Data Type Propagation in Simulink Models with Graph Transformation

Péter Fehér, Tamas Mészaros and Laszl6 Lengyel
Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Budapest, Hungary
{feher.peter, mesztam, lengyel}@aut.bme.hu

Abstract—Embedded systems are usually modeled to simu-
late their behavior. Nowadays, this modeling is often imple-
mented in the Simulink® environment, which offers strong
support for modeling complex systems. Moreover, via modeling,
various analyses can be applied to the systems at design time.
An important analysis is of the data types assigned to signal
variables. Such analysis enables identification of potential
problems during model compilation and so prevent runtime
surprises. To assist the system designer, Simulink supports
which includes a step for automatic data type inferencing (e.g.,
based on designed signal value ranges and on the connection
structure of design elements). In contrast to the Simulink
implementation of the inferencing in a code base, which
favors efficiency, the work presented here raises the level of
abstraction by explicitly modeling the inferencing logic. This
unlocks benefits such as the ability to (i) reason about the
logic, (ii) implement different logic by advanced users, and
(iii) experiment with different ordering of other logic in the
model compilation.

Keywords-Algorithms; Data type propagation; Graph trans-
formation; MATLAB; Simulink

I. INTRODUCTION

Today, computation as a technology is finding its way into
almost any engineered system around. To a large extent, the
choice to utilize computation is motivated by the unparal-
lelled flexibility of software as an implementation vehicle for
complex functionality. In embedded systems, computation is
embedded in a physical environment such that it processes
physical measurements and reacts with actuation in the
physical world. Such systems are designed in an elaborate
process where a range of domain experts are responsible
for an increasingly detailed model of the functionality. For
example, at a high level, a control expert may design a
continuous-time feedback control law, in a next stage, this
control law is then transformed into a digital representation,
next effects of the computing platform may be included
such as the task scheduler and data types, and ultimately an
implementation in software may be automatically generated
(e.g., [11 [2]).

In such an overall process there is a critical need to
support domain experts in their design of what will ulti-
mately be a computational solution. Such support can be
substantially provided by selecting the most appropriate
modeling framework given the task at hand. Here, domain

Pieter J. Mosterman
Research and Development
MathWorks
Natick, MA, USA
pieter.mosterman @ mathworks.com

specific modeling languages that correspondingly enable
domain specific modeling [3] [4] are a powerful approach
to successfully design complex systems. Because domain
specific modeling languages are specialized for a certain ap-
plication domain, they often are more efficient than general
purpose languages.

In addition to domain specific modeling languages, deep
knowledge about the application domains involved in the
various stages of the system design process enables au-
tomatic model elaboration. For example, knowledge of a
computing platform that is targeted for the software design
provides information as to the data types that are available.
This knowledge then enables an automatic choice of data
types in the digital control design stage so that the control
design domain expert is not confronted with such implemen-
tation details while still being able to produce an executable
model.

A popular tool for model based software development in
the context of embedded systems design is Simulink® [5]
not only because Simulink allows simulation of a design
throughout the design stages but also because of extensive
automatic code generation capabilities (both for a software
as well as a hardware implementation). For both of these
technologies (simulation and code generation) it is essen-
tial that a computational representation of the model is
generated. An inherent part of generating a computational
representation is determining the data types of the variables
in the code. In the earlier design stages, these data types are
often not specified at all (simply considered to be Real) or
only partly specified explicitly at key design elements where
the remaining data types are then automatically inferred.

In Simulink, the data types of a model are a inferred
in a compilation stage, for example by using forward and
backward data type propagation rules [6]. To explicitly
indicate that a data type should be inferred, it can be
set to ’Inherit’ In addition to propagation rules, further
information is utilized in the data type determination. For
example, a default data type such as ’double’ may be set
in case no other explicit resolution is inferred. As another
example, given a number of available bits per word on the
computing platform, the design range of values for a variable
may determine a representation in fixed point. Moreover,

Simulink also checks the types of signals and input ports in
order to ensure that they do not conflict.

The combination of such domain specific elaboration with
domain specific languages combined then accelerates system
development, increases the quality of software products, and
reduces time to market.

