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A unifying modeling method is presented that (1) extends the declarative, equation based,

object oriented modeling approach by discontinuous and variable structure components

which arise from abstractions in physical system models and (2) combines this with

imperative, reactive, discrete event controllers based on the statechart and the sequential

function chart formalisms.

1 Introduction

Design, analysis, and testing of complex dynamic systems,
such as robots, aircraft, automatic gearboxes, and multi-
product batch plants, increasingly relies on modeling and
simulation and requires the integration of different mo-
deling and specification formalisms. For example, consi-
der the primary attitude control surfaces of an airplane as
shown in Fig. 1. In order to design, analyze and test the
attitute control system under realistic conditions, a system
model of the aircraft dynamics (mechanics, aerodynamics,
gravity, wind), engines and actuators (electrical motors and
hydraulic power systems) is needed. Such models often in-
clude nonlinearities which cause large behavior gradients.
By abstracting these phenomena into discontinuities, simu-
lation time and identification effort can be reduced signifi-
cantly. As a result, the model of the physical system com-
bines continuous and discrete behaviors.

Furthermore, systems such as an aircraft include embedded
control functionality, e.g., low-level digital PID type control
as well as high level supervisory logic and redundancy ma-
nagement. In case of the airplane, there is, e.g., redundancy
in the actuators that position the elevators. In turn, these ac-
tuators may be controlled by redundant primary flight con-
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Fig. 1: Primary attitude control surfaces of an airplane.

trol units. Control logic is required to ensure that both of the
elevators are always controlled by only one actuator with at
least some minimal direct link functionality.

This article discusses a method that supports appropria-
te visual andcomputationalrepresentations of all parts of
complex hybrid system models by (1) extending thedecla-
rative, equation based, object oriented modeling approach
[8, 1, 2, 15] by discontinuous and variable structure com-
ponents which arise from abstractions in physical system
models and by (2) combining this withimperative, reacti-
ve, discrete event formalisms, each accompanied by a de-
dicated graphical editor, such as the statechart [11] and the
sequential function chart [5] formalisms. The approach is
illustrated by modeling the dynamics of an aircraft with
composition diagrams and part of the redundancy manage-
ment by statecharts.

2 Object-Oriented Modeling of Physical

Systems

In object-oriented modeling, physical systems are defined
in a component-oriented way bycomposition diagramsthat
are close to the schematics used in many engineering disci-
plines. A typical example is given in Fig. 2 (a screen shot
of a Modelica model [15] in the graphical editor of Dymo-
la [7]). It consists of a direct current motor with gearbox and
load inertia. The connections between the components des-
cribe the real physical connections, e.g., the line connecting
the “resistor” and the ”inductor“ characterizes an electri-
cal line whereas the connection line between the “idealGe-
ar” and the “loadInertia” characterizes a rigid mechanical
connection of two flanges. Components in a composition
diagram are hierarchically structured and may contain other
composition diagrams. The primitive behavior of a compo-
nent is specified by differential equations and by algebraic
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equations such that the equations of the component are only
a function of local variables defined in the component, and
of the interface variables. Because of this structure, a com-
ponent can usually be connected to all other components
which have a compatible interface.

Modeling with composition diagrams is conveniently done
using ModelicaTM, a uniform object-oriented language for
modeling of physical systems, designed by the developers
of the modeling languages Allan, Dymola, NMF, Object-
Math, Omola, SIDOPS+, and Smile as well as a number of
modeling practioners. For details about the Modelica pro-
ject, tools supporting Modelica, and the free Modelica com-
ponent libraries, see http://www.Modelica.org/.

A composition diagram is transformed into a form that
can be simulated by extracting the equations of all com-
ponents and by adding the equations that describe the phy-
sical connections of the interfaces (e.g. equations of the
form v1 = v2 for generalized potential and equations of
the form i1 + i2 + i3 = 0 for generalized flow interface
variables). This procedure results in a set of differential-
algebraic equations of the form:

0= f (ẋ;x;y;t); (1.1)

wherex(t) are variables with derivativeṡx(t) appearing in
the equations andy(t) are algebraic variables. Because of
the systematic component-oriented approach, Eq. (1.1) ty-
pically embodies a large set of equations, where each equa-
tion is a function of only a few variables. Effective symbo-
lic transformation techniques can be applied to transform
Eq. (1.1) into a reduced form that can be solved more effi-
ciently. This is performed by

1. BLT-partitioning, i.e., bypermutingvariables and equati-
ons such thaṫx;y can be computed in an explicit forward
sequence as a function ofx andt, which may require to
solve localalgebraic loops,

2. tearing, i.e., by reducing the dimensions of the algebraic
loops and the number of operations byvariable substitu-
tion,

3. hiding the explicitely solvable algebraic variables from
the integrator, i.e., variablesyi which do not appear in an
algebraic loop are not known to the integrator.

For details of the algorithms, see for example [8, 20].
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Fig. 2: Direct current motor with gearbox and load inertia.
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Fig. 3: Di�erent model levels of diode characteristic.

