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Abstract

Contemporary process control includes continuous and discrete components. At the lowest level, continuous PID controllers are
used for actuation and control. At a higher level, supervisory control mechanisms are used to select appropriate control algorithms for
the different modes of system operation to achieve optimal or near-optimal control. Modeling and analysis of such combined discrete
and continuous components requires hybrid modeling techniques. This paper presents a hybrid modeling paradigm. and discusses its
execution semantics, which are based on the principles of invariance of state and temporal evolution of state. The modeling and
simulation methodology is used to analyze the control behavior of dynamic physical systems, and a model-verification technique
based on divergence of time demonstrates possible applications in design tasks. © 1998 Elsevier Science Lid. All rights reserved.

Keywords: Command and control systems; formal methods; hybrid systems; verification; compositional modeling

1. Introduction

The complexity of large-scale embedded control sys-
tems (Fig. 1) that incorporate computer-based technolo-
gies to assist in design, manufacturing, analysis, control,
and monitoring has increased the significance and the
need for models that can accurately simulate and verify
system behavior. Embedded systems typically operate in
multiple configurations during normal operation. For
example, the Airbus A-320 fly-by-wire system utilizes
a number of modes in normal operation: take off, cruise,
approach, and go-around (Sweet, 1995). Process-control
operations are implemented with Programming Logic
Arrays and software modules. These digital control
mechanisms are discrete, and coexist with low-level con-
tinuous PID control (Garcia et al., 1995; Mosterman and
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Biswas, 1997b). Therefore, modeling schemes for process
control are required to capture both discrete control and
continuous process characteristics. Because of their
mixed continuous/discrete nature, these systems are re-
ferred to as hybrid systems.

Consider the cooling system of a fast breeder reactor,
shown in Fig. 2. The main pump, used to maintain an
adequate flow of coolant, is driven by a synchronous ac
motor. The flow rate depends on the motor revolutions
per minute (rpm), which is determined by the frequency of
the ac signal. To achieve sufficient torque for this flow
rate, a continuous PID controller determines the power
supplied to the motor. Excessive pressures may cause
leaks in the piping that result in violent chemical reactions
because of liquid sodium exposure to air. As a check,
actuated valves installed at different points in the cooling
loop reduce pressures by activating a bypass alarm loop.
These valves also serve to block parts of the system, to
minimize loss of coolant in case of an emergency.

Physical systems are inherently continuous. A precise
valve model would include complex nonlinear relations.
However, opening and closing of the valve can be
achieved in seconds, whereas the time constants asso-
ciated with overall system behaviors are in the order of
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minutes. So, the use of continuous valve models intro-
duces overwhelming and unnecessary detail in the analy-
sis, which can be avoided by representing valve behavior
as discrete but instantaneous on—off switches.

Hybrid modeling techniques provide the basis for a
comprehensive study of the performance of embedded
control systems that includes the effects of implementa-
tion choices such as sampling rates and computation
order in software (Wijbrans, 1993). Mosterman and
Biswas (1996, 1997b, 1998) have developed a theory of
hybrid modeling for dynamic physical systems to sim-
plify the analysis of complex nonlinear behaviors that
includes: (1) time-scale abstraction of fast nonlinear be-
haviors, and (ii) parameter abstraction that ignores small
parasitic component parameters. The resultant hybrid
models are made up of two components:

1. a differential equation model of continuous system
behavior associated with the operational modes of the
system, and

2. adiscrete-event model, based on finite state automata
for handling mode transitions, and correctly transfer-
ring the system state vector from one mode to another
through a sequence of transitions. The principle of
conservation of state governs the transfer of the state
vector between two modes (Mosterman and Biswas,
1997a).
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Fig. 1. An embedded control system.

This paper extends the formal hybrid modeling scheme
to embedded control systems. Section 2 presents the
hybrid system model. Section 3 discusses the set of prin-
ciples that hybrid models of physical systems have to
obey. This includes the principles of invariance of state
and temporal evolution of state. The principle of diver-
gence of time verifies that the system does not get stuck in
a loop of instantaneous changes. Section 4 presents an
application that ensures that the designed control law for
the reactor cooling system in Fig. 2 produces desired
behaviors. Section S presents conclusions of this research.

