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Abstract. Nowadays embedded systems are often modeled using MATLAB R©,
Simulink R© and Stateflow R© to simulate their behavior and facilitate design space
exploration. As design progresses, models are increasingly elaborated by grad-
ually adding implementation detail. An important elaboration is the execution
order of the elements in a model. This execution order is based on a sorted list
of all semantic relevant model elements. Therefore, it is fundamental to remove
model elements that only have a syntactic implication such as hierarchical levels
with no semantic bearing. The corresponding language construct in Simulink is
the virtual subsystem. Thus, to create an implementation or to execute a model,
Simulink performs a flattening model transformation that eliminates virtual sub-
systems. The work presented in this paper raises the level of abstraction of the
model transformation by modeling the transformation itself in order to unlock
the potential for reuse, platform independence, etc.. To this end, the transforma-
tion is implemented by applying graph transformation methods. An analysis of
the solution shows the transformation model is proper (e.g., it terminates).

1 Introduction

Advances in electronics miniaturization combined with an understanding of comput-
ing are driving an ever-increasing complexity of technical systems of truly all sorts
(consumer electronics, defense, aerospace, automotive industry, etc.). Not only does
the increasing capability of electronics enable more extensive logic to be implemented,
the robustness and efficiency in communication protocols that it supports has been the
driver of ever more network connected systems. The corresponding systems operate at
the confluence of cyberspace, the physical world, and human participation. Recently,
these systems have been termed Cyber-Physical Systems [1].

Raising the level of abstraction is an important tool to manage the enormous com-
plexity of such Cyber-Physical Systems. To this end, Model-Based Design (e.g. [21],
[20], [27]) introduces levels of abstraction in the form of computational models with
executable semantics. At the various levels of abstraction, only concerns pertinent to



the particular design task are included while implementation aspects are deferred to be
addressed in more detailed models. Throughout the design of the embedded system part
of a Cyber-Physical System, these models are then elaborated to include increasing im-
plementation detail. The elaboration terminates when a level of detail is arrived at from
which an implementation can be automatically generated. The implementation may be
either in software by generating C code or in hardware by generating HDL.

The support for abstractions is important in formulating a design problem in the
problem space. The design then concentrates on transforming the problem formulation
into a solution formulation. In this context, it is of great value that the original problem
formulation can be void of solution aspects. This is why domain-specific modeling
is becoming increasingly popular to describe complex systems. It is a powerful, but
still understandable technique. Its main strength lies in the application of the domain-
specific languages. A domain-specific language is a specialized language that can be
tailored to a certain problem domain; therefore, it is more efficient, than the general
purpose languages that often are tailored to a solution domain (and domain specific in
that sense) [18] [17].

Modern model transformation approaches are becoming increasingly valuable in
software development because of the ability to capture domain knowledge in a declar-
ative manner. This enables various steps in the software development to be specified
separate from one another with apparent advantages such as reuse. In embedded system
design, the computational functionality that is ultimately embedded moves through a
series of design stages where different software representations are used. For example,
before generating the code that is to run on the final target, code may be generated that
includes additional monitoring functionality. As another example, the software repre-
sentation may be designed in floating point data types before being transformed into
fixed point data types.

Today Simulink R© [4] is a popular tool for control system design in industry. There-
fore, applying model transformations for embedded software design purposes on Simulink
models renders the developed technology easily adaptable and adoptable by industry.
However, currently it is impossible to define and model declarative model transforma-
tions inside the Simulink environment. Therefore, a modeling and model processing
framework is applied. The Visual Modeling and Transformation System (VMTS) [10]
[7] framework has been prepared to be able to communicate with the Simulink envi-
ronment. In this manner, with the help of modeled model transformation, problems can
be solved at the most appropriate abstraction level. In this case the most appropriate
abstraction level means that the required model optimization, modification, or travers-
ing can be expressed in the Simulink domain. Thus Simulink users can use their well-
known entities to define the required processing. This is the fundamental premise of
Computer Automated Multiparadigm Modeling; to use the most appropriate formalism
for representing a problem at the most appropriate level of abstraction [23] [24].

