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Abstract

The design of continuous models of physical systems is often most convenient, less error prone, and intuitive with
declarative noncausal constraints that allow an implicit formulation. Discontinuous changes in continuous variables,
however, are in general still modeled by explicit reinitialization constructs. This paper shows that it is beneficial
to model discontinuous changes implicitly as well by changing sets of algebraic constraints. It also shows that the
computation of explicit changes can be automated based on deriving the Kronecker canonical form. An approach that
is numerically more stable is presented for index 1 systems based on deriving a pseudo Kronecker canonical form.
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1 INTRODUCTION

Object oriented modeling has proven to be a powerful
approach to handle the complexity of controlled phys-
ical systems [CFM99, MML99]. It relies on object in-
teraction through well-defined ports and allows a non-
causal approach to modeling where behavior equations
are available in a declarative form. Once the com-
plete set of equations is gathered from each of the con-
stituent behavior specifications along with the connec-
tion equations, if the number of equations and vari-
ables corresponds, an equation sorting and solving al-
gorithm can derive which equations compute which
variables [And94]. Thus, computational causality is
assigned and the original implicit formulation is con-
verted into an explicit one. This approach works well
for modeling continuous behavior and it is argued that
the implicit constraint formulation is indispensable to
handle complex systems [CEO96].

In many cases, physical systems are simulated more
efficiently if discontinuities in behavior are allowed.
Though it is often conceptually easier to design a con-
tinuous model, possibly with highly nonlinear behav-
iors, the phenomena that ensure continuity cause steep
gradients in system behavior that are difficult to deal
with computationally [Bre96].

This is illustrated by the end stop of a hydraulic cylin-
der, shown in Fig. 1. In a continuous model, the behav-
ior can be modeled as nonlinear with a steep gradient in
the exerted force when the cylinder reaches the end stop
(∆x > 0). In a linear approximation, this characteristic
can be modeled as a switch between two modes with
linear models. Note that the change in piston velocity
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(a state variable) is quick but continuous, therefore, this
is called a C0 hybrid system, i.e., the 0th time derivative
of state variables is continuous. A further abstraction
removes the steep gradient and disallows the cylinder
to move beyond ∆x = 0. In this case, there is a change
in causality of the model, and this causes the piston ve-
locity to change discontinuously.
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Figure 1: Level of detail of end stop behavior, nonlin-
ear, C0 hybrid, and hybrid.

In the ModelicaTM [E+99] modeling language, dif-
ferent contraints exist for continuous and discrete vari-
ables. For continuous variables, the single assignment
rule holds, i.e., at each point in time there have to be as
many equations as there are unknowns, besides, to have
a well formed system, the Jacobian has to be regular.
Discrete variables, di, on the other hand, have implicit
equations ḋi = 0 during continuous integration. At time
points when discrete events occur, this equation is not
present, and, therefore, any number of equations can be
added with an upper bound of the number of unknowns.
In case less equations are added, this may lead to un-
derconstrained problems that require heuristics such as
a minimum norm projection to achieve an executable
specification.
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From a modeling perspective, it is desirable to han-
dle discontinuous changes in continuous variables sim-
ilarly. It will be shown how switching of equations
leads to an intuitive approach based on implicit mod-
eling of discontinuities and that it aids the modeling ef-
fort and results in a structured approach to the design
of hybrid models of physical systems. Because no ad-
ditional equations are allowed, existing equations have
to be removed to prevent an overdetermined system. To
avoid the ensuing complexity, at present most model-
ing and simulation tools require such discontinuities to
be explicitly formulated, e.g., in Modelica state vari-
ables can only be re-initialized by means of an explicit
“reinit” operator.

This paper shows that in many cases the need for
such an explicit formulation is inconvenient and ham-
pers the modeling effort. Furthermore, it introduces ad-
ditional equations so the number of unknown variables
and the number of equations does not correspond any-
more. This is solved by changing the status of some
of the state variables to unknown. For this method to
apply, it therefore has to be known exactly which state
variable is re-initialized, and, consequently, has to be
considered an unknown.