2. Hybrid modeling formalism

Modeling paradigms like finite state machines (Aho
et al., 1974; Kohavi 1978), Petri nets (Murata, 1989),
Statecharts (Harel, 1987), condition/event systems
{Kowalewski and PreuBig, 1996), CSP (Davies and
Schneider, 1989; Hoare, 1978), and structured methods
(Hatley and Pirbhai, 1988; Ward and Mellor, 1985), have
been extensively employed for analyzing discrete-event
dynamic systems. However, models for embedded con-
trol of complex physical systems necessarily require
a modeling paradigm that combines continuous differ-
ential equation models with these discrete modeling
components.

The continuous system, a chemical process, aircraft,
a nuclear plant, or an automobile engine, may operate in
multiple distinct modes (e.g., auto engine controllers may
switch between different control programs as a function
of the engine rpm). The switching or mode changes may
be modeled by discrete-event switching logic, but within
each mode the system exhibits continuous behavior. In
reality, these mode changes are invoked by discrete ac-
tuators or physical phenomena that occur when variable
values cross prespecified thresholds. Because these are
local effects it is advantageous from the modeling and
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Fig. 2. Continuous and discrete process control.
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simulation viewpoints to reduce the complexity of analy-
sis by utilizing a localized discrete modeling paradigm.
The states of all the local discrete model parts can then be
composed to constitute the global mode of behavior.

Previous work (Mosterman and Biswas, 1996; Nishida
and Doshita, 1987; Otter, 1994) has shown that dynamic
coupling of system variables may cause a sequence of
local discrete state changes before a mode of continuous
behavior is arrived at. For example, consider the cooling
system in Fig. 2, where valve A opens when the pressure
pg exceeds a critical value. If valve A is initially closed
and valve B closes, a quick build-up of pressure causes
A to open. A continuous model of this dynamic build-up
of pressure, though complex, operates on a time scale
much smaller than overall behavior of the system. Behav-
ior analysis is simplified by modeling the opening of valve
A to occur immediately after valve B is closed. The mode
where valve A and B are both closed is instantaneously
departed from, and assumed not to have a representation
in real time. Therefore, it is termed mythical (Mosterman
and Biswas, 1995; Nishida and Doshita, 1987). The in-
stantaneous changes occur because of abstractions; e.g.,
the equations governing the opening and closing of the
valves, and distributed pipe capacity are ignored. It is
critical to assign semantics to the abstract instantaneous
phenomena so that the overall system behavior is
modeled accurately.

In other work (Alur et al., 1994; Guckenheimer and
Johnson, 1995; Nicollin et al., 1991) global switching
logic is introduced to model transitions from one con-
tinuous mode to another, eliminating the intermediate
mythical modes that occur as a chain of instantaneous
local switching effects. For small systems, global mode-
switching behavior can be specified, but for larger sys-
tems all possible permutations of local switching changes
have to be considered in computing the global system
mode changes. This is computationally intractable.

2.1. Architecture

Figure 3 shows the general hybrid architecture of
a controlled physical process. The process and its con-
tinuous controller represent the continuous components
of the system. Configuration changes in the system can be
attributed to three phenomena:

(i) physical system signals crossing prespecified thre-
shold values; these are modeling artifacts that can be
mainly attributed to time scale and parameter ab-
stractions incorporated in the continuous system
model,

(ii) explicit control signals that activate the closed loop
controller, and

(iii) external, open-loop control. The events generated by

these phenomena are labelled, ¢, ., and o,, respec-
tively, in Fig. 3.
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Fig. 3. Hybrid control model of a physical process.

It is assumed that the input signal u is continuous.
Discontinuous changes in the input (e.g., step input)
and changes in the low-level continuous controller are
modeled in the open loop-controller by deactivating the
current input signal and activating the new input.

2.2. The continuous model

Physical system behavior is governed by the principles
of conservation of energy and continuity of power (Payn-
ter, 1961). Dynamic systems are typically described by
a state-space representation and ordinary differential
equations (ODEs),

X(8) = f (x(2), u(2). 1), (1)

where x € X are the system state variables, and ue U
describe the external input to the system. As discussed
carlier, the system under consideration can operate in
multiple modes of continuous behavior, and each mode
1s represented by a different behavior model. The con-
tinuous system model in operational mode x € N is de-
fined as: X(t) = f,(x(¢), u(t), t), where t € ‘R represents time,
X € M™ 1s the continuous state vector, and U € R? is the
vector of input signals. There is one and only one field.
fe» for each mode of continuous operation z;.