Currently, data type propagation is implemented in the
Simulink code base. Though efficient, this renders it difficult
or even prevents unlocking value for which a higher level of
abstraction is more appropriate. Specifically, a higher level
of abstraction enables:

« Reasoning about the inference procedure, for example
to compare to and contrast with other approaches such
as Hindley-Milner [7] [8],

« Designing different rules by advanced users, which may
support further domain configurability,

o Experimenting with different permutations in which a
number of elaboration steps (e.g., flattening [9], task
scheduling, etc.) are applied.

Similarly to how domain specific modeling provides value
at the application domain level, it also provides value when
the application domain consists of computer aided design
systems with extensive tool technology. Based on the fun-
damental premise of Computer Automated Multiparadigm
Modeling [10] [11], the data type inferencing should be
modeled by the most appropriate formalism while choosing
the most appropriate level of abstraction to solve the problem
at hand.

This paper focuses on a novel solution to realizing data
type propagation for Simulink models. This approach is
based on a model transformation-based solution, which is
realized in the Visual Modeling and Transformation System
(VMTS) framework [12]. The VMTS has been prepared to
be able to communicate with the Simulink environment;
therefore the model transformations designed in VMTS
can be applied to different Simulink models. Using model
transformation to solve the data type propagation issue helps
to raise the abstraction level from the API programming to
the level of software modeling. The solution possesses all
advantageous characteristic of the model transformation, for
example, it is transparent, easy to define and understand,
reusable, and platform independent.

The rest of the paper is organized as follows. Section II
presents the algorithm used for propagating and verifying
data types. Next, Section III introduces the implemented
transformation. A simple example for the transformation is
presented in Section IV. Finally, concluding remarks are
elaborated.

II. PROPAGATING DATA TYPES

Whenever a simulation is started, the Simulink software
performs a processing step called data type propagation. This
step involves determining the types of signals whose type is
not otherwise specified and checking the types of signals

and input ports to ensure that they do not conflict. If type
conflicts arise, an error dialog is displayed that specifies the
signal and port whose data types conflict. The signal path
that creates the type conflict is also highlighted [13].

Blocks can inherit data types from a variety of sources,
including signals to which they are connected and particular
block parameters. In case the data type of a block is not set
to a built-in data type, or to an expression that evaluates it,
then the type is calculated by inheritance. In this manner,
the data type of the block is marked as “Inherit: <rule>”,
where the rule determines the mode of the inheritance. It
can be, for example, via back propagation, or same as the
input, etc. The aim of a data type propagation algorithm is
to determine the data types of these blocks and revise the
types based on the signal on the input port of the blocks.

The algorithm presented in this section performs these
modifications. As the Algorithm 1 shows, the TYPEPROP
algorithm can be split into two parts. The first part sets the
data types of the blocks, where the value of the data type is
inherited. Next, the second part of it verifies the data types,
and if it is necessary, it changes the type based on the value
of the connected signals.

Algorithm 1 The algorithm of the transformation TYPE-
PrROP

1: procedure TYPEPROP()

2: SETTYPES()

3: VERIFYTYPES()

4: return

The SETTYPES algorithm (shown in Algorithm 2) is
responsible for setting the data types of the blocks that have
this attribute set to “Inherited” in the model. This procedure
requires four different steps. First, it is possible to set the
data types of the Constant blocks Next, the base method of
the SETTYPES algorithm sets the data type attribute of the
appropriate blocks based on the data type of the previous
blocks. Since the data type propagation through hierarchical
levels may affect the applicability of this rule, a repeat-until
block is implemented in the algorithm, and the propagation
through the hierarchical levels is realized in the until block.
Moreover, since there is no guarantee that data types of
the blocks without incoming edges are set properly, the
algorithm must set the data types of these blocks as well.

