.4375 0
539 2.5475 -0.0071 -1.4395 10.0333 0.0020
540 2.5462 0.0019 -1.4380 0
541 2.5462 -0.0053 -1.4389 9.3125 0.0009
542 2.5456 0.0028 -1.4381 0
543 2.5456 -0.0044 -1.4385 8.9508 0.0004

Figure 5 shows a simulation of the same scenario based
on the finite state machine representation. In Fig. 5(a)
the system is seen to attempt to switch to contact at



e = 534. Table 2 clarifies how the position at e = 533 is
negative, which sets the θcontact guard to true and enables
the transition to ξcontact (abbreviated as ξcon). Because
the state change is not effected until the consecutive
evaluation, contact is first achieved at e = 534. Another
example of the lag between position computation and
discrete state is the change out of the contact state at e =
539. This change is caused by the position computation
that is slightly above x = 0 at e = 538. As a result,
the reaction force of the floor is computed based on the
previous position evaluation. If undesired, the discrete
state may be kept unchanged instead till the point of
moving into the contact state is located with sufficient
accuracy (the model ‘lies’ about the discrete state).

Table 2. Finite state machine switching

Eval Time Position Velocity Ffloor Error ξcon

532 2.5450 0.0037 -1.4381 0 0
533 2.5450 -0.0035 -1.4381 0 0 0
534 2.5550 -0.0107 -1.4521 11.5331 1
535 2.5550 -0.0179 -1.4438 14.3980 0.0082 1
536 2.5500 -0.0035 -1.4348 8.5820 1
537 2.5500 -0.0107 -1.4369 11.4614 0.0021 1
538 2.5475 0.0001 -1.4375 7.1446 1
539 2.5475 -0.0071 -1.4382 0 0.0008 0
540 2.5462 0.0019 -1.4398 6.4386 1
541 2.5462 -0.0053 -1.4392 0 0.0006 0
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Fig. 5. Finite state machine switching specification.

The two different representations can now be compared
directly. Table 3 shows the computations of the velocity
contribution for each step of the Euler (even evaluations)
and trapezoidal (odd evaluations) approximations in case
of a model with the switching specified by simultaneous
inequalities (labeled ‘Ineq’) or by a finite state machine
(labeled ‘State’). Each time the trapezoidal stage com-
pletes, the difference in contributions is computed to de-
termine the error. In this scenario, the finite state machine
specification converges to a value less than the tolerance

(tol = 7.5 · 10−4) quicker than the simultaneous inequali-
ties, thus resulting in the behavior in Fig. 4 and Fig. 5.

Table 3. Velocity contribution and error

Eval Time Contribution Error
Ineq State Ineq State

532 2.5450 -0.0140 -0.0140
533 2.5450 -0.0140 -0.0140 0 0
534 2.5550 -0.0017 -0.0140
535 2.5550 0.0003 -0.0058 0.0021 0.0082
536 2.5500 0.0032 0.0033
537 2.5500 0.0012 0.0012 0.0021 0.0021
538 2.5475 0.0006 0.0006
539 2.5475 -0.0015 -0.0002 0.0020 0.0008
540 2.5462 0.0000 -0.0018
541 2.5462 -0.0009 -0.0012 0.0009 0.0006
542 2.5456 -0.0000
543 2.5456 -0.0005 0.0004

Note that as per (10), the effect of Ffloor on the error evalu-
ation is delayed. For example, for the case of simultaneous
inequalities, the error to determine the step size that holds
at e = 536 is computed at e = 535 as the difference in the
previous Euler and trapezoidal contributions (d = 0.0021).
Given the two-stage integration, the previous Euler contri-
bution is computed based on Ffloor at evaluation 533 (see
Table 1) and displayed at 534 as −0.0017.

6. EVALUATION

This section briefly discusses specific previous work that
is advanced and results in general. The related work is not
exhaustive yet references throughout should have provided
a good starting point for further investigation.

6.1 Advancing Previous Work

The presented approach supports continuous-time differ-
ential equation models that rely on pure functions on
streams. In previous work on synchronous languages re-
ported by Benveniste et al. (2003), it was shown how func-
tions on streams can capture discrete-time and discrete-
event behavior. Combined with the continuous-time sup-
port, a unifying computational structure results.

An important distinction over synchronous languages is
that there is no implicit underlying discrete clock in the
work presented here. Instead, a sequence of evaluations
is defined which is related to the tagged signal model
introduced by Lee and Sangiovanni-Vincentelli (1996).
The total order on the model of time to describe physics,
however, would have been too restrictive to capture the
computational semantics of the variable-step solver in
Section 4. Instead, time can increase and decrease with
increasing evaluations. So, in this unifying computational
framework, not only is time possibly constant, as was
documented, for example, by Mosterman (2002, 2007)),
it may recede as well.

Decreasing time is well established as ‘roll back’ in the
time warp discrete-event simulation algorithm by Jefferson
(1985). Though the algorithm has been utilized for rigid
body simulation by Mirtich (2000), focus was on efficient
simulation rather than a unifying semantics formulation.



6.2 Hybrid System Semantics Definition

In a general hybrid systems sense, the presented work
holds value in three different dimensions. First, the long
time behavior of numerical integration is relatively poorly
understood. This lack of understanding has not been much
of a practical impediment given that the parameters of
continuous-time models are typically fit against measure-
ments by using computational simulation. As a result, the
solver characteristics become incorporated into the model
and this renders computational consistency paramount,
which necessitates an explicit computational semantics.

Second, as described by Jackson et al. (2009), the defini-
tion of a formalism such as a domain-specific one requires
a precise specification of the semantics. This is important,
for example, in order to be able to develop compilers and
model transformations in general, but also to understand
the expressiveness of a formalism. In addition, the seman-
tics specification may provide a reference implementation
that serves as an executable specification for more efficient
execution engines. With a well-defined semantics, a model
becomes truly defined by the semantics of the formalism,
as opposed to the particulars of this underlying, often
very sophisticated, execution engine. A precise and explicit
semantics is especially important for hybrid systems with
infinite sensitivity such as described by Nikoukhah (2007).

Finally, integrating different formalisms requires the study
of their interaction semantics. The presented unifying
framework introduces a common denominator that facil-
itates the systematic study of such interaction. Subtle
complications become explicit as described by Denckla and
Mosterman (2006). For example, the multi-rate charac-
ter of a multi-stage numerical integration algorithm may
present the need for a rate transition that can be easily
overlooked otherwise.

7. CONCLUSIONS

Continuous-time behavior as represented by differential
equations often does not have a closed form solution
for the trajectories that the equations represent. While
iterative application of numerical integration algorithms
allows obtaining such trajectories, the behavior of the
approximation error over repeated iterations is, in general,
not well understood. To overcome this lack of a precise
definition, a computational semantics of a variable-step
solver has been presented.

In addition to better understand and capture the specifics
of the solver behavior, a formalization as pure functions of
streams fits the framework of other types of semantics such
as discrete-time and discrete-event. It was illustrated how
this allows a comprehensive study of interaction behavior
in a unifying framework.

Future work intends to focus on identifying structure in
the nonmonotonic time as exploited for defining the solver
semantics. Also, the mapping of integers to a floating
point representation is a subject of potential further study.
The numerical effects can lead to dramatically different
behavior, and a scheme to attempt to eliminate such
sensitivity is important in combining continuous-time and
discrete-time models.

c© Simulink is a registered trademark of The MathWorks,
Inc. See www.mathworks.com/trademarks for a list of
additional trademarks.
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