2.3. The discrete model

Discrete events can be categorized as time events and
state events (Broenink and Weustink, 1996). Time events
result from digital control, where discrete actuation is
generated by the control algorithm at a point in time.
State events are generated by the process. When certain
signal values cross prespecified thresholds, mode
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transitions are invoked. These discrete changes are
modeled by a transition function, ¢, and transitions are
invoked by events in a set X (see Fig. 3).

Systematic derivation of ¢ requires the consideration
of a number of independent state machines that control
local switching effects. For example, in the liquid sodium
cooling system in Fig. 2, the two valves can be modeled
by two finite state machines that control their on and off
states. The global mode of the system is determined by
considering combinations of the states of the indepen-
dent state machines. Some of these combined modes may
not occur in reality, but they are traversed during behav-
ior generation as the system transitions from one real
mode to another. A primary contribution of this paper
is the establishment of execution semantics that handle
these sequences of mode changes correctly.

The discrete modeling paradigm can be implemen-
ted by Petri nets or finite-state machines. It has three
components:

® I ={ag, ..., 7}, the set of states describing opera-
tional modes of the system.

e X = {0y, ..., 0}, the set of events that can cause state
transitions. Events are generated by the physical pro-
cess, the closed-loop controller, and by external, open-
loop control signals, ie, X =2, x X, x Z,.

® ¢:1xZ — [, a discrete state-transition function that
defines the new mode after an event occurs.

2.4. Interaction

Lygeros et al. (1994) have shown that independent
determination and proofs about the continuous and
discrete behaviors in a hybrid model do not constitute
proofs of the correctness of their combined effects. To
enable hybrid system verification, a formal specification
of the interaction between the continuous and discrete
models has to be established. Interaction between the
continuous and discrete parts is specified by (i) discrete
events triggered by variable value changes in the continu-
ous model, and (ii) a change of mode by the discrete
model. Figure 4 illustrates a block-diagram model of the
interaction and the parameters that govern the interac-
tion process. The interaction can be specified by:

e S e N the signals that result in event generation.

® h: X x U xI— S, computes the signals in a given mode
as a function of the state and input variables,

® g:X xI— X7, transfers the a priori continuous state
vector, X, immediately before switching to the a poste-
riori state vector, X ¥, that represents the initial state in
the new mode, « € I. This may result in discontinuous
changes.

e 7:SxST 52X, where X, = 2, x 2., generates discrete
events from the signal values. These signal values may
be computed from the a priori state vector, S, or the
a posteriori state vector, S*.

o,
-5 O je-=q Y
H A
' S
o
be-e-p h |e
: y
( x*
H
—

%_

A 4

f(l J‘ x‘
ut

Fig. 4. A general hybrid system.
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Figure 4 depicts the interaction process. The function
7 generates discrete events when signals, s € S, cross pre-
specified threshold values. The output function, 4, com-
putes the values of these signals from the continuous
state vector in a mode, . The generated events applied to
the model may result in a mode change in the continuous
operation of the system.

When the system switches modes, the continuous state
vector of the system may change. The function g maps
the state vector from the last continuous mode to the new
continuous mode as a function of the new mode. Mode
transitions are assumed to occur at very fast time scales,
and this mapping function has to satisfy the principle of
conservation of state (charge, momentum, etc.) (Moster-
man and Biswas, 1997a). A natural choice for state vari-
ables are the signals associated with the energy storage
elements in a physical system (e.g, see bond-graph
modeling techniques (Karnopp et al., 1990)). If the size of
the state vector decreases from one mode to another,
implying that state variables have become dependent,
discontinuous changes in state variable values may oc-
cur, which may lead to a loss of energy in the system
(Mosterman and Biswas, 1998). If configuration changes
remove dependencies among energy storage elements,
the state vector increases in size without discontinuous
changes in existing values.

The continuous and discrete model components and
their interface can be put together to define the complete
hybrid system model as a 9-tuple

H={1,2,¢,X,U.f, g, h 7> (2)

The elements conform to the specification by Lennartson
et al. (1996), but the methodology described in this paper
provides a more complete definition for the switching
function y and its arguments. As a next step, execution
semantics are developed for the block diagram structure
in Fig. 4 to ensure consistent behavior generation from
hybrid system models.
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2.5. Execution semantics