Analogous to the continuous modeling effort, the im-
plicit formulation of discontinuities requires additional
model manipulation algorithms to allow simulation. It
is shown how such implicit formulations can be system-
atically treated and an approach is presented for numer-
ical computation of discontinuities in index 1 systems.

2 STATE REINITIALIZATION

Hybrid models of physical systems may contain jumps
in state variable values. For example, consider the two
colliding bodies in Fig. 2 where m1 has an initial veloc-
ity, v1 = v while m2 is at rest. Upon collision, momen-
tum transfers from m1 to m2 depending on their masses,
and a discontinuous change in the state variable values,
the velocities of the masses, takes place.

v

m1 m2

Figure 2: Collision between two bodies.

In many cases, such a system is modeled by a sys-
tem of differential equations where v1 and v2 are re-
initialized when collision is detected

m1v̇1 = 0
m2v̇2 = 0
ẋ1 = v1

ẋ2 = v2

if edge(x1 ≥ x2) then
v1 = m1

m1+m2
(v−1 + v−2 )

v2 = m2
m1+m2

(v−1 + v−2 )

endif

(1)

where the miv̇i = 0 equation indicates there is no ex-
ternal force present. The edge operator is used to indi-
cate that the if clause is only to be executed once, i.e.,
when the condition first becomes true. In Modelica, the
re-initialization is conveniently facilitated by a special
operator, reinit. Along with the pre operator that re-
turns the a priori value of a variable around a discon-
tinuity one can write, e.g., reinit(v1,

m1
m1+m2

(pre(v1) +

pre(v2)).
An important characteristic of the reinit operator

is that it introduces additional equations, e.g., v1 =
m1

m1+m2
(v−1 +v−2 ). In case of the colliding bodies, the re-

initialization equations are added to the existing equa-
tions of continuous behavior. Therefore, to arrive at
a uniquely determined system of equations, additional
unknowns must be introduced as well. To this end, the
variables to be initialized (v1 and v2) are selected to be
unknown at the time of collision although they are state
variables otherwise, and, therefore, known.

The need to explicitly model the discontinuous
change does not stroke with the principle of implicit
modeling for continuous behavior. Because of the ex-
plicit nature, the user has to supply the re-initialization
equations and select on which state variables this op-
erates. This becomes unwieldy and error-prone, and is
inconvenient in case of more complex situations.

Note the difference between the typical treatment of
discrete variables, i.e., variables that are constant during
continuous integration and only change at event times.
For these variables, di, no continuous behavior is speci-
fied, and, therefore, implicitly it is assumed that ḋi = 0.
Because these equations are not explicitly modeled, any
time when an equation operating on discrete variables
is activated, a discrete variable is set to be unknown. As
a result, any number of equations, neq, can be active as
long as it is not more than the number of discrete vari-
ables, nd. In case there are less equations than variables,
a minimum norm fit can be used to find values for all
variables [KMRW97]. This in contrast to the continu-
ous part, where the number of variables and equations
has to always match (except when the reinit operator is
used).

3 IMPLICIT MODELING OF DISCONTINUITIES

The need to explicitly model discontinuous changes
can be circumvented by using additional automated
model manipulation methods. This allows discontinu-
ous changes in state variables to be conveniently and
systematically modeled by switching algebraic equa-
tions that may include algebraic constraints between
state variables. In this case, the system is of a high
index, and only a subspace of the state space is accessi-
ble [Lew92, VLK81]. This subspace and the projection
space that contains the discontinuous changes can be
systematically computed [GM86].

