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Abstract

Efficient models are not necessarily the most detailed ones. The purpose of a model is to solve a problem and it needs
to be just detailed enough to achieve this. In many cases this may require simplifying models by removing nonlinear
continuous behaviors by means of a piecewise linearization. As a consequence, the model operates in a number of
different continuous modes where different equations describe system behavior. When models are simplified even
further and fast continuous mode transition behaviors are removed, the dynamic coupling between state variables
of interest may reduce to algebraic constraints, causing a reduction of degrees of freedom of the system when mode
changes occur. To generate behaviors for such variable structure systems requires algebraic manipulations to derive the
reduced order system. These algebraic manipulations may include differentiation of equations that is inefficient when
performed during behavior generation. The alternative of pre-compilation is restricted to systems with few modes to
avoid enumeration problems because of the combinatorial explosion. This paper presents a method to handle variable
structure systems with varying algebraic constraints (i.e., run-time index changes) by means of explicit integration
methods complemented by a projection in the impulse space that is consistent with the instantaneous dynamics of the
vector field. The method is demonstrated by modeling and simulation of an AC induction motor.

Keywords: DAE initialization, DAE modeling, simulation, variable structure systems, run-time index changes,
hybrid systems

1 INTRODUCTION

Continuous behavior of physical systems can be well
described in terms of nonlinear ordinary differential
equations (ODE). To achieve efficient models for anal-
ysis, the nonlinearities may be modeled as piecewise
linear behaviors. For example, when in the electrical
circuit in Fig. 1 the switch, Sw1, is closed, the voltage
v12 is connected to ground, and, therefore, at 0 V . The
source voltage Vcc causes a voltage drop across each of
the inductor/resistance series connections. This voltage
drop builds up a flux, p, in the inductors until the cor-
responding current causes a voltage drop across each of
the resistors equal to Vcc (note that this does not have
to happen at the same time for each series connection
branch).

When Sw1 is opened, I1 and I2 become coupled and
the fluxes of I1 and I2 become related to the same cur-
rent. In a continuous model, the switch can be modeled
by a nonlinear resistor that quickly changes its value
from very small to very large when the switch opens.
In a first approximation, this characteristic can be made
piecewise linear by switching between modes with no
resistance (the switch is closed), and with a large resis-
tance (the switch is open). Immediately after the switch
is opened, the mode with large resistance becomes ac-
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tive which induces a large voltage drop to quickly en-
sure i1 = i2, see Fig. 2(a). After this constraint is met,
the fast switching dynamics have settled and the cur-
rent flow through the large resistance becomes negli-
gible. The overall model is of a mixed continuous and
discrete nature, called a hybrid model, but state trajecto-
ries are still continuous. State derivatives may change
discontinuously, though, and, therefore, these models
are referred to as C0 hybrid models, the 0th derivative is
continuous.

I1

i1 i2

R1

Vcc

v12

Vcc

R2 I2

Sw1

Figure 1: Physical system with two possible modes.

In many cases, the piecewise linearized behaviors are
still too complex to handle efficiently, e.g., because of
steep gradients in system behavior that require a small
integration time step in numerical simulation. These
gradients can be abstracted away, but their effect on
gross system behavior needs to be maintained, viz., the
final flux values of the fast transient in Fig. 2(a) when
the i1 = i2 constraint is first met. This is achieved by
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Figure 2: A model with (a) C0 and (b) discontinuous
state behavior.

modeling discontinuous changes, ‘jumps’, in the state
variables, illustrated in Fig. 2(b). A consequence of the
abstraction is that the corresponding models do not sat-
isfy the C0 criterion anymore but are of a general hybrid
systems form.

Singular perturbation methods [KKO86] reduce the
order of a system by abstracting fast dynamic behav-
ior away. In case of the inductor circuit, when the
switch is opened the system reduces from a second or-
der ODE to a first order ODE with a specification of
the discontinuous change in flux. ODE representations
combined with some discrete modeling approach are
utilized by many formalisms to model hybrid behav-
ior [ACHH93, GJ95]. In these paradigms, each global
discrete state, or system mode, has an associated ODE
with varying degree of complexity associated with it.