Continuous system behavior is governed by the active
field, f;,, in mode %,. At time ¢, signal values correspond-
ing to the continuous state vector x, in mode a, may
invoke an event, ¢. At this point, time evolution is sus-
pended, and the transition function ¢ is activated to
derive a new mode, ; , (see Fig. 5). The g function derives
the a posteriori state vector x* from X, given the new
mode %, . The signal values corresponding to x™ with the
new mode, %, may immediately generate a new event,
causing a consecutive mode transition to o,,. The a poste-
riori state vector, x*, is again determined from X,,, but
now as a function of #,,. Further mode changes may
occur at time point ¢, until a mode, «,,, with state vector,
x 7, is arrived at that does not generate another immedi-
ate transition. This mode and the corresponding state
vector are then established as the new continuous state
description and initial condition, respectively, and the
evolution of behavior in real time resumes. The new state
vector, x, = x 7, is derived from the original state, x,; it
does not depend on the path of intermediate model
configurations. Therefore, =, is called a “real” mode
whereas the %,’s are termed “mythical” (Mosterman and
Biswas, 1995; Nishida and Doshita, 1987).

After the new real mode, 2, is established at a point in
time, t,, the state vector is updated to x*, which may
result in a new sequence of mode changes (Fig. 5). This
sequence terminates in real mode z, and transitions the
system from a point to an interval where the newly
activated system description, f,, describes continuous
evolution with x, = x" as the initial condition, and
evolution of behavior in real time resumes. In real time,
the active real modes (2, %, and x,) follow each other
immediately.

2 i L,
Cesto, [E] <t — ). (3)

Mythical modes that were traversed during sequences of
discontinuous changes hdve no representation on the real
timeline. Figure 4 shows this as two closed loops,
¢ > h—7y and ¢ —»g—h—7, between the continuous
and discrete domains.

3. Validity of hybrid system behavior

The key to developing useful and correct hybrid sys-
tem models is to define formal semantics that govern the
interaction between the continuous and discrete compo-
nents of the model so that systematic behavior-genera-
tion methodologies that do not violate overall physical
system principles can be developed. Previous work
developed a set of principles: invariance of state (Moster-
man and Biswas, 1995), conservation of state (Moster-
man and Biswas, 1997a), temporal evolution of state
(Mosterman, 1997), and divergence of time (Mosterman
and Biswas, 1996) that govern overall system behavior
evolution during discrete transitions from a continuous
mode (possibly) through a sequence of instantaneous
mythical modes, to a new continuous mode of operation
where time continues to evolve along the real time-line.
Some key aspects of this work have been (i) projecting
local model switches to global configuration changes in
the system model, and (ii) computing the initial state in
a new continuous mode of operation after discrete
transitions have occurred. This paper demonstrates the
use of semantics based on invariance of state, temporal
evolution of state, and divergence of time to maintain
consistency of the interactions.

3.1. Invariance of state

Mosterman and Biswas (1998) have demonstrated that
a particular continuous state vector of a physical system
model, p,,, that represents the stored energy in the phys-
ical buffer elements of the system, e.g., springs, tanks, and
inertia elements such as masses, is invariant across con-
secutive, mythical changes in the operational mode of the
system.

3.1.1. Example

To illustrate, consider the simple diode-inductor cir-
cuit in Fig. 6, whose behavior resembles the operation of
the valves in the alarm loop of the secondary sodium
cooling system in Fig. 2. The pressure generated by the
synchronous ac motor is represented by the battery, V,.
In the cooling system, there is a build-up of flow
momentum in the helical coil in the intermediate heat

Fig. 5. System state is derived from the original state vector.



516 P.J. Mosterman et al. | Control Engineering Practice 6 (1998) 511-521

exchanger, which corresponds to the inductor, L, in the
electrical circuit. When the pressure at pp becomes too
large, the valve A opens, represented by the diode, D. The
pressure drop across the pipes is modeled by resistances
R, and R,.

Initially the switch is closed, the inductor builds up
a flux and the diode is inactive (mode 2,4, shown in the
top-left corner of the first box in Fig. 6). Figure 7 shows
the inductor voltage and current in this mode for
0<r<0075ms with parameter values V, =5V,
R, =330Q,R, =22 Q,L =5 mH. When the switch is
suddenly flipped to its off state at t = 0.075 ms, the
system configuration changes to mode o (Figs 6 and 8).
This forces the current through the inductor to 0 instan-
taneously, which would create a large, negative voltage
drop across the inductor to release its energy stored in
the form of flux. However, when the voltage drop across
the diode becomes larger than its threshold voltage (usu-
ally 0.6 V), the diode comes on. This causes a model
switch to mode a,,, and the inductor draws current
through the diode path, and discharges in a continuous
manner. Therefore, no voltage spike occurs in reality. To
generate correct behavior, in the mode %y, the initial
value of current through the diode must equal the current
through the inductor at the moment the switch was
opened (the last continuous mode). If it were based on the
intermediate, mythical configuration, a4q, where the cur-
rent through the inductor was forced to 0 because of the
sudden open circuit, the initial value of the continuous

state vector in the final configuration would indicate that
the current through the diode was 0. This would conflict
with the real, observed behavior of the system.