To illustrate, consider the two colliding bodies in
Fig. 2. The differential equation part of this system can
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be modeled by

[

m1 0 0 0
0 m2 0 0

]









v̇1

v̇2

Ḟ1

Ḟ2









=

[

0 0 1 0
0 0 0 1

]









v1

v2

F1

F2









(2)
where Fi is the force acting on body mi. This system of
differential equations is complemented by the algebraic
equations

[

0 0 1 0
0 0 0 1

]









v1

v2

F1

F2









=

[

0
0

]

, (3)

i.e., there is no external force acting.
Upon collision, Newton’s collision rule

v2− v1 =−ε(v−2 − v−1 ) (4)

becomes active. The values of v−1 and v−2 are known
as their final value when first x1 ≥ x2 and continuous
behavior was halted. Furthermore, upon collision the
forces F1 and F2 are equal but opposite, which changes
the system of equations by replacing Eq. (3) with

[

1 1 0 0
0 0 −1 1

]









F1

F2

v1

v2









=

[

0
−ε(v−2 − v−1 )

]

.

(5)
Using Eq. (2) to solve the equation in the top row of
Eq. (5) yields m1v̇1 + m2v̇2 = 0 and this can be inte-
grated over an infinitesimal interval [t−, t] to

m1(v1− v−1 )+m2(v2− v−2 ) = 0, (6)

which embodies the physical conservation of momen-
tum constraint. Combined with Eq. (4) it can be
uniquely solved for v1 and v2.

The advantage of this approach is that no explicit
change in velocity is prescribed. Only Newton’s col-
lision rule is activated at the time of collision. The
corresponding change in velocity can be automatically
computed even when more bodies engage in a collision
simultaneously.

Allowing this change of active equations at events
corresponds to the mechanism for handling discrete
variables, viz., that discrete state variable values are
not considered to be known at event times. Continu-
ous states that are not part of algebraic constraints re-
main unchanged, i.e., the equation xi = x−i holds during
discrete changes analogous to the ḋi = 0 equation for
discrete variables during continuous behavior.

In general, to compute the new values of state vari-
ables when algebraic constraints are activated, a mini-
mum norm approach can be applied. However, it will be
shown that only in particular cases this obeys physical
principles. Instead, an approach is derived based on the
use of the Kronecker Canonical Form (KCF) [DK86].

Consider the system of differential and algebraic
equations

Eẋ = Ax. (7)

Using the λ operator to represent differentiation, this
can be written as a matrix pencil

(λE−A)x = 0 (8)

To transform this system of equations into the KCF, the
following decomposition is applied

Q(λE−A)ZZ−1x = 0 (9)

where a change of basis, y = Z−1x, is applied. This then
yields the system of equations

(λÊ− Â)y = 0 (10)

where K = λÊ− Â is in the KCF.
The change of basis represents a state mapping be-

tween the state variable values immediately before the
event that caused the change in equations, x−, and the
new values, x. This mapping is derived by integrating
the system of equations over an infinitesimal time in-
terval, [t−, t], during which only impulsive terms con-
tribute. In the KCF these impulsive terms correspond
to the variables multiplied by the λ operator.

To illustrate the approach, consider the collision in
Fig. 2 in case it is perfectly nonelastic
[

m1 m2

0 0

][

v̇1

v̇2

]

=

[

0 0
m1m2 −m1m2

][

v1

v2

]

(11)
Here the E and A matrices are singular. The described
approach leads to the transformation
[

1 0
0 1

][

λm1 λm2

−m1m2 m1m2

]

[

1
m1+m2

− 1
m1(m1+m2)

1
m1+m2

1
m2(m1+m2)

]

(12)
to arrive at the KCF

[

λ 0
0 1

]

(13)

Here Z−1 is computed as
[

m1 m2

−m1m2 m1m2

]

(14)

which results in
{

m1v1 +m2v2 = m1v−1 +m2v−2
−m1m2v1 +m1m2v2 = 0

(15)

and this computes the change of momentum
{

v1 = 1
m1+m2

(m1v−1 +m2v−2 )

v2 = 1
m1+m2

(m1v−1 +m2v−2 )
(16)

and conservation of momentum is realized. In other
work a minimum norm fit is proposed [KMRW97] in
which case the new values are (projection along v1 +
v2 = v−1 + v−2 onto v1 = v2)