Designing such models works well if ODE for-
mulations for each mode can be analyzed exhaus-
tively. However, in case of complex systems with many
modes, the method breaks down quickly. For exam-
ple, in Fig. 3 already four modes are present, just by
cascading one inductor/switch combination. Cascading
further inductor/switch combinations causes a combi-
natorial explosion as there are 2n modes for n switches.
It is clear that the enumeration approach fails in case of
an AC induction motor with six or more such switches,
the subject of this paper.

I1R1

Vcc

R2 I2

Sw1

Vcc

R3 I3

Sw2

Figure 3: Physical system with four possible modes.

In an attempt to mitigate these problems, composi-
tional modeling approaches try to exhaustively analyze
model components that can be pieced together without
further analysis [Mos97]. For C0 hybrid systems, this
approach works well. However, since discontinuous
changes often are the aggregate of different interacting
model components, compositionality becomes difficult
to uphold when the C0 constraint is relaxed [MB99b].
For the interacting inductors in Fig. 3, a decomposition
in k sets of m interacting switches is not possible be-
cause all inductors may interact and cause discontinu-
ous state changes that are the result of the aggregate be-
havior. In other words, all inductors belong to the same
causal area [Mos97] and the C0 constraint is violated.

This paper presents an approach to modeling variable
structure systems where a set of state variables may be
collapsed into one new state. The presented approach
dynamically infers the new ODE behavior and possi-
ble discontinuous state changes, which allows the use
of general purpose simulation tools such as MATLAB-
SIMULINK [SIM97] to be used for simulation.

2 ANALYSIS

To introduce the critical problem in modeling the AC
induction motor that is presented in Section 5, consider
the electrical circuit in Fig. 1. The required fast dynam-
ics to achieve i1 = i2 when Sw1 is opened are caused
by some switch resistance, R. If the switch resistance,
R, is abstracted away from the model, the fluxes p1

and p2 that are related to the current by p = iL, with
L the inductance, change instantaneously to achieve the
final values of the fast continuous behavior. This re-
quires to systematically find (i) the magnitude of the
instantaneous state change such that in gross terms it
is consistent with detailed continuous behavior, and (ii)
the dynamic behavior of the reduced order system. To
avoid the need for exhaustive analysis, a critical re-
quirement is that this derivation can be automated and
performed during run-time. This section discusses how
to derive an explicit formulation of the discontinuous
state change from the system of equations that govern
continuous behavior in a mode.

2.1 The Model

First, the electrical circuit in Fig. 1 with an ideal switch
is modeled as a system of equations with a differential
equation and algebraic equation part. The model speci-
fication is graphically depicted in Fig. 4. The differen-
tial equation part represents the first order behavior of
each series branch
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When Sw1 is closed, this is complemented by an alge-
braic constraint, v12 = 0,

[

0 0 0
]





ṗ1
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When Sw1 is open, the algebraic constraint i1 = i2 re-
places v12 = 0. In terms of the state variables p1 and p2

this becomes
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which establishes a manifold in phase space to which
behavior is confined.

differential equationsalgebraic equations

open close

p  = -R /L  p  + V - v1 1 1      1 cc 12

p  = -R /L  p  + V2 2 2      2 cc + v12
p /2p /L  = L1 1 2

v   = 012

Figure 4: Differential and variable algebraic part.