3 Hybrid Systems Arising From Physical

Abstractions

In a macroscopic view, physical components can be mo-
deled by continuous behavior. However, these models may
contain highly nonlinear behavior which cause large beha-
vior gradients and may operate on widely different time
scales. To achieve efficient simulation and to reduce the
identification effort, relatively fast dynamic behavior can
be abstracted into discontinuities. This is illustrated by dif-
ferent models of a diode shown in Fig. 3, wherei is the
current through the diode andu is the voltage drop between
its pins. A detailed nonlinear characteristic of a diode is
shown on the left in Fig. 3. If the detailed switching behavi-
or around the origin is negligible compared to other model
phenomena, it is often sufficient to approximate the charac-
teristic by a piecewise linear model as shown in the middle
of Fig. 3. This characteristic has a sharp discontinuity in
the first derivative. A further abstraction removes the steep
gradients and disallows the voltage drop to become positi-
ve and the current to become negative, resulting in the ideal
diode model on the right in Fig. 3. This corresponds to an
ideal switch. This abstraction typically gives a simulation
speedup of 1 to 2 orders of magnitude compared to the de-
tailed diode characteristic.

In this section hybrid models which arise fromphysical ab-
stractionsare analyzed in more detail. The goal is to in-
clude local, component-oriented models of ideal switching
elements, such that a modeler can build-up complex mo-
dels from basic components in a convenient way, where
the components and the component connections mimic the
structure of the modeled real world elements.

3.1 Example: Modeling an Ideal Diode

The detailed behavior of the diode in the left of Fig. 3 can
be modeled by an analytic or tabulated functioni = f (u).
This functional dependency is no longer valid for the ide-
al diode characteristic in the right of Fig. 3 because at the
origin (u= 0) there are infinitely many values for the cur-
rent i. In the following, different methods are discussed to
mathematically describe this behavior.
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State transition diagrams

One way to handle the ideal diode is by describing the diode
as a switching system where the model switches between
the two equationsi = 0 andu= 0. This requires a discrete
event switching structure such as, e.g., the state transition
diagram in Fig. 4. For details, see for example [2, 9, 17].
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0  =  i f   o f f   t h e n   i   e l s e   u

Fig. 4: Ideal diode model described with a state transition
diagram.

This approach has the disadvantage that the description of
the ideal diode characteristic isimperativeand notdecla-
rative. If for example, several ideal diodes are dynamically
coupled and one of the transitions will fire, a sequence of
transitions in the state transition diagrams of all diodes are
performed to determine the new switching structure, i.e.,
until no transition fires anymore. It turns out that this se-
quence may not converge, although the physical system has
a unique consistent configuration.

Complementarity conditions

An alternative is to describe the ideal diode characteristic in
a declarativeway by two inequalities and one complemen-
tarity condition:

i � 0; �u� 0; i �u= 0: (1.2)

For some classes of electrical circuits containing ideal di-
odes it is then possible to transform the equations for the
determination of the switching structure of the diodes into
a linear complementarity problem:

y = A x+b; yi � 0; xi � 0; yTx = 0: (1.3)

This approach is advantageous because a consistent swit-
ching state is defined by (1.3) and the solution of (1.3) by
appropriate algorithms is a separate issue. In contrast, the
approach using state transition diagrams can be seen as ha-
ving the solution algorithm built into the model and the-
refore the simulation system cannot utilize algorithms with
better convergence properties. The complementarity formu-
lation for discontinuous systems was developed by Lötstedt
[13] for mechanical systems with unilateral contacts. See
also [22, 24] for further developments.
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Fig. 5: Ideal diode model described as parameterized curve.

Parameterized curve descriptions

The difficulties with the state transition diagrams can al-
so be avoided by recognizing that a 2-dimensional graph
y= f (x) can be described in a more general way by using
either an implicit formulation, 0= f (x;y) or by using apa-
rameterized curve description

x = f1(s)

y = f2(s)

with curve parameters. The latter description is more gene-
ral and can be used to describe an ideal diode uniquely in a
declarative way, see Fig. 5, by the equations

off = s< 0 (1.4a)

u = if off then selse0 (1.4b)

i = if off then 0 elses (1.4c)

This is a set of 3 equations which relate the 4 unknownsoff,
u; i;s. Equations (1.4) can be seen as a reformulation of the
complementarity description (1.2) that allows a direct ap-
plication of the standard algorithms of object-oriented mo-
deling, such as BLT-partitioning and tearing, because the
models are still described by equations and the datatypes of
the unknowns are irrelevant for these algorithms. The pa-
rameterized curve description has the additional advantage
that it allows the description of more general discontinuities
than the complementarity formulation.

In order to understand the consequences of parameterized
curve descriptions, the ideal diode model is used in the rec-
tifier circuit of Fig. 6, where 4 diodes are connected to-
gether, such that a direct current is flowing through the load
(R2;C) driven by an AC voltage source. This circuit has es-
sentially two operational modes: If the source currenti0 is

i0 
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Fig. 6: Recti�er circuit with 4 diodes.
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Fig. 7: Simulation results for the recti�er circuit.

positive, diodes 1 and 4 are on (= switches are closed) and
diodes 2 and 3 are off. If the source current is negative, di-
odes 2 and 3 are on, and diodes 1 and 4 are off. In both
cases the current flows from left to right, i.e., always in the
same direction, through the load (R2;C). Typical simulation
result can be seen in Fig. 7, where the source voltageu0 is
shown together with the voltage drop over the capacitance
uC for two different values of the load1.