{

v1 = 1
2 (v−1 + v−2 )

v2 = 1
2 (v−1 + v−2 )

(17)

and only if m1 = m2 momentum is conserved.
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4 A HYDRAULICS EXAMPLE

The benefits of implicit modeling of discontinuous state
changes becomes even clearer in case of a more com-
plex example where the discontinuous changes are not
as straightforward. Consider the hydraulic actuator
shown in Fig. 3. In normal operation, the input pres-
sure, pin, is used to control the position of the piston
with mass, mp, that may be attached to, e.g., the eleva-
tor control surface of an airplane. When the input valve,
vin, is open there is a flow of oil through the valve, fin,
into the cylinder. In case the valve is closed this flow
is 0. When open, the inflow is determined by the pres-
sure drop between the input pressure and the cylinder
pressure, pcyl , and the valve resistance, Rin. This can be
modeled by

if vin then finRin = pin− pcyl else fin = 0 endif (18)

Rin

pin

vpRrelIrel

Roil

Coil
psmp mp

Figure 3: An actuation cylinder and its physical phe-
nomena.

If the cylinder pressure exceeds a threshold value, the
relief valve, vrel , may open to prevent damage. Similar
relations as for the input valve hold, where frel is the
flow of oil through the relief valve out of the cylinder,
Rrel the valve resistance to flow and psump the oil pres-
sure of the sump

if vrel then Irel ḟrel = prel else frel = 0 endif (19)

with
prel = psump− frelRrel + pcyl (20)

Here, because of the dimensions of the relief valve pip-
ing, a fluid inertia, Irel , is attributed to it.

Furthermore, if the small elasticity and dissipation
parameters of the oil, Coil and Roil , are not modeled,
the net flow of oil into the cylinder, fin − frel , has to
correspond to the increased volume because of piston
movement Ap fp, or

Ap fp = fin− frel (21)

where Ap is the area of the piston surface. The force act-
ing on the piston, mp ḟp, depends on the cylinder pres-
sure, pcyl ,

mp ḟp = Ap pcyl (22)

To derive the KCF, first the vector of system vari-
ables, x, is determined as

x = [ fp frel fin pcyl prel ]
T (23)

Now, the differential equation part that holds in each
configuration of closed and open valves is

[

mp 0 0 0 0
0 Irel 0 0 0

]

ẋ =

[

0 0 0 Ap 0
0 0 0 0 1

]

x

(24)
The algebraic equations may change in each configura-
tion. Initially, if the input valve is open and the relief
valve is closed they are

0 =





Ap 1 −1 0 0
0 0 −Rin −1 0
0 −Rrel 0 0 0



x+





0
pin

0





(25)
If during operation the input valve closes, there may

be a quick build-up of pressure in the cylinder that
causes the relief valve to open. In this configuration
the input valve is closed and the relief valve is open,
and the algebraic equations are

0 =





Ap 1 −1 0 0
0 0 −Rin 0 0
0 −Rrel 0 1 −1



x+





0
0

psump





(26)
Note that in both cases the number of equations and
unknowns is five.

To compute the state mapping between these two
modes, let’s first reduce the combined system of differ-
ential and algebraic equations to its second order equiv-
alent
[

mp −ApIrel

0 0

][

ḟp

ḟrel

]

=

[

0 −ApRrel

Ap 1

][

fp

frel

]

(27)
This can be written in the KCF by the following trans-
formations

Q =

[

1 Rrel Apmp

A2
pIrel +mp

0 1

]

(28)

Z =





mp

A2
pIrel +mp

ApIrel
mp

−
Apmp

A2
pIrel+mp

1



 (29)

which yields

K = λÊ− Â =





λmp +
A2

pRrelmp

A2
pIrel+mp

0

0
A2

pIrel +mp

mp



 (30)