2.1.1 Consistent Initial Conditions

A projection onto the manifold embodied by the alge-
braic constraint in Eq. (3) is derived. Adding the two
rows in Eq. (1) to eliminate v12 gives ṗ1 + ṗ2 =−R1

L1
−

R2
L2 . This can be integrated over an infinitesimal inter-
val [t−0 , t0] where only the time derivative terms con-
tribute because of their impulsive behavior upon open-
ing the switch [Mos98]. This yields

∫ t0
t−0

ṗ1 + ṗ2dt =

(p1 − p−1 )+ (p2 − p−2 ) = 0 with pi = pi(t0) and p−i =
pi(t

−
0 ). From Eq. (3) it follows that p1

L1
= p2

L2
and substi-

tuting p2 = L2
L1

p1 and p1 = L1
L2

p2 results in the projection
equation

p1 = L1
L1+L2

(p−1 + p−2 )

p2 = L2
L1+L2

(p−1 + p−2 )
(4)

where the flux values immediately before the switch
opened, the a priori values, are marked by a − super-
script. A closed form solution to derive the state projec-
tion for a class of equation systems is given in [Mos98].

2.1.2 The Reduced Order Dynamics

Dynamic behavior when Sw1 is open is that of a first
order system, and is derived from Eq. (1) by differen-
tiating the algebraic constraint in Eq. (3) to express ṗ2

in terms of ṗ1. Next, the rows in Eq. (1) are added to
eliminate v12, which gives ṗ1 + ṗ2 =−R1

L1
p1−

R2
L2

p2 and

after substituting p2 = L2
L1

p1 and ṗ2 = L2
L1

ṗ1, the first or-
der ODE can be derived

ṗ1 =−
R1 +R2

L1 +L2
p1. (5)

Algorithms to derive the dynamic behavior on a mani-
fold (the manifold dynamics) are well known [Pan88].
The mode switch between Sw1 closed and Sw1 open can
now be modeled by the hybrid automata in Fig. 5.

open /
p  = L /(L  + L ) (p + )1 1 1 2 1

-
p2

-
close/

p  = p  L /L2 1 2 1

p  = -R /L  p  + V1 1 1      1 cc

p  = -R /L  p  - V2 2 2      2 cc

p  = -(R  + R )/(L  + L ) p1 1 2 1 2 1

Figure 5: Hybrid automata for the diode circuit.

2.2 Automated Handling

In case the pre-enumeration approach is not feasible,
the reduced order system model and its explicit state
change have to be computed during run-time, viz., when
behavior generation infers a new mode. This would al-
low the electrical circuit in Fig. 1 to be modeled di-
rectly by the hybrid automata in Fig. 4. When the
i1 = i2 constraint becomes active, the simulation en-
gine (i) derives the appropriate reduced order model,
and (ii) derives the explicit state variable value changes.
Currently, such sophisticated run-time model process-
ing techniques are not generally available in simula-
tion tools [Mos99]. The feasibility is demonstrated,
e.g., by HYBRSIM [MB99a], where systems such as
in Fig. 1 can be conveniently modeled by hybrid bond
graphs [Mos97], representing the switch by a local fi-
nite state machine with variable algebraic constraints.

3 COMPOSITIONAL MODEL FRAGMENTS

To eliminate the need for run-time equation processing,
the state projection in Eq. (4) is stated locally in each
model component by the general formula

pi = Li
∑ j p−j
∑ j L j

, (∀ j)(p j ∈C) (6)

Here C is the set of all states p j that are coupled, i.e., al-
gebraically related, with pi. Based on this computation,
the projection for each component only requires numer-
ical knowledge of the total value of the coupled states,
p j, that are collapsed into one, pi, and the parameters
that determine the weighting, L j. No algebraic knowl-
edge of a model component’s internal structure and al-
gebraic manipulations are required to execute the state
projection.



IV Mosterman, Neumann, and Preusche

Figure 6 shows the resulting set of equations for the
model components of the switch and inductor in Fig. 1.
The projection equation models the explicit state vari-
able jump when two or more inductors are coupled. To
facilitate this, the inductor model component requires
(i) the inductance of the coupled inductors, needed for
the weighting calculations, and (ii) the flux of the cou-
pled inductors, needed to compute the total value of
the collapsed states. Therefore, these values are made
available as model component output. It will be shown
in Section 4 that this projection also serves to generate
the reduced order (manifold) dynamics.

open close
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Figure 6: General equations for the model components.