While operating at a given level of abstraction, two further mechanisms are often
employed to scale system complexity: partitioning and hierarchy [22]. In the Simulink
environment, hierarchy is supported as a purely syntactic construct by virtual subsys-
tems and as a construct with semantic implications by nonvirtual subsystems. These
subsystems are represented as blocks with input and output ports that are used to con-



nect subsystem blocks. Subsystem blocks may contain other subsystem bocks or prim-
itive blocks that represent behavior without being able to be further decomposed.

Before a Simulink model is executed, the engine creates an execution list with an
order in which all of the blocks are executed. The execution list is computed from the
sorted list, which is also generated by the Simulink engine based on the control and
data dependencies that determine how the different blocks can follow each other in an
overall execution. To create this list, the semantically superfluous hierarchical layers
have to be flattened. So, the virtual subsystems that are only graphical syntax and that
have no bearing on execution semantics are flattened before the sorted list is generated
[5] [16].

This paper focuses on a novel solution to flattening virtual subsystems in Simulink
models. This approach is based on a model transformation created in VMTS. Using
model transformation to solve this issue helps raise the abstraction level of the transfor-
mation from the frequently used API programming to the level of software modeling.
The solution possesses all the advantageous characteristic of the model transforma-
tion, for example, it is reusable, transparent, and platform independent. The different
attributes of the transformation are also examined in detail in this paper.

The remainder of the paper is organized as follows. Section 2 introduces related
work. Section 3 briefly presents the VMTS and its graph rewriting-based model trans-
formation capabilities. The basics of the communication between Simulink and VMTS
are discussed in Section 4. Next, Section 5 introduces the flattening transformation. In
Section 6, the properties of the flattening transformation are examined. Next, in Sec-
tion 7, an example Simulink model is processed with the presented flattener transfor-
mation. Finally, concluding remarks presented.

2 Related Work

In [8] a formal description is given about a translation process that can convert a well-
defined subset of Simulink block diagram models and Stateflow R© [6] state transition
diagram models into a standard form of hybrid automata [9]. This transformation is im-
plemented with graph transformation. As a result, different verification tools for hybrid
automata can operate on the industry-standard Simulink and Stateflow models.

To specify program transformation such as program optimizers, other work [13]
developed a successful method. This method can be uniformly applied to analysis and
transformation. The underlying technological solution is based on graph transformation.

Since the design patterns are valuable parts of the different phases of the software
development, there is a necessity to specify them on a high level of abstraction instead
of capturing this information informally. Other work [28] uses different graph transfor-
mation to support this necessity. With the help of this approach the design patterns can
be specified on a higher abstraction level.

Another algorithm that works with Simulink models is presented in [14]. This al-
gorithm is introduced for mapping discrete-time Simulink models to Lustre programs.
Here, the transformation is not formally modeled as a declarative graph transformation,
though.



In other related work [11], a new data model for tool integration is presented. This
approach extends existing data models by an abstract graph model. Here, the manipu-
lation is based on model transformation as formal graph transformations.

The work presented in this paper is different in that it does not address any semantic
complications. A purely syntactic model transformation is developed. Moreover, in con-
trast to the aforementioned exogenous transformations, the transformation developed in
the work in this paper is endogenous (i.e., no change of formalism) [19]. Finally, there
are no restrictions to the Simulink modeling formalism necessary as the presented work
applies to the full set of Simulink blocks.

In [26] and [15] novel approaches are proposed to represent Simulink models as
directed, sparse graphs. Each subsystem graph is added to the highest layer graph.

3 VMTS, The Modeling Framework

The Visual Modeling and Transformation System (VMTS) is a general purpose meta-
modeling environment supporting an arbitrary number of metamodel levels. Models in
VMTS are represented as directed, attributed graphs. The edges of the graphs are also
attributed. The visualization of models is supported by the VMTS Presentation Frame-
work (VPF) [25]. VPF is a highly customizable presentation layer built on domain-
specific plugins, which can be defined in a declarative manner.

VMTS is also a transformation system. It uses a graph rewriting-based model trans-
formation approach or a template-based text generation. Templates are used mainly to
produce textual output from model definitions in an efficient way, while graph transfor-
mation can describe transformations in a visual and formal way.