The simulation shows that the configuration where the
switch is open (OFF) and the diode inactive (OFF) is
never achieved in real time (see Fig. 8). The opening of the
switch immediately activates the diode through which
the inductor discharges. However, this behavior is easier
to infer if one goes through the intermediate mythical
mode where both components are inactive (%9q). The
alternative approach, the method of assumed states, re-
quires exhaustive analysis, and becomes intractable for
larger systems (Kassakian et al., 1991). The plot of the
inductor voltage in Fig. 7 shows the voltage drop at
t = 0.075 ms due to the configuration change as a steep
slope rather than a discontinuous jump. This is an arti-
fact of the fixed step size used in the simulation. The plot
of the inductor current in Fig. 7 illustrates that the initial
inductor current in mode o equals the current just before
10 is departed from, which conforms to physical reality.

3.1.2. Linear systems

The result illustrated above forms the basis for the
general principle of invariance of state, that applies to
any state vector for linear systems.

Conjecture 1. For a hybrid physical system model, the
particular state vector, p,, is invariant across mode
changes.
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Fig. 6. A mythical mode in a physical system.
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Lemma 1 (Invariance of State). Any vector that represents
the state of a linear physical system is invariant across
mode changes.

The proof for the lemma is presented elsewhere (Moster-
man et al., 1997b).

As an illustration, the continuous state vector for the
diode-inductor circuit in Fig. 6 can be defined as the
inductor current, I, or the inductor voltage, V. There is
an algebraic relation between the states defined by the
mode of the system

VL = 0
T: VL = ILRL + VD in 0601 (4)
VL = - ILRL + Vin in 110.

in Xoo

The inductor current chosen as the state variable is
associated with the primary energy storage element in the
circuit for all modes, and, therefore, provides a consistent
mapping across mode changes. Mosterman and Biswas
(1996) have shown that in such cases it is invariant, i.e.,
I; can be expressed in terms of I; ,, the current before
switching, as I} = I} , independent of any intermediate
modes that the system transitions through.*

If the voltage drop across the inductor, V;, is chosen as
the state variable, and its value before switching is V; o,
then, using invariance of state of the special state vari-
able, I, it can be established that I = g(I. o) = I, o and
given the mapping T, : V[ = I/ Ry + V),

Vi =11 0RL + Vp. (5)

If I; o is expressed in terms of V; , using the inverse
mapping T;': I o = — x V5.0 + & Vi, the value of the
new continuous system state can be expressed in terms of

variables before switching by T, ° T, !,

R, R,
Vi ==V, —=Vin + Vp. 6
L R, L.0+R1 D (6)

*Note that g(x) = x is a special case.

This illustrates that the value of any continuous state
vector in a linear system after a sequence of instan-
taneous transitions is independent of the intermediate,
mythical modes. It is completely determined by the state
vector in the original mode and the new mode of continu-
ous operation.

Conjecture 2. This result may be extendable to nonlinear
systems, where T,.' can be computed uniquely. If that is
the case, again the composed function (T, >g-T,.") is
path-invariant, and depends only on the states %, and x,,.

In general, it may be hard to prove that T, exists and
is unique for a nonlinear system.

3.2, Temporal evolution of state

It is clear that mode changes caused by discrete
transitions in the system model may result in configura-
tion changes in the system, as a result of which storage
elements may become dependent, i.e., one cannot assign
independent initial values to the variable associated with
these storage elements. As a result, the order of the
system state vector changes. These dependencies may be
among variables that were independent before the mode
change, or between independent state variables and
exogeneous variables. Dependencies among the state
variables cause discontinuous changes in variable values
that can only occur at well-defined points in time (Mos-
terman, 1997). Continuity of power requires that the
functions on the left and right intervals about the point of
discontinuity (see Fig. 5) be well defined. Therefore, con-
figuration changes result in piecewise continuous behav-
iors with a countable number of simple discontinuities
with derivable limit values (Rudin, 1976). These observa-
tions can be formalized as follows.