Collecting the equations of all components and connecti-
ons, and transforming this set of equations with the algo-
rithms sketched in section 2, results in the state space form

u̇c = f (uc;t) (1.5)

where Table 1 displays the sequence of statements to com-
pute the functionf (uc(t);t). Note, thats1(t), s2(t), s3(t),
s4(t) are the curve parameters of the corresponding ideal
diodes andm1(t), m2(t), m3(t), m4(t) are the boolean varia-
bles that characterize theoff structures of these diodes. It is
assumed that the valuetrue of a boolean variable is repre-
sented by 1 and the valuefalseby 0 (e.g.�m2=R2 =�1=R2

if m2 = true). As can be seen in Table 1, the sets 1 and 3 of
the equations consist of an ordered set of assignment state-
ments which can be evaluated in the given order. However,
set 2 is a coupled set of 9 equations which have to be trea-
ted together in order to compute the 9 unknown variables
m1;m2;m3;m4;s1;s2;s3;s4;w.2

Since integration methods require continuous model equati-
ons, allrelationsof a model3 such ass1 < 0, have to befixed
during integration, in order to guarantee that discontinuous
changes of variables do not occur. Allrelationsaremonito-
red and when a relation changes its value, the time instant
of the switching point is determined up to a certain precisi-
on and the integration is stopped, i.e., an event is localized.
In the Modelica language [15] the modeler does not have
to explicitly take care of this situation, because by default
a change in the value of a relation automatically triggers an
event.

1 R1 = 20Ω; uC1 for R2 = 500Ω, C= 10�4 F ; uC2 for R2 = 10Ω,
C= 10�6 F
2 The auxiliary variablew is only introduced in order to write the
linear system of equations (2) in the table in one line.
3 Relations are expressions of the form ”v1 op v2“, wherev1 and
v2 are variables or values andop is one of>;�;<;�.

Table 1: Sorted equations of recti�er circuit

input : t; uc(t)
output: u̇c(t)

1 u0 := 220 sin(2 �π �50� t)

2

m1 = s1 < 0
m2 = s2 < 0
m3 = s3 < 0
m4 = s4 < 0
w= m1=R1+(1�m1)2
664

0 m2 0 m4

m1 �m2 m3 �m4

w �m2=R1 m3�1 0
m1�1 m2�1 1�m3 1�m4

3
775

2
664

s1

s2

s3

s4

3
775=

2
664
�uc

0
u0=R1

0

3
775

3

v1 :=�m2 �s2

v3 := m4 �s4

uR := uC

iR := uR=R2

i4 := (1�m4) �s4

i3 := (1�m3) �s3

ic := i3+ i4+ iR
u̇c := ic=C

Thus, the relations have a fixed value during integration
(which are the values of the relations from the last event in-
stant). Therefore,m1;m2;m3;m4;w can be computed direct-
ly. The remaining task to solve a system of linear equations
in the unknownss1;s2;s3;s4 can be performed by standard
numerical methods.

If one of the relations changes its value, an event occurs.
At the event instant, (2) is a mixed system of 9 equations
in 5 real (s1;s2;s3;s4;w) and 4 boolean (m1;m2;m3;m4) un-
knowns, whichcannotbe solved by, e.g., Gaussian elimi-
nation, due to the boolean equations. The systems have the
following structure:

m := f (relation(z))
A(m)z = b(m)

(1.6)

wherem are theunknownvariables of type boolean or in-
teger,z are theunknownreal valued variables, relation(z)
characterize relations of the formz2 > z1 and the functions
f characterize boolean or integer expressions of the form
m2 and not (z2 > z1). The first set of equations (m := : : :)
states that the boolean and integer unknownsm can be com-
puted, provided the real-valued variablesz are known. This
includes also equations of the following form:

m1 := z1 > 2

m2 := m1 or z2 < 0

where variablesmi can be utilized on the right hand side
of the assignment statements provided they are calculated
beforehand. The mixed set of equations (1.6) can then be
solved in the following way:
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repeat
r := <guess value for relation(z) >
m := f(r )
A := A(m)
b := b(m)
<solveAz = b for z>

until relation(z) == r

In other words: (1) make anassumptionabout the values
of therelationsin the system of equations. (2) Compute the
non-real variablesm. (3) Compute the real-valued variables
z by Gaussian elemination (m fixed). (4) Compute the re-
lations based on the solution of (2) and (3). If the relation
values agree with the assumptions in (1), the iteration is fi-
nished and the mixed set of equations is solved. Otherwise,
new assumptions on the relations are necessary, and the ite-
ration continues. A useful assumption on the values of the
relations is for example to utilize the values computed in the
last iteration and start the iteration with the values from the
last event instant. By additional algorithmic improvements,
the convergence can be enhanced.

In the worst case, an exhaustive search must be performed,
which may be time consuming if many relations are in-
volved. For example, in the rectifier circuit an exhaustive
search would require to try at every event instant, at most
24 = 16 different combinations of the relations. An alterna-
tive is to formulate (1.6) as a mixed integer linear program
[28] and to use solvers for such problems, e.g., CPLEX [6].

After a solution of the mixed set of equations is found, the
integration is restarted and continues until a new event oc-
curs or the final simulation time is reached.

The technique of parameterized curve descriptions was in-
troduced in [4] and a series of related papers. In [21] it was
shown that this approach leads to mixed real/boolean sy-
stems of equations and algorithms for their solutions were
discussed.

3.2 Non-Unique Solutions

In order that a solution of the mixed set of equations can be
computed, the matrixA in Eq. (1.6) has to be regular for all
trial evaluations. When using ideal switch elements, it often
happens that for certain switching structures this condition
does not hold. For example, in Fig. 8 two cases are shown
for the rectifier circuit of Fig. 6, whereA is singular.

R2
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D2

D3

D4

C

R2

D1

D2

D3

D4

C

v3v1

uC

 

Fig. 8: Con�gurations with non-unique solutions.