In VMTS the Left-Hand Side (LHS) and the Right-Hand Side (RHS) of the trans-
formation are represented together. In this manner, the transformation itself can be more
expressive. In order to distinguish the LHS from the RHS in the presentation layer, the
VMTS uses different colors. The elements represented with blue color are created by
the transformation rule. This means that if the LHS and the RHS would be depicted in
two separated graphs, these elements would be only part of the RHS graph. Similarly,
the red color indicates that the given element will be deleted by the transformation rule.
The yellow color is used when an edge between two elements will be replaced. In this
case the type and the attributes of the edge will not change. The gray background means
that the element will be modified. With the help of these colors, the transformation pro-
cess is easily understandable. There is always an option to apply imperative constraints
to each element, but this is not depicted separately.

The control flow language of the VMTS [12] contains exactly one start state and
one or more end state objects. The applicable rules are defined in the rule containers.
The rule containers determine which transformation rule must be applied at the given
control flow state. This means that exactly one rule belongs to each rule container. The
application number of the rule can also be defined here. By default, the VMTS tries to
find just one match for the LHS of the transformation rule. However, if the IsExhaustive
attribute of the rule container is set to true, then the rule will be applied repeatedly as
long as its LHS pattern can be found in the model. Figure 1 depicts an example control



flow model; actually this is the control flow of the flattening transformation, which will
be presented in detail in Section 5.

Fig. 1: The control flow of the TRANSFLATTENER transformation

The edges are used to determine the sequence of the rule containers. The control
flow follows an edge in order of the result of the rule application. In VMTS, the edge
to be followed in case of successful rule application is depicted with a solid gray flow
edge and in case of a failed rule application with a dashed gray flow edge. Solid black
flow edges represent the edges that can be followed in both cases.

4 Communication between Simulink R© and VMTS

Since the model is created in Simulink, which is part of the MATLAB R© [3] environ-
ment and the transformation is created in another system (VMTS) there is a need to
establish a communication method between the two systems.

To be able to represent Simulink models in VMTS, the metamodel of the Simulink
languages, which are organized in various different libraries (also called blocksets), is



required. Since in Simulink there is no hard boundary between the different languages,
that is, a given block can be connected to almost everything else, a common Simulink
metamodel was created. This metamodel contains all the elements of the Simulink li-
brary. The generation of this metamodel consists of the following two steps.

First, a core metamodel was created that contains the Block element, which is the
common ancestor of all the nodes in Simulink models, and a descendant Subsystem
node, which expresses the common ancestor of Simulink Subsystems. This metamodel
also contains the Signal edge and a Containment edge to reflect containment hierarchy
between nodes.

Then, by programmatically traversing the base Simulink library, this metamodel has
been extended with the other nodes found in the different specialized libraries. For each
Simulink element, exactly one node was generated. This resulted in several hundred
new metamodel elements.

In addition to the metamodel, the VMTS must be prepared to read and write Simulink
models. Thus, a new kind of data exchange layer was generated for communicating with
MATLAB. To modify Simulink models, the P/Invoke technology [2] has been chosen.
This has the advantage that the MATLAB interpreter can be called directly through
DLL calls, instead of manipulating the textual model (mdl extension) files. This way the
VMTS is independent of file format changes, and the changes performed on the VMTS
model can be made visible, live during the transformation execution, on the Simulink
diagrams as well. Furthermore, the values that are only available during simulation time
of a Simulink model can be accessed also.

5 The Flattening Transformation

This section introduces and discusses the details of the transformation TRANSFLAT-
TENER. The transformation is created in VMTS. As it was mentioned before, its goal is
to process Simulink models and flatten its virtual subsystems.

For a better understanding the final control flow is presented first, which is shown
in Fig. 1. This model defines how the transformation rules follow each other.

At first, the transformation checks if there is a virtual Subsystem block in the model.
So the RW MATLAB TAGVIRTUALSUBSYSTEM transformation rule attempts to match
a simple Subsystem block that has the IsVirtualSubsystem attribute set to true. If the
transformation engine does not find a match for this rule, then there is no virtual Sub-
system in the model, thus the transformation terminates. Otherwise, the transformation
steps into the loop, which processes this Subsystem.

In Simulink, a block cannot be directly connected to a block on a different hier-
archical level. When a block is moved out from a Subsystem, it loses all its edges au-
tomatically. This means that the transformation must take into account the connections
between the blocks, and must take care of creating the necessary edges. Moreover, when
a Subsystem is flattened, the Inport and Outport blocks of the Subsystem are deleted. So
the transformation also must ensure that the blocks connected to the appropriate ports
will be connected to each other after the processing.