The change of basis y = Z−1x requires

Z−1 =





1 −
ApIrel

mp
Apmp

A2
pIrel +mp

mp

A2
pIrel+mp



 (31)
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and because y1 = y−1 and y2 = 0, 1

{

fp−
ApIrel

mp
frel = f−p −

ApIrel
mp

f−rel

Apmp fp +mp frel = 0
(32)

which gives the correct, momentum conserving, state
mapping







fp =− 1
A2

pIrel+mp
(ApIrel f−rel −mp f−p )

frel =
Ap

A2
pIrel+mp

(ApIrel f−rel −mp f−p )
(33)

Note that Rrel does not play a role in this mapping be-
cause it only affects continuous behavior.

In case of explicit re-initialization the modeler has to
identify frel and fp as state variables and calculate the
re-initialization formula. The implicit approach auto-
mates these computations and allows a much more in-
tuitive, flexible, and elegant but also systematic model
specification.

5 IMPLEMENTATION FOR INDEX 1 SYSTEMS

Because of the numerical difficulty to compute the
KCF, a pseudo canonical form is used. The implemen-
tation of all operations that are described relies on LA-
PACK [ABB+95] and BLAS calls.

First, the original system

Eẋ+Ax+Bu = 0 (34)

is tranformed by the decomposition

QEZZ−1ẋ+QAZZ−1x+QBu = 0 (35)

to arrive at the form
[

Ẽ11 Ẽ12

0 Ẽ22

][

˙̃x1
˙̃x2

]

+

[

Ã11 Ã12

0 Ã22

][

x̃1

x̃2

]

+
[

B̃1

B̃2

]

[

u
]

= 0

(36)
where the top and bottom rows correspond to the fi-
nite and infinite eigenvalues, respectively. In case of
an index 1 system, the matrix Ẽ22 = 0 [VLK81], and,
therefore, x̃2 can be computed explicitly to be x̃2 =
−Ã−1

22 B̃2u. However, substitution in the finite part to
compute x̃1 requires the time derivative of u because of
the Ẽ12 cross coupling. Therefore, a further coordinate
transformation x̄ = P−1x̃ is performed with

P =

[

I P12

0 I

]

(37)

to arrive at the form
[

Ē11 0
0 Ē22

][

˙̄x1
˙̄x2

]

+

[

Ā11 Ā12

0 Ā22

][

x̄1
x̄2

]

+
[

B1

B2

]

[

u
]

= 0

(38)

1Note that the
A2

pRrel mp

A2
pIrel+mp

term in the K matrix does not contribute

when integrated over an infinitesimal time interval.

For this transformation, P12 is computed from the re-
quirement that Ẽ11P12 + Ẽ12 = 0. Straightforward com-
putation shows that Ē11 = Ẽ11, Ē22 = Ẽ22, Ā11 = Ã11,
Ā22 = Ã22, and Ā12 = Ã11P12 + Ã12.

To compute the initial values, the Laplace transform
(ẋ = sX − x−) is applied. Because only the initial con-
ditions in the finite part can be chosen freely, this yields

(sĒ11 + Ā11)X̄1 + Ā12X̄2 + B̃1U = Ē11 x̄−1 (39)

The Laplace tranform of the system in original coordi-
nates is

(sQE +QA)X +QBU = QEx− (40)

and equating the initial conditions leads to

x̄1 = Ē−1
11 QEx− (41)

where Ē11 (= Ẽ11) is of full rank. Combined with
x̄2 =−A−1

22 B2u, the initial conditions of the transformed
system are determined, and, therefore, the consistent
initial values of the original system can be computed
by

x = ZP x̄ = ZP

[

Ē−1
11 QEx−

−A−1
22 B2u

]

(42)

These computations are applied to a model of the ac-
tuator cylinder that is automatically generated from a
hybrid bond graph model by HYBRSIM [MB99] with
variables x = [ fp frel pRrel pRin ]