In the left part of Fig. 8, all diodes are off. As a conse-
quence, the load elements (R2;C) no longer have a connec-
tion to ground and therefore one of the potentials of the-
se elements can be selected arbitrarily. In the right part of
Fig. 8, all diodes are on. This means that there are two short
cuts over diodes D1, D2 and over D3, D4 and that no cur-
rent flows through the load. It is not possible to tell from
this model, in which way the source current is split over the
two short cuts. Again, one of the currents (e.g. through D1,
D2) is arbitrary and the other one (through D3, D4) can be
computed. In reality, every electrical line has a resistance
and these resistances determine the splitting of the current
in this situation. Since in the model these resistances are
neglected, such a non-physical situation occurs.

At the initial time, the rectifier circuit will be in one of the
singular situations displayed in Fig. 8, if default initial va-
lues are used, because, e.g., all diodes will have the same
default initial values when dragged from a library. For ex-
ample in Modelica, boolean variables have a default value
of falseand therefore variableoff will be initially false, i.e.,
the rectifier circuit will be in the configuration displayed in
the right part of Fig. 8 at initial time.

During continuous simulation the rectifier circuit will be in
one of the essential structural modes, explained previous-
ly. This means that the solution of the mixed systems of
equations at an event instant may fail, because an interme-
diate switching structure leads to a singular linear system
of equations, although the final solution will usually have a
regular matrix.

This problem can be solved based on the following idea: (1)
If the matrixA in Eq. (1.6) is singular, it is checked whether
the equations are still consistent, i.e., that an infinite number
of solutions exists. (2) From the infinitely many solutions,
the one is picked which is ”closest“ to the solution in the
”previous“ step. This is a linear least squares problem with
singular system matrixA that has a unique solution and that
can be solved by standard methods, see e.g. [12].

In general it is possible that the simulation continues in a
singular configuration, although this cannot occur for the
rectifier circuit of Fig. 8. This is uncritical for the configu-
ration in the left of Fig. 8, because at every integration step
the linear least squares problem is solved and this gives a
continuous solution over time, sinceA and b of Eq. 1.6
change continuously. However, for the configuration in the
right of Fig. 8, the equation

uC = v1�v3

holds and sincev1= v3= 0, it follows thatuC = 0, i.e., there
is a constraint equation for the stateuC. This implies thatuC

can no longer be a state. To handle such a situation automa-
tically by a modeling system is a topic of future research.

3.3 Generalizations

From the example, some general conclusions can be drawn:
Hybrid systems which arise fromphysical abstractions
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should be described in such a way that

1. equationsare defined for thedifferent configurationsof
a component, and

2. conditionsspecify when a particular configuration isva-
lid, i.e., the domain of applicability, andnotwhen or how
to switch between configurations. The latter is inherent
in the definition and is deduced by the solution of mixed
sets of equations.

Practically, this means that the configuration dependent be-
haviour of physical systems is described by if-clauses of the
type:

if condition1then
<equations of domain 1>

else ifcondition2then
<equations of domain 2>
...

else
<equations of domain n>

end if

where a domainconditionis defined by boolean or integer
expressions. By replacing every relation in an if-condition
by a boolean variable and by adding an assignment state-
ment for this boolean variable to the corresponding relation,
a physical system model leads to a description which con-
sists of sets ofdifferential-, algebraicandboolean/integer
equationsof the form:

m := fm(relation(ẋ;x;y;t)) (1.7a)

0 = fy(ẋ;x;y;t;m) (1.7b)

wherex(t) are variables with derivativeṡx(t) appearing in
the equations,y(t) are algebraic variables, andm(t) are va-
riables of type boolean or integer. During the continuous
integration, the relations of the DAE4 (= relation(ẋ;x;y;t))
are kept at the value which they had at the last event instant
and Eq. (1.7a) is not evaluated5, i.e., m is constant. As a
consequence, Eq. (1.7b) is a standard DAE and can be sol-
ved by known techniques. Additionally, the relations of the
DAE are used asmonitor functions. When one of the re-
lations changes its value, the switching time is determined
and the integration is stopped, i.e., an event is located. At
an event instant, the complete mixed set of equations (1.7)
is solved by appropriate algorithms6. After a solution, i.e.,
a consistent configuration, is found, the integration is rest-
arted.

An efficientsolution of Eq. (1.7) requires the techniques de-
scribed in section 2. Especially, BLT partitioning is used to

4 DAE is an abbreviation for Differential Algebraic Equation sy-
stem.
5 It could be evaluated, but would always give the same values
for m, since function relation(ẋ;x;y;t) returns the value of the last
event instant during continuous integration.
6 Similarly to the solution of (1.6), the solution of (1.7) can eit-
her be determined by trying different values ofm and solving a
sequence of nonlinear systems of equations or by the solution of a
MINLP (mixed-integer nonlinear program).

identify algebraic loops. If an algebraic loop contains boo-
lean or integer equations, appropriate solution techniques
for mixed systems have to be applied only for this subset
at an event instant. In many practical cases, these subsets
have the linear system structure (1.6). BLT partitioning re-
duces the otherwise exponentially increasing number of dif-
ferent configurations: If different algebraic loops of mixed
systems of equations are identified, these loops can be sol-
ved one after the other. This situation occurs if the physical
elements are not directly coupled.

The technique of parametrized curve descriptions can al-
so be applied for the description of, e.g., ideal valves, pha-
se changes, Coulomb friction, and with some simple en-
hancements also for discontinuities which have a memory,
such as an ideal thyristor model. Although, the discussed
approach is quite general, there are cases which cannot yet
be handled in a satisfactory manner, especially if a structu-
ral change introduces constraints between state variables (=
variable index systems) or if state variables change discon-
tinuously at an event instant, i.e., if impulses occur. These
are topics of ongoing research.