The Inport and Outport blocks represent the input and output ports of the Subsystem.
Each port of the Subsystem is associated with an appropriate block in the Subsystem.



For example if a Subsystem has two input ports and three output ports, then there are
two Inport and three Outport blocks in the Subsystem, and these blocks have a reference
number to the port they belong to. This behavior is presented in Fig. 8.

In the aforementioned loop, which is responsible for processing the virtual Subsys-
tem, the first applied rule is the RW MATLAB FLATTENER GET OUTEDGES transfor-
mation rule. It is depicted in Fig. 2. In order to handle the deletion of the ports this rule
matches the outgoing edges of a Subsystem, and deletes them if a match is found. In
the meantime, the identifier of the block connected to the Outport port of the Subsystem
(the toNode in Fig. 2) and the port number that the edge is connected to are stored in
the appropriate Outport block (the endNode in Fig. 2).

Fig. 2: The transformation rule
RW MATLAB FLATTENER GET -
OUTEDGES

Fig. 3: The transformation rule RW -
MATLAB FLATTENER OUTBLOCK

After processing outgoing edges from all Subsystem type nodes, the transforma-
tion moves to the next transformation rule: RW MATLAB FLATTENER OUTBLOCK
(Fig. 3). This rule matches blocks that have outgoing edges to an Outport block and if a
match is found deletes the edge connecting them. It also copies the information stored
in the Outport block into the other one (the simpleNode in Fig. 3) and extends it with the
port number where the edge starts. This way this block knows all the information about
the edges the transformation must create after the block is moved out of the Subsystem.
This information consists of the followings:

– The port number the edge starts,
– The identifier the edge is connected to,
– The port number the edge ends,
– The necessary attributes of the edge.

In the previous two steps the transformation focused on the blocks connected to the
Out ports and Outport blocks of the Subsystem. The next rule embodies the same func-
tionality with every block in the Subsystem. The RW MATLAB FLATTENER GETALLEDGES
rule is depicted in Fig. 4. It does not differentiate based on the type of the block, which
means that it matches Inport blocks as well as the blocks processed previously (i.e.,
the ones connected to the Outport blocks). The reason for this is the possibility that



a block may have multiple outgoing edges and the transformation needs information
about every edge. The rule is matched for every element in the Subsystem exactly once
and stores all information about their outgoing edges.

Fig. 4: The transformation rule
RW MATLAB FLATTENER -
GETALLEDGES

Fig. 5: The transformation rule RW -
MATLAB FLATTENER INBLOCK

After the first three rules of the loop, every block of the Subsystem knows the rele-
vant information of their outgoing edges. Moreover, the blocks connected to the Outport
blocks know which blocks are connected to the appropriate Out port as well. This means
that the transformation can delete the edges inside the Subsystem, so if a block is moved
out of it, then no dangling edges remains. The rule RW MATLAB FLATTENER DELE-
TEEDGES simply does that (i.e., deletes the edges between the blocks of the Subsystem).

In the next step the transformation deals with the blocks connected to In ports.
The transformation rule RW MATLAB FLATTENER INBLOCK is shown in Fig. 5. It
matches the incoming edges of Subsystem nodes and if a match is found deletes them.
As it has been mentioned, the RW MATLAB FLATTENER GETALLEDGES rule matches
Inport blocks as well, so these elements know the necessary information about their
edges. In this manner the current rule can copy this information to the blocks connected
to the appropriate In ports. The information is also extended with the port number of the
edge directed from the block to the Subsystem. Upon completion of this rule the blocks
connecting to the Subsystem know the characteristic of the edges the transformation
must create after the Subsystem is deleted.

At this point the blocks related to the Subsystem store the necessary information
about their outgoing edges. The transformation also deleted the edges connecting to the
Subsystem and the ones between its blocks. This means that the blocks are ready to be
moved to a higher hierarchical level. The higher hierarchical layer means the Subsystem
containing the Subsystem that is actually processed, if there is any. In case there is not,
then the root layer is the higher layer. The transformation rule RW MATLAB FLAT-
TENER PARENTLEVEL looks for the “parent” Subsystem. If it finds a match, then the
blocks contained by the processed Subsystem, except the In and Out ones, are replaced
into the parent. The rule is depicted in Fig. 6. If the processed Subsystem still contains
elements besides the Inport and Outport blocks after this rule, then it means, that the



Subsystem is not contained by anything, it is at the root level. So the RW MATLAB -
FLATTENER ROOTLEVEL rule must delete only the Containment typed edges between
the Subsystem and its blocks. In this manner the blocks are not contained by anything,
they are moved to the root level as well.