The switch can now be modeled as a local finite state
machine that either disconnects its left and right in-
ductors, i.e., the switch is closed, or it enforces alge-
braic constraints, i.e., the switch is open. When there
is no coupling between the inductors, the coupled flux
and inductance are passed as 0 values. Substitution
of Ll,in = Lr,in = 0 and pl,in = pr,in = 0 in the projec-
tion equation shows that p = p−, and no jump occurs.
When there is a coupling, the sum of all dependent in-
ductances to the left is passed to the right and the sum
of all dependent inductances to the right is passed to
the left. Similarly, the total flux is passed to connected
inductors to compute the projection.

The use of this extended inductor model is illus-
trated in Fig. 7. This model is now amenable for di-
rect implementation in widely proliferated simulation
packages such as MATLAB-SIMULINK. Moreover, the
behavior generation technique can be applied without
explicit knowledge of the internal equation structure
of components (no algebraic manipulations are nec-
essary), which supports component based simulation.

The model clearly shows that it can be easily extended
to facilitate any number of inductors without additional
modeling effort. The variable structure that causes run-
time mode changes is not limited to exhaustive analysis
anymore, but the behavior in the actual mode of opera-
tion is dynamically generated during run-time.

4 THE SIMULATION ALGORITHM

Numerical simulation of continuous behavior occurs
with discrete time steps, the integration time step. At
a point in time, tk, the gradient of continuous behav-
ior is calculated, and used to compute new values at
the next integration time tk+1. Abbreviating x(tk) as
xk, this results in the general numerical integration ap-
proach xk+1 = ∆T ẋk +xk. The time step, ∆T = tk+1−tk,
between two integration points, k and k +1, is not nec-
essarily fixed and may be adjusted based on the com-
plexity of the continuous dynamics. To further improve
accuracy, this basic scheme can be modified, e.g., by
applying sophisticated interpolation methods and pre-
vious integration points, xk−i.

After a mode change, the projection equation of the
model derived in Section 3 dynamically computes the
new initial values for the state variables on the manifold
of behavior. However, because the continuous dynam-
ics are of higher order, future behavior is not ensured
to be confined to this manifold. This is solved by using
the integration as an intermediate step to calculate the
preliminary point, x−k+1. After each time step the com-
puted values x−k+1 are projected onto the manifold, see
Fig. 8, to compute the actual state change, xk+1.

i2

i1

xk+1
-

xk+2
-

xk+3
-

xk

xk+1

xk+2

xk+3 i  = i1 2

Figure 8: Numerical integration with additional projec-
tion step.

For n, n > 1, inductors cascaded as illustrated in
Fig. 3, the projection equation becomes

p1,k+1 =
∑n

i=1 p−i,k+1

∑n+1
i=1 Li

L1 (7)

and when treated as independent states, one integration
time step for each individual state results in

p−i,k+1 = pi,k +∆T(−
Ri

Li
pi,k). (8)

Summing these values for n coupled states yields
n

∑
i=1

p−i,k+1 =
n

∑
i=1

pi,k +∆T(−
n

∑
i=1

Ri

Li
pi,k +nVcc) (9)
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Figure 7: Compositional model of the inductor circuit.

This can be substituted in Eq. (7) to yield

p1,k+1 =
∑n

i=1 pi,k +∆T (−∑n
i=1

Ri
Li

pi,k)

∑n
i=1 Li

L1 (10)

Using the algebraic constraints pi,k = Li
L1

p1,k this can be
expressed in terms of p1 as

p1,k+1 = p1,k −∆T
∑n

i=1 Ri

∑n
i=1 Li

p1,k, (11)

which verifies that behavior equals one integration step
of dynamic behavior of a series connection of n induc-
tors (Ltot = ∑n

i=1 Li) and n resistors (Rtot = ∑n
i=1 Ri).