Conjecture 3. A hybrid system is piecewise continuous.

Lemma 2 (Temporal Evolution of State). Continuous
state variable values have to be continuous in left-closed
intervals.

The proof for this lemma appears in Mosterman et al.
(1997b).

The required left closed intervals of state variable
values in time determine that discontinuous changes in
the state vector can only occur when the system transfers
from an interval to a point. Note that this does not
prohibit configuration changes from occurring when the
system transfers from a point to an interval, as long as the
number of degrees of freedom of the system does not
decrease. In Fig. 4 this corresponds to the ¢ - h—y
loop only because the ¢ — g — h — y loop would require
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a discontinuous change in x to x 7, caused by a reduction
in the degrees of freedom in the system.

3.3. Divergence of time

Once a transition occurs from a continuous mode, the
signals s~ corresponding to the new state vector, x* (see
Fig. 4), may immediately generate a new event that
causes another discrete transition to a new mode. This
recursive sequence of transitions ends when a new model
configuration is established that does not generate a new
event. Discontinuous mode changes occur at instants in
time, therefore, if the sequence of changes results in
a loop, the implication is that the resultant system behav-
ior no longer progresses in real time, a situation that
cannot occur in reality. Therefore, divergence of time
represents an important principle that has to be satisfied
by hybrid system models (Henzinger et al., 1994; Moster-
man and Biswas, 1998).

To ensure that hybrid model behavior necessarily di-
verges in time, it has to be proved that transitions in the
discrete model always terminate in a new real mode
where a field, f,, governs the continuous evolution of
system behavior. This analysis is complicated because the
continuous signals that generate discrete events when their
values cross prespecified thresholds, may themselves
change discontinuously from one mode to another. An
algorithm that tracks discontinuous signal value changes
and the corresponding events that occur is computation-
ally quite complex.

As discussed, discontinuous mode changes are tracked
by invoking the principle of invariance of state, which
requires that signal values in the new mode be computed
from the state vector in the last real mode. Since this state
vector is not affected by future configuration changes, it
can be applied to establish a necessary condition for
divergence of time. However, the event-generation condi-
tions are typically specified in terms of signals, and,
therefore, a mapping has to be applied to express the
event conditions in terms of the original state vector,
based on the inverse relation of g and h.

In general, system verification proceeds by applying 7 to
¢ to determine which conditions cause transitions be-
tween modes. Then £ is used to express these relations in
terms of the continuous state variables, and ¢ is applied to
translate the conditions in terms of the switching invariant
applied to the original state. This is illustrated next.

4. The secondary cooling system

An analysis of the alarm control of the secondary
sodium cooling system in Fig. 2 shows that even simple
control laws may contain fallacies not recognized during
design. Application of the invariance of state and diver-
gence of time principles helps detect the problem.

4.1. Specifying the system

The main motor of the cooling system drives a pump
which establishes a flow-rate F;,, and a continuous con-
troller ensures sufficient torque is available to maintain
the desired flow rate for the liquid sodium coolant. Pump
losses are represented by the dissipation parameter, R,,.
The coolant is pumped through a coil in an intermediate
heat exchanger with inertia, I gy, and this is responsible
for building up flow momentum. An evaporator vessel
with capacitance Cgy transports heat from the heat ex-
changer to a steam water loop, where it drives a turbine
to produce electricity. A discrete controller acts on the
two valves, 4 and B. In normal operation, A4 is closed and
Bis open. In an alarm situation, valve B may be closed by
supervisory control and the closed-loop controller is
required to activate the alarm path with resistance R, by
opening valve A until it is safe to stop the flow of coolant
completely.

As an exercise, the hybrid model of the system is
developed and the verification mechanism is applied to
ensure that the model is consistent. A possible state
vector in this system is made up of the flow momentum,
x4, 1n the coil of the intermediate heat exchanger, I;5x and
the stored coolant, x,, in the evaporator, Cgy, ie.,

x =[x, x,1". (7)
The input to the system is the input flow, F,, ie.,
u= Fin' (8)

The discrete model is defined by the states of the two
valves in the system resulting in four modes, I =
{200, %015 %10, %11}, Where

%90 = { Actosed> Betosea >
Xo1 = {Aclosed, Bopen}’
X1 = {Aopena Bclosed}s
%1 = {Aopem Bopen}-

)

In each of these modes, behavior is governed by a system
of differential equations. When both valve 4 and valve
B are closed (240), there are no independent states, i.e., the
state vector x = (. Otherwise,