Fig. 6: The transformation rule
RW MATLAB FLATTENER PAR-
ENTLEVEL

Fig. 7: The transformation rule
RW MATLAB FLATTENER CON-
NECTBLOCKS

Next, the transformation can safely delete the Subsystem. However, it cannot leave
any dangling edges, so if it was contained by another Subsystem, then the transformation
must delete the Containment edge after which the Subsystem is deleted.

Finally, the transformation must recreate the edges between the moved blocks. This
is based on the information stored in the blocks. The transformation rule RW MAT-
LAB FLATTENER CONNECTBLOCKS creates the necessary edges (Fig. 7). The block
storing the information is the source block; the identifier provides the target block. The
appropriate ports are also saved along with other relevant information.

With this rule the loop ends and the transformation returns to the RW MATLAB -
FLATTENER TAGVIRTUALSUBSYSTEM transformation rule, which checks for another
virtual Subsystem. If there is one, then the engine steps into the loop again, otherwise it
terminates.

The next section discusses the formal analysis of this transformation.

6 Analysis of the Transformation

The previous section has presented the transformation TRANSFLATTENER and its rules.
Before its usage, it is advisable to perform the analysis of the transformation definition,
which is the subject of this section. First, the functionality of the transformation is ex-
amined and then its further attributes, such as correctness and termination, are verified.

The coverage of Proposition 1 and Proposition 2 is depicted in Fig. 8. This picture
may also help illustrate the relation of the different blocks.

Definition 1. The inner elements of a Subsystem are all elements, except the Inport
and Outport typed blocks, contained by the Subsystem.



Fig. 8: The structure of a subsystem

Proposition 1. After the transformation TRANSFLATTENER, the inner elements of the
processed Subsystem are connected if and only if they were connected before the trans-
formation.

Proof. Three transformation rules (RW MATLAB FLATTENER OUTBLOCK, RW MAT-
LAB FLATTENER GETALLEDGES and RW MATLAB FLATTENER CONNECTBLOCKS
are responsible for the connection between the blocks. First, the RW MATLAB FLAT-
TENER OUTBLOCK deletes the edges pointing to the different Outport blocks, which
represent the Out ports of the Subsystem. The rule also stores the identifiers of the blocks
that had an edge pointing from the same Out port. (The identifiers of these blocks are
already stored in the Out block because of the RW MATLAB FLATTENER GET OUT-
EDGES rule.) Next, the RW MATLAB FLATTENER GETALLEDGES stores for each
block the identifier of those blocks that the given block has an edge pointing to. It also
stores the details of the edges, that is, from which port point to which port. The rule
examines every block exactly once. Next, the other rules of the transformation place the
elements onto a higher level in the hierarchy. Since it is not possible in Simulink that
elements in different hierarchy level are directly connected, it is ensured that after the
replacing there is no edge pointing to or from the moved block. The transformation also
deletes all edges between the inner elements to avoid the dangling edges. Finally, when
the elements of the Subsystem are already placed onto a higher hierarchical level, the
RW MATLAB FLATTENER CONNECTBLOCKS creates the edges based on the stored
information for each block. Since this is the only rule that generates edges and does
this based on the stored information in the different blocks, there will be no new edges
between the inner elements of the Subsystem. Note that the information about the edges
is stored for each and every inner element that has outgoing edges, thus these edges will
be regenerated.

In this manner the inner elements of the Subsystem are connected if and only if they
were connected before the transformation execution. ut

In order to not change the functionality of a Simulink model it is required that a
block is reachable from another block if and only if it was reachable before the trans-
formation.



Since the transformation cannot modify the functionality of a processed model, the
following are required by the transformation:

– Let o denote the set of blocks outside of the Subsystem that have an outgoing edge
to a given In port. Let i denote the set of inner elements that are connected to the
Inport block related to the given In port. With this notation, after the transformation
all elements in o must have an edge pointing to all elements in i.