Note that the positive contribution of Vcc at the begin-
ning of the cascaded inductor/switch circuit is canceled
by the negative contribution at the end (see Fig. 3) and
the total voltage drop across the series connection of
coupled inductors is zero. Other work has shown that
projection methods in general can be integrated with so-
phisticated numerical simulation methods that employ
interpolation to achieve high accuracy [Eic91].

5 MODELING THE AC INDUCTION MOTOR

The electrical circuitry of an induction motor contains
a number of cascaded inductances, each with parasitic
resistance, as shown in Fig. 9. To control the flux in
each of the inductors, they are connected in series sep-
arated by a bridge consisting of a switch to ground and
a switch to the source voltage. Each switch is equipped
with a freewheeling diode to protect the electrical cir-
cuit from voltage spikes.

I1R1

Vcc

R2 I2 R3 I3

H T L H

Figure 9: Electrical circuit for driving the induction mo-
tor.

The motor is driven by changing the flux in the in-
ductors, depending on the angle of the rotor. To achieve
the desired flux values, each inductor can be connected
to the source voltage and ground in two different direc-
tions, causing a voltage drop Vcc or −Vcc. A complex
scheme switches each of the switches between closed

and open. When a switch opens, the corresponding
freewheeling diode may become active until the two
connected inductors draw the same current and they can
be coupled without inducing a spike. If a bridge closes
a current path to Vcc it operates in its high (H) state, if
it closes a current path to ground, it operates in its low
(L) state, and if neither current path is closed, it is in its
tri (T ) state, see Fig. 9.

The system is modeled in MATLAB-SIMULINK by
the structure in Fig. 7 where the first and last compo-
nents are connected. The constituent equations of the
model components are shown in Fig. 6. Control logic
switching is modeled by a state transition table and
comparators model the internal event diode switching.
A simulation run of six diodes connected as a ring, with
three bridge state changes is shown in Fig. 10. The solid
curve shows how the current from one inductor changes
over time to achieve desired flux values. The dashed
curves represent neighboring currents that may be cou-
pled with the current of the solid or dashed curves. In
Fig. 10(a), the gray intervals show periods of time when
the freewheeling diodes become active, the commuting
phase, resulting in C0 hybrid behavior. In Fig. 10(b)
the continuous transients because of the freewheeling
diodes are abstracted away, i.e., the diodes are removed
from the model, to obtain faster simulation. As a re-
sult, the system includes discontinuities in state vari-
ables that are handled based on conservation of flux. In
other work [Neu99], a detailed model of an induction
motor using the projection principle is shown to have
good conformance with actual measured data.

6 CONCLUSIONS

In physical system models, when fast continuous be-
havior is abstracted away algebraic constraints between
state variables may arise that change dynamically. This
changes the order of the system, and typically algebraic
manipulations are required to derive this reduced order
system and generate behavior. This paper shows that
this can be circumvented by augmenting the model with
projection equations. The equations describe a consis-
tent projection onto the manifold in phase space con-
stituted by the activated algebraic constraints. When
the algebraic constraints are activated, the projection
equations are first applied to find consistent new ini-
tial conditions in the new mode. Next, dynamic be-
havior is generated by making a numerical time step
while disregarding the constraints and after new val-
ues are computed these are immediately corrected by
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Figure 10: Induction motor simulation with (a) and
without (b) commuting diodes.

applying the projection. This allows simulation of dif-
ferential and algebraic equations (DAE) systems with
variable index by MATLAB-SIMULINK. A modular ap-
proach is supported by designing model components for
the two basic elements, inductor/resistance blocks and
ideal bridges.

Overall, this presents an important result, i.e., that
variable structure systems with complex behaviors can
be simulated by ODE based simulation packages, in
this case, MATLAB-SIMULINK. Furthermore, the mod-
ularized nature allows encapsulation of the model, dis-
allowing access to the internal equation structure while
still generating correct behavior when dependencies be-
tween state variables of several such modules arise.
This is an important advance towards achieving com-
ponent based modeling and simulation.
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