R, 1
I C R
fo %= X x4 [ "]u (10)
1 0 0
IIHX
R, + R,
S X1 =| ——2—|x; + [R,]u (11
' IIHX
R, 1
IIHX CEV [Rp
0, X = x + u. 12
Jar, { { 0 (12)
IIHX RaCEV
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4.2. Designing the control law

In normal operation, ay;, valve A4 is closed and valve
B is open. Valve A4 is controlled by a closed-loop discrete
controller, and valve B by an open-loop discrete control-
ler. When the open loop control closes B by generating
Op-or» the coolant flow in that segment of the pipe
becomes 0 abruptly, causing a large pressure value for pg.
To prevent damage to the piping, this large increase in
pressure is kept in check by the closed-loop controller,
which opens valve A4 (i.e., 6 ,_,,) to create a release path
when pg > p,;. As time progresses, the pressure falls be-
low p,;,, and the controller closes the valve A (i.e., 04 47/).
The complete event set is

Z = {O-A—vom GA—’uffa O-Bﬁoff}- (13)

The closed-loop controller generates events X, which are
specified by

> Pith = O a—on
: {PB Din A (14)
PB < Prh = O g-ops
and the mode changes are defined by ¢
Oa—on— %10 1IN Ogo
@< Opory = %oo 1IN 0oy (15)

O g—off —> %o 111 Ayo.

The instantaneous change in flow to 0 when valve
B closes represents a reduction in the size of the continu-
ous state vector. The function g can be specified in
a vector equation, x* = g-x, as

{0 17 in agg
g:<[1 1] in %oy (16)
[1 1] in oy

The function h expresses the signal values, used in 7,

§= [prA]T (17)

in terms of the state variables [x; x,]’. When both
valves are closed, the pressure pg is determined by a de-
rivative relation, pp = F;,R, — dx;/dt. For a discontinu-
ous change in x,, dx,/dt — cc. This situation is approxi-
mated by a Dirac pulse, 4. Let the function sign be
defined as

-1 fx<0
sign(x) ={0 if x=0 (18)
1 if x> 0.

Then, a discontinuous change results in pg=
Fi,R, — dx,/dt = F;,R, — sign(x{ — x;)d, which yields

pe=FiuR, — sign(x, — x1)d, f4=0 in %
h- P = Cor’ J4=0 mn %oy
o+ o+
pB:Ra s B f;{: adl ln X10-
Iinx Iinx
(19)

and the specification is complete. Note that because the
discontinuity in behavior is the result of parameter ab-
straction, the switching condition has to be specified in
terms of a posteriori conditions embodied in x ¥ (Moster-
man and Biswas, 1997b).

4.3. Verification of the cooling system behavior

The control law specified in Section 4.2, when applied
to the hybrid model, indicates that the flow momentum
in I,y drops towards 0 when valve B is closed because
fa = 0. The high pressure triggers the opening of valve
A and immediately after opening, if invariance of state is
not observed, there would be no continued flow. Now the
alarm valve, A, can be closed as well. This would indicate
that the control operates as desired, which, in fact, is not
true. In the hybrid model, small time constants due to
pipe capacity and the time associated with opening and
closing of the valves are considered negligible, and, there-
fore, abstracted away. If all these phenomena were in-
cluded in the model, there would not be an instantaneous
build-up of infinitely large pressure in the system. In-
stead, the pressure p, would begin to increase at a very
fast rate. When that pressure exceeded its threshold
value, the alarm loop would become active, causing the
pressure to decrease, and when it dropped sufficiently,
the alarm valve would close. However, this would again
cause the pressure to increase, and the alarm valve would
open. The implication is that the valve chatters (it opens
and closes at a very fast rate), and this causes the system
to exhibit a sliding-mode behavior in phase space (Mos-
terman et al, 1997a). Certain systems are designed to
operate in sliding regimes, but sliding-mode behavior is
not a desirable feature in this application. Therefore, the
control-law specification needs to be modified.

To verify consistency in terms of divergence of time,
the closed-loop switching specifications in y for which
further mode changes occur are detected. Using ¢ to
establish conditions for further switching, 7 combined
with h shows that this occurs when

FiuR, — sign(xy{ — x1)d > py if 2o

x{ . (20)
< P mn %o.