– Regarding the Out ports we can state the same requirements. Let o denote the set
of blocks outside of the Subsystem that have an incoming edge from a given Out
port; and i denote the set of inner elements that are connected to the Outport block
related to the given Out port. In this case, after the transformation all elements in i
must have an outgoing edge to all elements in o.

Proposition 2. After the transformation TRANSFLATTENER leaves the ports of the
processed Subsystem the functionality of the Simulink model does not change.

Proof. The RW MATLAB FLATTENER GET OUTEDGES and the RW MATLAB FLAT-
TENER OUTBLOCK transformation rules are responsible for not changing the func-
tionality of the model when the Out ports are removed. First, the RW MATLAB -
FLATTENER GET OUTEDGES rule stores information in each Out block. This infor-
mation contains the identifier of the blocks to which any edges point from the appro-
priate Out port. Moreover, the port attributes of these edges are also stored. The rule
also deletes these edges. Next, the RW MATLAB FLATTENER OUTBLOCK attempts
to match those edges that are pointing from one of the inner elements of the Subsystem
to one of the Outport blocks. For every match, the rule deletes the edge and copies the
information stored in the Outport block to the matched element. It also extends this in-
formation with the number of the port from where the matched edge starts. With the help
of these two transformation rules it is ensured that the blocks that have outgoing edges
to one of the Outport blocks possess the proper information. The proper information
means the identifiers of the block, where the edges from the appropriate Out port point
to. The edges based on this information will be recreated by the RW MATLAB FLAT-
TENER CONNECTBLOCKS rule after the elements are placed to a higher hierarchical
layer.

To ensure that the functionality of the model remains the same in case of the In
ports, two rules are needed as well. These rules are the RW MATLAB FLATTENER -
GETALLEDGES and the RW MATLAB FLATTENER INBLOCK. As it was described in
the proof of the Proposition 1, the RW MATLAB FLATTENER GETALLEDGES rule
stores for each and every block, so for the Inport blocks as well, to which port of
which blocks it has outgoing edges. Next, the RW MATLAB FLATTENER INBLOCK
matches each edge that points from a block outside of the Subsystem to one of its In
ports. The rule deletes this edge, since after deleting the Subsystem there cannot be any
dangling edge. The rule also copies the stored information from the appropriate Inport
blocks to the matched block and extends it with the number of the port the matched
edge starts from. With the help of these two transformation rules it is ensured that the
blocks, which have outgoing edges to one of the In ports, have the information, where
the appropriate Inport block has outgoing edges. The edges based on this information



will be created by the RW MATLAB FLATTENER CONNECTBLOCKS transformation
rule after the elements are placed into a higher hierarchical layer.

It can thus be stated that after eliminating the ports of the Subsystem the function-
ality of the Simulink model does not change. ut

Consequence of Proposition 2: The number of the edges in the Simulink model
changes as follows:

∑
(−si − fi + (si ∗ fi)) +

∑
(−so − lo + (so ∗ lo)), where si

stands for the number of edges going into the ith In port of the Subsystem, fi means the
number of edges going out from the ith Inport block, so stands for the number of edges
going out from the oth Out port of the Subsystem and lo means the number of edges
going into the oth Outport block.

Proposition 3. Proposition 1 and Proposition 2 together state that all inner elements
of the processed Subsystem are connected if and only if they were connected before
the iteration and the functionality of the model does not change. Considering the two
propositions it can be stated, that the functionality of the model does not change after
the Subsystem is flattened.

Proof. The proof follows from the proofs of Proposition 1 and Proposition 2. ut

Proposition 4. Each iteration of the transformation TRANSFLATTENER moves the in-
ner elements of the processed Subsystem exactly one level higher.

Proof. The RW MATLAB FLATTENER PARENTLEVEL and the RW MATLAB FLAT-
TENER ROOTLEVEL transformation rules are responsible for this behavior. The RW -
MATLAB FLATTENER PARENTLEVEL attempts to find a match, where the processed
Subsystem is a child element of another Subsystem. If such a match is found then the
rule deletes the Containment edge between the processed Subsystem and its inner el-
ements and also creates a Containment edge between the parent Subsystem and the
aforementioned inner elements. If there is no match for this rule, then it can be stated
that the processed Subsystem is at the root level. So the RW MATLAB FLATTENER -
ROOTLEVEL rule simply deletes the Containment edges of the processed Subsystem.
This means that its inner elements are moved to the root level. Neither of these two
transformation rules match for the Inport and Outport blocks of the Subsystem. ut

Definition 2. The execution hierarchical layers are layers created not for purely graph-
ical purpose, but have a bearing on execution semantics.