4 Hybrid Systems With Complex Discrete

Control Logic

As discussed in the introduction, technical systems com-
prise physical subsystems as well as computerized monito-
ring and control systems. While elementary control func-
tions are usually implemented as sampled-data controllers
which approximate standard continuous controllers and fil-
ters, higher-level functions such as actuator and sensor su-
pervision, redundancy management or recipe-driven con-
trol comprise a large amount of logical functions and, at
least in a slightly idealized view, operate in an asynchro-
nous, event-driven manner. This means that the controllers
react to external events and generate outputs that change
continuous variables or switches at possibly any instance
of time. In reality, the execution of such control programs
also requires a certain amount of time which usually varies
due to the actual load of the computer system. In abstract
models of discrete systems the execution is assumed to be
infinitely fast so that no delays occur.

4.1 Models of Discrete Controllers

In principle, discrete controllers are discrete state-transition
systems where the transitions are triggered by external
events and may depend on conditions, either that certain
continuous variables of the physical system are within cer-
tain regions or that other discrete systems are in a specified
discrete state, and events which are generated and sent to
other systems when the transition is taken. A state transiti-
on system always is in one and only one discrete state.

If the control logic is modeled in a modular fashion by se-
veral state transition systems, they either perform transiti-
ons independently or are synchronized, e.g. by synchroni-
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zation labels. For more complex systems, a representation
by simple transition systems very soon becomes unmanage-
able. Therefore, more powerful modeling formalisms have
been developed. In technical applications, two higher-level
graphical descriptions are most popular, sequential function
charts (SFCs) and statecharts (SCs). SFCs are included in
the standard IEC 1131-3 [5] as a tool to structure sequential
logical programs. The basic mechanisms are similar to Petri
nets, and SFCs are therefore very convenient to express se-
quential/parallel structures with alternatives and synchroni-
zation of branches, e.g. in recipe driven batch process ope-
ration [10].

Statecharts were introduced by Harel [11] and have beco-
me very popular in the specification of embedded systems,
e.g., in cars and airplanes. Statecharts can be regarded as
an extension of state transition systems by the introduction
of hierarchy (a state can contain substates which either all
are active together or are exclusive), concurrency, broadcast
communication (events may trigger transitions everywhere
in the system) and histories (e.g. after handling an exception
state, the system returns to the previous state or resumes in
a well-defined intermediate state). They provide a compact
and intuitive graphical representation of even very complex
state transition diagrams. Many variants of statecharts have
been developed and are supported by tools for different pur-
poses [27]. A well-known and rigorously defined variant is
that of the commercial design tool Statemate [19].

There are three types of states in a statechart (see Fig. 10):
OR-states (aDevice, processA, processB, and A1), AND-
states (active) and basic states (all other states). Substates of
an AND-state are concurrent states, so that if the statechart
is in the state active, it is at the same time in the states pro-
cessA and processB. Substates of an OR-state are exclusive,
consequently if the statechart is in state A1, it is in exactly
one of the substates, A2 or A3, as well. The default sub-
state, in which the system goes when it enters an OR-state,

off

standby

active
aDevice

processA processB

A1

A2

A3

A4

B1

B2

H*

turnOn

turnOff

turnOff

goStandby

goActive

goB2 [h<1] / i=0

goA4 [h>2]
/intEv1

goA3 intEv1
/ i=i+1

goB1

Fig. 10: A statechart.

is indicated by a default transition. Therefore the statechart
assumes the state off when starting and then the states ac-
tive, processA, processB, A1, A2, and B1 become active,
when the event turnOn is registered. The optional parts of
the transition labels are: ”triggering events [conditions] /
actions“. By means of the history symbol H* the statechart
is able to reenter the last active substates in the scope of
processA , for example A1 and A3, when it has been in
standBy mode and the event goActive occurs.

The main difficulties with statecharts arise from inter-level
transitions, which cross the state hierarchy, e.g., the tran-
sition from A3 to B2, in combination with the possibility
of conflicts with other transitions. The number of possible
conflicts is reduced considerably by complex rules of prio-
rity, which take the structure of the statechart into account
(the transition from A3 to B2 has a higher priority than the
transition from A1 to A4, because the first one leaves the
concurrent state processA), but eventually some conflict is
not handled, so that a nondeterministic situation occurs and
simulation has to stop. Alternatively it is possible to enable
the user to choose a transition interactively. Such a tran-
sition conflict is regarded as a model error that has to be
removed. In other approaches [27], inter-level transitions
are not allowed because of the complex semantics and the
conflicts. However, the expressiveness of statecharts is then
reduced significantly. Another important feature is the op-
tion to execute a statechart step-by-step or by performing a
full internal iteration until no more transitions take place.

4.2 Simulation of Hybrid Systems with Discrete
Controllers and Physical Systems

In [18] it was shown for Petri nets how simple state tran-
sition diagrams can be described in a declarative way by
boolean equations. The advantage is that a corresponding
modeling formalism can be directly realized with a few mo-
del classes within the object-oriented modeling formalism.
A realization was given for the Modelica language.
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More complex discrete systems, e.g., systems modeled by
statecharts are more conveniently described in an impera-
tive than in a declarative object-oriented fashion. E.g., the
priority relation between two interlevel transitions can not
be determined with local equations in predefined objects,
because it depends on the global structure of the statechart.
Also the deep history connector, which can be placed in-
to a state to store the last active sub-states in its scope
and allows their reactivation when re-entering the ancestor-
state, causes problems, because it requires global informati-
on about all sub-states. This approach is also not adequate if
several discrete systems interact because it does not reflect
the essentially sequential behavior of discrete transition se-
quences. Therefore, such discrete control formalisms have
to be realized separately and have to be interfaced to the
object-oriented modeling part of the physical system des-
cription.