Throughout the design of these algorithms, the existences
of certain sets have been assumed. These are the following:

e The InheritConstants set contains all Constant
blocks, which have their data types calculated by in-
heritance.

e The InheritSimpleBlocks set contains all non-
composite elements (i.e., no Subsystems), which have
their data types calculated by inheritance.

e The ConcreteSimpleBlocks set consists of the non-
composite elements, which have their data types set to

Algorithm 2 The algorithm of the transformation SET-

TYPES
1: procedure SETTYPES()

2: SETCONSTANTTYPE()

3. repeat

4: SETNEXTINHERIT()

5: until not SETFIRSTINSUBSYSTEM() and not SET-
TYPENEXTTOSUBSYSTEM() and not SETPREVIOUS-
INHERIT()

6: return

a built-in type.

e The InheritInportBlocks set contains all Inport
blocks, which have their data types calculated by in-
heritance.

o The InheritOutportBlocks set contains all Outport
blocks, which have their data types calculated by in-
heritance.

e The Subsystems set consists of all Subsystem ele-
ments in the model.

o The SimpleBlocks set contains all elements in the
model but the Subsystems.

Based on these sets, the SETCONSTANTTYPE algo-
rithm (depicted in Algorithm 3) iterates through the
InheritConstants set and calls the SETTYPEBASED-
ONVALUE method on each item. This method sets the data
type attribute to the appropriate value based on the value of
the constant that is output by the Constant block.

Algorithm 3 The algorithm of the transformation SETCON-
STANTTYPE

1: procedure SETCONSTANTTYPE()

2: for all c|c € InheritConstants do

3: SETTYPEBASEDONVALUE(c)

4: return

After all Constant blocks are typed into a specific built-in
type, the SETTYPES algorithm starts setting the data type
of the non-composite elements. In the body of the afore-
mentioned repeat-until block there is only one algorithm,
the SETNEXTINHERIT, which is shown in Algorithm 4.
This algorithm is responsible for the data type propagation
on a given hierarchical level. As shown, the algorithm
iterates over all block pairs, where both blocks are non-
composite elements and they are connected. On the one
hand, the data type of the source block must be set to a
built-in data type, therefore this block is an element of the
ConcreteSimpleBlocks set. On the other hand, the data
type of the target block must be calculated by inheritance
(otherwise there is no data type to set), so it is part of
the InheritSimpleBlocks set. At each iteration step, the
algorithm sets the OutDataTypeStr attribute of the target
block to the value of the same attribute of the source block.

In Simulink, the value of data type of the actual element is
stored in this attribute.

Algorithm 4 The algorithm of the transformation SETNEX-
TINHERIT
1: procedure SETNEXTINHERIT()
2. for all ala € ConcreteSimpleBlocks,blb €
InheritSimpleBlocks ANb € a.Targets do
3 b.OutDataTypeStr = a.OutDataTypeStr
4: return

In case these block pairs are all set, the possibility of
data type propagation over hierarchical levels has to be
checked. The SETFIRSTINSUBSYSTEM algorithm, which is
depicted in Algorithm 5, is responsible for this behavior.
The algorithm looks for block pairs, where the source block
is part of the ConcreteSimpleBlocks and the target is a
Subsystem, and iterates through these pairs. In the next step,
the algorithm checks whether the data type of the appropriate
Inport block is calculated by inheritance. The appropriate
Inport block is selected based on the Port number. The edges
have the information about which port of the blocks they are
connected to. This information is stored in the PortFrom
and PortTo properties. The Port properties of the Inport and
Outport blocks represent the port number of the Subsystem
where they receive or send their signals. In this manner,
the connection of the blocks can be examined. In case the
data type of the appropriate Inport block is calculated via
inheritance, the algorithm set it to the value of the data type
of the source block.

Algorithm 5 The algorithm of the transformation SET-
FIRSTINSUBSYSTEM
1: procedure SETFIRSTINSUBSYSTEM()
2: Boolean processedAny <+ false
3. for all ele.Source € ConcreteSimpleBlocks,s|s €
Subsystems N\ s = e.T'arget do
4: if 3i|i € s.InheritInportBlocks N i.Port =
e.PortTo then
a <+ e.Source
1.0ut DataTypeStr = a.Out DataTypeStr
if not processed Any then
processedAny < true
return processedAny

R A 4

The data type propagation must be implemented in the op-
posite direction as well. In this propagation, the data type of
the Outport block of a Subsystem is set, and the data type of
the appropriate block connected to this port of the Subsystem
is calculated. The SETTYPENEXTTOSUBSYSTEM algorithm
(shown in Algorithm 6) handles these situations, and sets the
OutDataTypeStr attribute to the value of Outport block.