This means that since the virtual Subsystems are created to help organize and under-
stand the models and do not have any additional role, the execution hierarchical layers
are created only by nonvirtual Subsystems.

Proposition 5. The transformation TRANSFLATTENER does not move elements be-
tween execution hierarchical layers.

Proof. The RW MATLAB TAGVIRTUALSUBSYSTEM is the first rule of the transfor-
mation. The rule attempts to match virtual Subsystems. At the beginning of each iter-
ation, a virtual Subsystem is tagged as the Subsystem under processing. As a conse-
quence, only the elements of a virtual Subsystem are modified during the actual itera-
tion. As a consequence none of the objects of a non-virtual Subsystem are moved to a
higher hierarchical level. ut



Proposition 6. The transformation TRANSFLATTENER flattens all virtual Subsystems.

Proof. The RW MATLAB TAGVIRTUALSUBSYSTEM transformation rule is the first
rule of the iteration: This rule expresses the loop condition. At each time the rule is
evaluated, it attempts to match a virtual Subsystem. If such a match is found then the
found Subsystem will be processed. The other rules of the iteration move the inner ele-
ments of this Subsystem onto a higher hierarchical layer and also delete this Subsystem.
None of the rules creates any type of Subsystems. This means that every iteration de-
creases the number of virtual Subsystems by one in the model. The iteration continuous
till the RW MATLAB TAGVIRTUALSUBSYSTEM cannot find a successful match any-
more. This means there are no remaining virtual Subsystems in the model. ut

Proposition 7. The transformation TRANSFLATTENER always terminates.

Proof. To examine the termination of the transformation the following must be checked:

– The control flow cannot go into an infinite loop,
– The transformation rules, which are applied exhaustively, terminate in finite steps.

The control flow terminates if the RW MATLAB TAGVIRTUALSUBSYSTEM rule
cannot find a match. This happens if and only if there are no virtual Subsystems in the
model. In case there is no virtual Subsystem in the model at the starting point, the trans-
formation terminates without stepping into the iteration. Otherwise a match is found
and the transformation steps into the loop. Proposition 6 states that the transformation
flattens all virtual Subsystem. Since in Simulink the Subsystems cannot be recursively
defined (i.e. the containment loops are forbidden) there are finitely many Subsystems in
the model. This means that after finite number of iteration there will be no remaining
virtual Subsystems in the model, so the RW MATLAB TAGVIRTUALSUBSYSTEM rule
cannot find a successful match anymore, thus the control flow terminates.

In the transformation each rule is applied exhaustively except the RW MATLAB -
TAGVIRTUALSUBSYSTEM rule. The exhaustively applied rules must be checked whether
they terminate in finite steps:

– RW MATLAB FLATTENER GET OUTEDGES rule: This rule matches an edge be-
tween the Out port of a Subsystem and other blocks. If a match is found the rule
deletes this edge. This means that every application of the rule reduces the number
of edges between the Out ports and other blocks, thus after finites steps it cannot
be applied anymore.

– RW MATLAB FLATTENER OUTBLOCK rule: This rule works by the same princi-
ple. The only difference between the two rules is that this one attempts to match
an edge between an inner element and the Outport block of the Subsystem. The
deletion of the matched edge, without creating any new, ensures its termination.

– RW MATLAB FLATTENER GETALLEDGES rule: This rule marks the matched block
at each application. After several steps there is no remaining unmarked inner ele-
ment in the Subsystem. Since there is a condition in the LHS of the rule that the
block cannot be marked before the rule is applied, the system cannot find a match.

– RW MATLAB FLATTENER DELETEEDGES rule: The rule simply matches an edge
between the blocks of the Subsystem and if a match is found deletes it. After finite
steps there are no edges left between the blocks, and the rule cannot be applied.