Real logic controllers can operate in two basic modes, the
”PLC-mode“ and the sampled-data or synchronous mode.
In the PLC-mode, a cyclic operation is realized where the
inputs to the discrete system are read, then the control logic
is evaluated, then the outputs to the process are updated and
then the inputs are read again. Changes of inputs within one
execution cycle only influence the controller if they persist
until the next start of the cycle. The cycle time varies, de-
pending on the calculations which have to be performed in
the cycle under consideration. In the synchronous mode, all
process variables are sampled at a fixed sampling rate and
the outputs are either set as soon as the computation has
terminated or at the next sampling instant.

Since the modeling of the synchronous mode is well-
known, below only the PLC-mode will be analysed in more
detail. Modeling the PLC-mode behaviour for the case whe-
re only one discrete controller is present, leads to the system
shown in Fig. 11. In the figure, a physical system model is

detailled discrete controller model

event

state transition system delay +
hold

w(ti) v(ti)
Tc(ti)

ti+1=ti+Tc(ti)

physical system model
m:= fm (relation(x, x, y, t) , u)
 0 = fy (x, x, y, u, t, m)

.
.

w(t)=subsetof (x, x, y, u, t, m)
.

(vi, zi) = fv (wi, zi-1)

u(t) = v(ti-1)

ti+1=ti+Tc(ti)

Fig. 11: Physical system and detailled model of discrete con-
troller.

present, which is described essentially by equations of the
type (1.7), but has additional (boolean, integer and real va-
lued) input variablesu(t) to control the physical system by
the discrete controller. At a sampling instantti, some or all

of the physical system variables are sampled and are utili-
zed in the state transition system of the controller, together
with the internal statez(ti�1) of the controller of the pre-
vious sample instantti�1 to compute the controller output
v(ti). The elements of vectorsz andv maybe of boolean,
integer and real type. The calculations within the controller
are performed within the variable computation timeTc(ti)
which depends, e.g., on the number of transitions carried
out. Therefore, the actual output of the controller is delayed
by this time period and the input to the physical system is
the value of the controller output from the last event instant:
u(t) = v(ti�1); ti � t < ti+1. The computation time may be
guessed by the number of performed operations and is used
to define the next event instantti+1 in the future.

The equations of the discrete controller (see Fig. 11)

(vi ;zi) = fv(wi ;zi�1) (1.8)

have to be interpreted in such a way, thatseveraltransitions
may be carried out. Depending on the actual implementati-
on, this number may be bounded by an upper limit or transi-
tions may be executed until no transition fires anymore. The
return value offv is the value of the internal statezi = z(ti)
and of the controller outputvi = v(ti) after carrying out all
these transitions.

This detailled model of a discrete controller is uncritical
to simulate, because the delay in the calculation of the in-
put to the physical system effectively decouples the discrete
and the continuous part. Especially, the discrete controller
can never be included in an algebraic loop together with the
physical system, because the inputu(t) to the physical sy-
stem is a known quantity (= value ofv from the previous
event instant).

In most practical cases, the computation time is small com-
pared to the time constants of the physical processes and
can be neglected. In such a case, the controller need only to
be evaluated if one of its transitions actually fires, since on-
ly then the output of the controller can change. Usually, this
leads to a considerable speed-up of the simulation, since the
number of events to be processed is reduced. Furthermore,
the modeling effort is reduced considerably. The necessa-
ry changes to the discrete controller model are shown in
Fig. 12. Here,z� = z(t� ε), v� = v(t� ε) characterize va-
riable values shortly before the current event is processed
andz, v are the values that are computed at this event instant
and that are kept constant until the next event is processed.
The new variableecharacterizes a trigger signal, which in-
dicates, e.g., whether a relation has changed its value, and
may be utilized in the state transition system. Other changes
compared to the detailed controller model of Fig. 11 are: (1)
The events which trigger the evaluation of the discrete con-
troller are no longer time events which are determined by
the calculation time at the previous event instants, but are
state events which are determined by monitoring the rela-
tions in the controller which are functions of the variables
of the physical system and which potentially may lead to a
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trigger event

state transition system inf. 
delay

w v

w(t)=subsetof (x, x, y, u, t, m)
.

physical system model

 

(v, z) = fv (e,w, z-)

z-

w(t)

u(t) = v-

idealized discrete controller model

event

m:= fm (relation(x, x, y, t) , u)
 0 = fy (x, x, y, u, t, m)

.
.

event

e

w(t)

Fig. 12: Physical system and idealized model of discrete con-
troller.

change of the discrete state, e.g., by firing of a transition. (2)
The computation time is neglected. In order to still keep the
”decoupling property“ of discrete controllers and therefore
to prevent algebraic loops between the discrete controller
and the physical system, an infinitesimally small compu-
tation time is modelled by delaying the controller output
to the physical system input by one event instant (u = v�)
and evaluating the physical system equations again whene-
verv 6= v�, without advancing time. Under this premise the
overall system evolution is computed in one event iteration
loop, which can be described by the following conceptual
algorithm:

// initialisation
(t�;x�;z�) := (tstart;xstart;zstart)
v� := fv0(z�); u� := v�

(ẋ�;y�;m�) :=< solution of physical system;
x�;u�;t� are known>

w� := subsetof(ẋ�;x�;y�;u�;t�;m�)
c� := fc(relation(w�))
u := v�; x := x�; t := t�

repeat // event iteration
(ẋ;y;m) :=< solution of physical system;

x;u;t are known>
w := subsetof(ẋ;x;y;u;t;m) // inputs
c := fc(relation(w)) // conditions
e := fe(c�;c;z�) // events
(v;z) := if e 6= 0 then fv(e;w;z�) else(v�;z�)
// continuous integration,
// when event iteration converged
if v == v� then

< integrate0= fy(ẋ;x;y;u;t;m) until next event>
// copy the values at the event instant
(ẋ;x;y;t) := (ẋ(tevent);x(tevent);y(tevent);tevent)

end if
// initialisation of next iteration
t� := t; x� := x; v� := v; : : :

until t == tend

When a relation has changed its value, the simulation stops
and a discrete event iteration is started: First the physical sy-
stem equations are evaluated, i.e., a mixed system of equa-

tions is solved, to compute the unknown variables of the
physical system:̇x, y andm. Thereafter the transition con-
ditionsc that define the thresholds of the controller are cal-
culated depending on the actual inputsw. In order to detect
that a condition has become true the triggering eventseare
determined by comparing the actual values of the conditi-
onsc with the previous values. If any event has been de-
tected the controller computes the new statez and the new
outputsv. Otherwise, the old values forz andv are used.
Because the possible transitions depend on the actual state,
superfluous evaluations of the state transition functionfv

can be prevented by considering the statez� in the com-
putation of the triggering eventse. If v has changed during
the last iteration step, the event iteration continues and it is
checked if the controller performs another state transition.
If not, the event iteration is stopped and the integration of
the continuous subsystem is restarted.

The sequential evaluation of the discrete and the switched
continuous system does not rule out that this evaluation
runs into an infinite loop – switching between a set of diffe-
rent discrete states – while time does not advance. This can
be detected by monitoring the sequence of discrete states
(if the period is not too large), and the number of discrete
iterations should be limited to a reasonable value. Then the
simulation must be stopped and the model of the discrete
controller must be corrected, e.g., by using a more detai-
led model taking into account the computing time, i.e., by
introducing a finite delay at the output of the controller.

4.3 Simulation of Hybrid Systems with Interacting
Logical Controllers

Complex technological systems such as aircraft or chemical
plants often contain decentralized logical controllers, that
jointly control the physical system part. This may require
a coordination of the actions, so that the controllers have
to interact with each other. How this interaction has to be
considered in the simulation depends strongly on the com-
munication details.

Real PLCs, for example, can communicate in the way that
the data exchange is coupled to the execution cycle. This
means that the PLC calls the main program at the begin-
ning of a cycle with the actual input values and with the
data that it has received during the last cycle from the other
PLCs, and sends the data for the other PLCs after finishing
the program when setting the new outputs to the physical
system. In order to model such a behavior, the data has to
be represented by variables that are handled exactly in the
same way as the outputs to the physical system. The on-
ly difference is that they are provided to other PLCs. This
applies to both the detailed and the idealized PLC model.
Consequently a hybrid system with interacting PLCs can be
modeled simply by inserting the PLC model blocks directly
into the systems composition diagram (including the real or
an infinitesimally small delay at the output) and connecting
them with the physical system parts and the other PLCs.
It is evident, that a more complex communication scheme
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that has access to inner variables of other logical control-
lers at any time, increases the modeling effort considerably,
because it would be necessary to know at which statement
the program is at every point in time.

A different situation arises when several interacting discrete
controllers are modeled in an abstract fashion, e.g. by sim-
ple automata, statecharts or SFCs. From the point of view
of the continuous simulation, interacting discrete systems
must be treated as one aggregated discrete block. This over-
all discrete block performs a sequence of (partially parallel)
steps until it has settled into a final statez and an outputv is
generated, while the continuous simulation time is stopped.
Then the (modular) continuous equations are evaluated. If
this leads to a new triggering of the discrete controller the
discrete system is evaluated again etc. The precise fashion
in which the discrete steps in the communicating discrete
controllers are taken in one event iteration is defined by
the semantics of the discrete formalisms which are used.
It seems not possible, and seems also not to be effective,
to try to express this interaction in an equation-based man-
ner, because the behavior is essentially sequential and not
synchronous.

Thus the treatment of interacting discrete systems which
are modeled by abstract formalisms which assume no exe-
cution time of the discrete steps in an object-oriented fra-
mework requires a preprocessing of the sets of directly in-
teracting discrete blocks into aggregated discrete systems
which can then, e.g., be executed as algorithm sections in
Modelica. This is a topic of our ongoing research.

5 Aircraft Redundancy Control Management

Aircraft are safety critical systems, and, therefore, control
systems incorporate several forms of redundancy. For ex-
ample, the elevator control subsystem of the airplane con-
trols its attitude and may consist of two mechanical eleva-
tors at the rear of the airplane (see Fig. 1) [14, 25]. Each of
these elevators may be controlled by two redundant actua-
tors. The four actuators may be powered by three indepen-
dent hydraulic systems, see Fig. 13.
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Fig. 13: The elevator control system.

At a given time, each elevator is controlled by one of its
actuators only. This actuator is said to be in itsactivemo-
dule actuator control mode (MACM). The redundant actua-

Table 2: Discrete modes of one actuator.

Mode Description
Active The module controls the servo valve in a closed

loop. The corresponding actuator is active and
controls the elevator movement.