Finally, as it was mentioned, there are cases, where the
data type of a block cannot be calculated via propagation

Algorithm 6 The algorithm of the transformation SETTYPE-
NEXTTOSUBSYSTEM

Algorithm 8 The algorithm of the transformation VERIFY-
TYPES

1: procedure SETTYPENEXTTOSUBSYSTEM()
2: Boolean processed Any < false
3: for all e|le.Target € InheritSimpleBlocks,s|s €
Subsystems N\ s = e.Source do
4. if Jolo € s.ConcreteOutportBlocks A o.Port =
e.PortFrom then
a < e.Target
a.OutDataTypeStr = 0.Out DataTypeStr
if not processed Any then
processed Any <+ true
return processedAny

R A4

in this forward direction. In these cases, the data type is
set based on the value of the next block. The SETPREVI-
OUSINHERIT algorithm is responsible for this behavior. As
it is shown in Algorithm 7, this algorithm differs from the
SETNEXTINHERIT algorithm in only one aspect: in this case
the source block is from the InheritSimpleBlocks set. In
this manner, the backpropagation can be accomplished as
well.

Algorithm 7 The algorithm of the transformation SETPRE-
VIOUSINHERIT

1: procedure SETPREVIOUSINHERIT()

2: Boolean processed Any < false

3. if ala € ConcreteSimpleBlocks, blb €

InheritSimpleBlocks AN'b € a.Sources then

4: b.OutDataTypeStr = a.OutDataTypeStr
5: if not processed Any then
6
7

processedAny < true
: return processedAny

In case any of the three algorithms in the until statement
returns true, the SETTYPES algorithm applies the SETNEX-
TINHERIT again. Otherwise, the algorithm terminates, and
the TYPEPROP algorithm moves on to the type verification
part.

This verification part is contained by the VERIFYTYPES
algorithm, shown in Algorithm 8. Its structure is very similar
to the SETTYPES algorithm, that is, it uses a repeat-until
block, in which it attempts to verify the data types of the
connected block, and the until block contains the verification
throughout the hierarchical levels.

The VERIFYSIMPLEBLOCK algorithm (shown in Algo-
rithm 9) checks every edge that connects to non-composite
elements. At each edge, the algorithm calls the COMPAT-
IBLETYPES method with the source and target blocks as
parameters. This method determines whether the data types
of the blocks are compatible. In case they are, the algorithm
does not modify them. Otherwise, the data type of the target
block is set to the data type of the source block. The non-

procedure VERIFYTYPES()
repeat
VERIFYSIMPLEBLOCK()
until not VERIFYFIRSTINSUBSYSTEM() and not VER-
IFYNEXTTOSUBSYSTEM()
5. return

BN

compatibility in this algorithm is interpreted to mean that
there is arithmetic overflow. For example, if a block a has an
incoming edge from a block, which has the OutDataTypeStr
attribute set to int32, this a block cannot have its Out-
DataTypeStr set to, for example, intl6. These conversion
rules are implemented in the COMPATIBLETYPES method.
If any of the rules is broken by the blocks passed as the
parameters, the algorithm, as it was mentioned, modifies the
data type of the target block to the data type of the source
block. Since the algorithm should not overwrite the manually
added data type conversions, the target block of the edge
cannot be a Convert element.

Algorithm 9 The algorithm of the transformation VERI-
FYSIMPLEBLOCK
1: procedure VERIFYSIMPLEBLOCK()
2: for all ele.Source € SimpleBlocks N e.Target €
SimpleBlocks N e.Target is not Convert do

3 a< e.Source

4 b+ e.Target

5. if “COMPATIBLETYPES(a, b) then

6: print b.Name — a.OutDataTypeStr

7 b.OutDataTypeStr < a.Out DataTypeStr
8: return

As the data types are propagated across hierarchical
levels, the verification performs verification across hier-
archical levels as well. The VERIFYFIRSTINSUBSYSTEM
algorithm, which is shown in Algorithm 10, is very similar to
the already discussed SETFIRSTINSUBSYSTEM algorithm.
However, instead of checking whether the data type of the
appropriate Inport block is calculated or not, this time its
compatibility is checked with respect to the block connecting
to the Subsystem. In case there is a compatibility issue, the
algorithm modifies the OutDataTypeStr attribute.