– RW MATLAB FLATTENER INBLOCK rule: This rule is equivalent to the RW -
MATLAB FLATTENER GET OUTEDGES, but this one operates between the In ports
and the Subsystem. It deletes the matched edges as well, therefore cannot be applied
after a certain number of steps.

– RW MATLAB FLATTENER PARENTLEVEL rule: The rule matches and deletes the
containment edge between an inner element and the actual Subsystem. It is irrele-
vant that it creates a new edge between the parent Subsystem and the inner elements,
since the LHS of the rule checks containment edges between the actual Subsystem
and other blocks. This ensures that the rule cannot be applied indefinitely.

– RW MATLAB FLATTENER ROOTLEVEL rule: The rule simply deletes the con-
tainment edge between the actual Subsystem and its inner element. The deletion of
the matched item without creating any new items ensures its termination.

– RW MATLAB FLATTENER DELETE CONTEDGE rule: The principle is the same.
The rule attempts to match a containment edge between the actual Subsystem and
a parent one. If it succeeds, then it deletes this edge.

– RW MATLAB FLATTENER DELETE SUBSYSTEM rule: The rule deletes the ac-
tual Subsystem. The LHS checks that the Subsystem must be marked. This marking
occurs in the RW MATLAB TAGVIRTUALSUBSYSTEM rule, which is applied ex-
actly once before every iteration. In this manner there is only one element that can
be a match for this rule.

– RW MATLAB FLATTENER CONNECTBLOCKS rule: The rule matches blocks that
store information about edges to create. After the rule creates such an edge, it
removes the information from the block. Since the RW MATLAB FLATTENER -
GETALLEDGES rule was applied for a finite number of times and this is the only
transformation rule that stores information about the edges to create, the RW -
MATLAB FLATTENER CONNECTBLOCKS rule will be applied for a finite number
of times as well.

Since both the control flow and the transformation rule terminate after finite number
of steps, the transformation terminates as well. ut

7 Experimental Results

The presented model transformation was applied on different Simulink models. One of
these source models is depicted in Fig. 9. The root level is shown in Fig. 9(a). This
model contains a virtual Subsystem with one In port and two Out ports. The inner
structure of this Subsystem is shown in Fig. 9(b). It can be seen, that each Inport/Outport
block relates to exactly one In/Out port. This hierarchical layer also contains a virtual
Subsytem, which is presented in Fig. 9(c).

After the transformation TRANSFLATTENER terminates, the structure of the model
changes, as it is shown in Fig. 10. All inner elements were moved to the next level, and
eventually, since the model did not contain any non-virtual Subsystem, to the root level.
The Subsystem blocks were deleted with their Inport and Outport blocks. The connec-
tion within the blocks were correctly maintained. The example also demonstrates that
the transformation handles well when an Out port of a virtual Subsystem is connected



(a) The root level of the Simulink R© model

(b) The model contained by the fist Subsystem

(c) The containment of the nested Subsystem

Fig. 9: The example Simulink R© model



Fig. 10: The model after the TRANSFLATTENER transformation

to multiple blocks. In this manner, the transformation did not change the functionality
of the source model.

The transformation was examined on simpler and more complex models as well,
and the results always were found to be correct by inspection.

8 Conclusions and Future Works

As a popular tool for the design of embedded control systems, industry relies on Simulink
models to support a level of abstraction much above the embedded implementation in,
for example, C code. Design relies heavily on model elaboration to increasingly add
detail to the design models. Such elaboration is a form of model transformation that
currently is implemented in software as part of the Simulink code base or as external
functionality based on the Simulink model API.

Part of the elaboration is removing hierarchical structures that have only a syntactic
effect such as flattening of syntactic hierarchical layers. In this paper a detailed model
transformation-based solution has been presented for flattening virtual subsystems in
Simulink models. The approach enables taking advantage of benefits of modeled model
transformation such as reusability and platform independence. In this manner, the ab-
straction level of the model transformation problem can be raised. Besides the transfor-
mation details, its formal analysis has been also discussed.

The transformation was implemented in the Visual Modeling and Transformation
System. Therefore the modeling framework and its communication with the Simulink
environment were briefly introduced as well.

Future work intends to study whether with the help of this transformation, the sorted
list and the execution list can also be implemented via model transformation. In this
manner the abstraction level could be raised even further and more benefits unlocked.
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