Hot and
Standby

The module controls the servo valve in a closed
loop. The corresponding actuator is not active
and operates as a load.

Passive The module is waiting and does not generate
actuator control signals.

Off The module is turned off temporarily because
of an intermittent failure and does not generate
actuator control signals.

Isolated The module is turned off indefinitely.

tor may be in any one of a number of remaining MACMs
defined in Table 2.

The behavioral redundancy requirements may be formali-
zed by a set of rules to switch between MACMs and be
extended with actuator behavior. This allows for testing sy-
stem behavior in failure situations by simulation and requi-
res the specifications to be translated in an executable for-
mat. To this end, an object oriented model is designed for
the continuous dynamics of the system based on the sche-
matic in Fig. 14. This model shows the supply and return
of the hydraulics power system that is used to position the
elevator by means of a positioning cylinder. The control va-
riable in this system is the position of the servo valve, which
controls the amount of oil flow into and out of the cylinder.
A spool valve is included in the hydraulics path to switch
the actuator on and off. When off, the spool valve allows a
flow of oil between the chambers of the cylinders by means
of a loading passage way.

supply PS

LVDT

LVT

LVT RVDT

return

servo valve

spool valve

cylinder
elevator

q q

Fig. 14: The hydraulics of an actuator.

This system lends itself well to an object oriented mode-
ling approach. Interaction between components is based on
energy exchange and takes place by well definded inter-
faces. Complex components such as the cylinder can be
decomposed into subcomponents at a more detailed level
of the hierarchy. The discrete control of an actuator con-
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trol module can be modeled by the statechart shown in
Fig. 15 [14].

RED_CON_SC

ELV_PASSIVE

ELV_STANDBY ELV_HOT

GO_HOT

GO_ACTIVE

GO_STANDBY

PRIORITY_CALCULATION, PRIO_CALCULATE_TT;

FAILURE_CONFIRMED
and LOW_PRESSURE

not FAILURE_CONFIRMED
and not LOW_PRESSURE

FAILURE_CONFIRMED
and not LOW_PRESSURE

ELV_ACTIVE

ELV_OFF

ELV_ISOLATED

Fig. 15: A statechart to model the discrete control of one
actuator on one module.

The statechart redundancy management of the elevator ac-
tuators was integrated in a detailed model of the flight cha-
racteristics of an aircraft [16]. The physical model of the ac-
tuator makes use of the hydraulics library for Dymola [3].
The model includes four statecharts for each of the two pri-
mary flight control units. These eight models are connected
by logical equations.

6 Summary and Further Aspects

In the preceding sections a method was disussed to model
and simulate complex hybrid systems based on appropriate
visualandcomputationalrepresentations of all components
of the system. It was shown that it is important to distin-
guish the sources for the discrete model parts: If discon-
tinuities arise from physical abstractions, e.g., in ideal di-
ode or Coulumb friction elements, a declarative description
should be used, such as a complementarity formulation or a
parameterized curve description. Using a discrete event for-
malism, such as a state transition diagram, may lead to dif-
ficulties because this introduces an infinitesimal delay that
is not present in the physical model and may lead to non-
convergent iterations at an event instant.

The continuous part of a hybrid system can be conveniently
modeled in a declarative form by composition diagrams. On
the other hand, discrete controllers with complex logic are
more conveniently described in an imperative fashion and
it is preferable to utilize graphical editors dedicated to the
specific discrete formalism, e.g., SFC or statechart editors.
Since the execution of a control program requires a certain
amount of time, there is always a delay between the input
and the output of a discrete controller which simplifies the
simulation cycle because no algebraic loop can occur bet-
ween the discrete controller and the physical system. If the
computation time is neglected to speed-up the simulation,
it is useful to still keep an infinitesimal delay to retain the
decoupling property of the real system.

In contrast to other approaches, e.g., the Simulink/Stateflow
simulation environment [26], an integrated simulation mo-
del has been presented that

� is strictly modular and object-oriented on the continuous
level,

� includes a precise event handling and an effective repre-
sentation of switched continuous systems (abstraction of
physical systems),

� includes advanced discrete event modeling formalisms
with precise semantics (Stateflow differs considerably
from the Statemate semantics, e.g., by defining the exe-
cution priority by the vertical position of the blocks on
the screen while other tools do not provide high-level
modeling formalisms),

� treats the interaction of discrete and continuous systems
in a rigorous fashion. The execution of the discrete steps
is not coupled to the steps of the integrator of the conti-
nuous system as this is done, e.g., in Simulink/Stateflow.

It has been assumed so far that discrete systems can be
most conveniently described graphically, since this enhan-
ces intuitiveness. However, there may be applications whe-
re other approaches are easier to use. For example, if a re-
source allocation system is to be modelled which has to
allocate dozens of resources to dozens of control functions,
it seems not to be a good idea to insert a graphical connec-
tion for each relation between resources and control functi-
ons. The clearest way to handle such systems is to specify
the associations in tables and to use the corresponding ma-
thematical relations (on the fundamental sets resources and
control functions) in combination withpropositional logic
to specify the desired behaviour in a generic way [23]. This
may seem to be a less intuitive representation of the beha-
viour, but the relations are declared in a clearer form and the
behaviour is specified independently of the specific asso-
ciations. Such a description form is still within the general
framework discussed in this article.

In applications where the number of possible combinati-
ons of control functions and resources is large, such as
recipe-driven batch processes, it makes sense to dynamical-
ly reconfigure the state vector during simulation as realized,
e.g., in BaSiP [29].
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