T where pRrel and pRin

are the pressure drop across the resistances Rrel and Rin,
respectively. For parameters mp = 5, Ap = 1, Irel = 10,
Rin = 5, and Rrel = 5, in the mode when the supply valve
is closed and the relief valve open, the following output
is generated (u does not affect the computations and is
not listed):

x− =

[

3
0
0
0

]

(43)

E =

[

0 0 0 0
−1 2 0 0
0 0 0 0
0 0 0 0

]

(44)

A =

[

−5 0 −0.999911 0
0 0 0.2 0
−1 −1 0 0
0 0 0 −1

]

(45)

Ẽ =

[

0.577303 −0.0498672 0 2.15968
0 0 0 0
0 0 0 0
0 0 0 0

]

(46)

Ã =

[

0.192451 −0.0166239 0 −0.0518278
0 −4.68643 0 −2.19267
0 0 −1 0
0 0 0 1.10876

]

(47)

Q =

[

0 −1 0 0
0.957826 0 0.287348 0

0 0 0 1
−0.287348 0 0.957826 0

]

(48)

Z =

[

0.192434 0.881135 0 0.431937
−0.192434 0.465501 0 −0.863874
−0.962257 0.0831195 0 0.259139

0 0 1 0

]

(49)
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P =

[

1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

]

(50)

x =

[

1
−1

−5.00044
0

]

(51)

Note that Ē is not explicitly computed. Also note that
the computed values in Eq. (51) given the initial values
in Eq. (43) comply with the symbolic computations in
Eq. (33).

6 CONCLUSIONS

Continuous modeling of complex physical systems is
supported by the use of implicit modeling techniques.
Automated symbolic processing derives the explicit
form of the implicit system of equations. It is shown
that the same principle of implicit modeling applies
to discontinuous state changes when model configura-
tion changes occur. By conveniently changing algebraic
constraints, a new system of differential and algebraic
equations is formed that may require projection of state
variable values onto a subspace of behavior. This pro-
jection is computed by transforming the matrix pencil
into the Kronecker canonical form (KCF).

A disadvantage of the approach is the difficulty of
obtaining a KCF in general. A pseudo canonical form
that allows numerical stability is shown to be applicable
for index 1 systems.
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computing the Kronecker structure and re-
ducing subspaces of singular pencils A−
λB for uncertain data. In J. Cullum and
R. A. Willoughby, editors, Large Scale
Eigenvalue Problems. Elsevier Science
Publishers B.V. (North-Holland), 1986.

[E+99] Hilding Elmqvist et al. Modelicatm–a uni-
fied object-oriented langauge for physi-
cal systems modeling: Language speci-
fication, December 1999. version 1.3,
http://www.modelica.org/.

[GM86] Eberhard Griepentrog and Roswitha
März. Differential-Algebraic Equations
and Their Numerical Treatment. BSB
Teubner, Leipzig, 1986.

[KMRW97] Peter Kunkel, Volker Mehrmann, Werner
Rath, and Jörg Weickert. A new software
package for linear differential-algebraic
equations. SIAM Journal of Scien-
tific Computing, 18(1):115–138, January
1997.

[Lew92] F. L. Lewis. A tutorial on the geometric
analysis of linear time-invariant implicit
systems. Automatica, 28:119–137, 1992.

[MB99] Pieter J. Mosterman and Gautam Biswas.
A Java Implementation of an Environment
for Hybrid Modeling and Simulation of
Physical Systems. In ICBGM99, pages
157–162, San Francisco, January 1999.

[MML99] Dieter Moormann, Pieter J. Mosterman,
and Gert-Jan Looye. Object-oriented
computational model building of aircraft
flight dynamics and systems. Aerospace
Science and Technology, 3:115–126,
1999.

[VLK81] George C. Verghese, Bernard C. Lévy,
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