R

q
IIHX

To verify that no immediate transition back to a previous
mode occurs, these conditions have to be expressed in



520 P.J. Mosterman et al. /| Control Engineering Practice 6 (1998) 511-521

terms of the switching invariant, ie., the state vari-
ables before switching [x, x,]". Applying [x{ x;]7 =
g-[x; x,]7, yields

FinR, — sign(— x1)d > py  in agg

X, (21)

R Spth in Ao

a
IIHX

Therefore, closed-loop switching events are generated
when

Fian - Sign(— xl)Cs > Din (22)

and

x, <X, (23)
<R,

Since & — oz, Eq. 22 simplifies to x; > 0.3 The two condi-
tions plotted in Fig. 9 show the area 0<x; <
(I1ux/Ra)pi, where the system can switch between modes
%90 and %, indefinitely. The implication is that for flow
momentum values in the above range, the continuous
mode cannot be determined. In reality, small time con-
stants that arise from pipe capacitance imply quick cha-
nges between the two modes, i.e., chattering. To avoid
this behavior in the cooling system the control law needs
to be modified.

The interaction between the discrete and continuous
domains shows that a control algorithm that uses the
pressure values to switch modes is insufficient. To estab-
lish consistent control, the flow momentum that causes
the build-up of pressure needs to be considered as well. If
this momentum falls below a safe threshold value, f,;,
build-up of pressure does not exceed the critical value
and the alarm valve can be closed safely. To explicate
these constraints, x; < I;yxfi 1s added to the precondi-
tion for ¢ 4,7 and x; > I;gx fis to 6 4.,y This results in
a unique operational mode for the complete hybrid sys-
temif F;, < p,/R,. Note that the added condition is of an
energy nature, since it is based on the energy in the
system. If the energy value is less than a critical value, the
power from p,,-f;;, is insufficient to keep valve 4 open,
and, therefore, it closes. This forms a guideline for select-
ing the numerical value of f;, in the more detailed design
stages.

5. Conclusion

This paper presents a hybrid modeling paradigm with
formal execution semantics for the analysis of embedded
control systems. The resultant modeling framework is
based on physical principles resulting in behavior genera-

*For the boundary condition, x; = 0, F,, > p,,/R, causes inconsist-
ency because ¢ = 0.

Fig. 9. An area of inconsistency in phase space.

tion that closely matches true system behaviors (Moster-
man, 1997). Other approaches to the specification and
analysis of hybrid systems (e.g., Alur et al. (1994),
Guckenheimer and Johnson (1995), Nicollin et al. (1991))
focus more on formalisms that require the specification of
a global mathematical model of physical system behav-
ior, which is hard to define, especially for larger systems.
Some of these approaches rely on a discretization of the
continuous phase space so that variable dynamics have
to be defined by constant rates of change. In contrast, this
paper focuses on a systematic compositional modeling
paradigm, where system models are constructed from
local component/concept specifications (Borst, 1997;
Breunese, 1996).

The principle of conservation of state governs the state
transition function between modes of continuous behav-
ior, and the principle of invariance of state ensures the
correct initial state in a new mode when the system
transitions through one or more mythical modes. The
invariance of state principle is general, and applies to any
state vector definition for a linear hybrid system. The
principle of temporal evolution of state ensures that the
system behavior does not violate principles of causality.
Invariance of state forms the core for verifying divergence
of time in system behavior, a necessary condition for
establishing the correctness of the system model. The
verification procedure is independent of the continuous
field, £, in any particular mode.

This paper has specifically focused on the application
of hybrid modeling techniques to embedded control sys-
tems that are typically quite complex. Therefore, com-
positional modeling and global behavior generation from
localized discrete effects provides a distinct advantage
over schemes that require more global mathematical
models for analysis. From a control viewpoint, this paper
establishes that localized discrete effects originate from
physical abstractions imposed on system models to sim-
plify their behavior specifications, closed-loop control,
and open-loop control. Using this modeling paradigm to
support the design of the corresponding control laws to
ensure the desired hybrid system behavior, makes it es-
sential that model behaviors do not violate physical
principles. From a design viewpoint, applying the sys-
tematic principles associated with the modeling para-
digm helps identify and eradicate fallacies in the control
regimen in the design phase. This was adequately demon-
strated in the modeling and analysis of the discrete/con-
tinuous interactions of the alarm control specifications
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for the reactor cooling system. Future work will focus on
a more-detailed study and analysis of sliding-mode be-
haviors, and the application of this modeling paradigm
to monitoring and fault isolation in dynamic, embedded
systems.
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