The last algorithm to be discussed is the VERIFYNEXT-
TOSUBSYSTEM, which is depicted in Algorithm 11. This
algorithm is responsible for the verification in the other (i.e.,
bottom-up) hierarchical direction. This time the data type of
the appropriate Outport block is examined. In case it is not
compatible with the data type of the block b connecting to
the Subsystem, then the OutDataTypeStr attribute of the b
block is modified.

As can be seen, the verification part of the algorithm

Algorithm 10 The algorithm of the transformation VERI-
FYFIRSTINSUBSYSTEM
1: procedure VERIFYFIRSTINSUBSYSTEM()
2: Boolean processed Any < false
3. for all ele.Source € SimpleBlocks,s|s €
Subsystems N\ s = e.Target do
a <+ e.Source
b+ ili € s.InportBlocks Ni.Port = e.PortTo
if ~CompatibleTypes(a,b) then
print b.Name — a.OutDataTypeStr
b.OutDataTypeStr < a.OutDataTypeStr
if not processed Any then
10: processed Any <+ true
11: return processedAny

R AN

Algorithm 11 The algorithm of the transformation VERI-
FYNEXTTOSUBSYSTEM
1: procedure VERIFYNEXTTOSUBSYSTEM()
2: Boolean processed Any < false
3. for all e|e.Target € SimpleBlocks A e.Target is not
Convert, s|s € Subsystems A s = e.Source do
4 a < olo € s.OutportBlocks N o.Port =
e.PortForm
b+ e.Source
if ~CompatibleTypes(a,b) then
print b.Name — a.OutDataTypeStr
b.OutDataTypeStr < a.Out DataTypeStr
if not processed Any then
10: processed Any <+ true
11: return processedAny

R A

relies heavily on the capability of the COMPATIBLETYPES
method.

In case either the VERIFYFIRSTINSUBSYSTEM or the
VERIFYNEXTTOSUBSYSTEM algorithm returns true, the
VERIFYTYPES algorithm must step into the repeat block
again, since there may be new edges that meet the condition
in the VERIFYSIMPLEBLOCK algorithm. Otherwise, the two
algorithms return false, the VERIFYTYPES algorithm termi-
nates, and therefore, the TYPEPROP algorithm terminates as
well.

III. IMPLEMENTING THE ALGORITHM

The previous section presented the algorithm, which pro-
vides a solution for propagating and verifying data types in
Simulink models. This section presents a novel approach
to realizing this algorithm by implementing it via graph
transformations.

In order to realize the transformation rules, a modeling
and transformation framework is necessary. This framework
is introduced in Section III-A. The transformation itself,
that is, the controlling structure and the details of the
transformation rules, is discussed in Section III-B.

A. The Modeling Environment

To create transformations of the Simulink model, the
Visual Modeling and Transformation System (VMTS) [12]
[14] was used. The VMTS is a general purpose meta-
modeling environment supporting an arbitrary number of
metamodel levels. Models in VMTS are represented as
directed, attributed graphs. The edges of the graphs are also
attributed. VMTS is also a transformation system. It utilizes
a graph rewriting-based model transformation approach or a
template-based text generation. Whereas templates are used
mainly to produce textual output from model definitions in
an efficient way, graph transformation can describe transfor-
mations in a visual and formal way.

In VMTS the Left-Hand Side (LHS) and the Right-Hand
Side (RHS) of the transformation are depicted together. In
this manner, the process of the transformation is more easier
to comprehensively express. VMTS applies different colors
to distinguish the LHS from the RHS in the presentation
layer. Imperative constraints can also be applied.

In VMTS the control flow determines the order of the
transformation rules. Each controls flow has exactly one start
state and one or more end states. The applicable rules are
defined in the rule containers. This means that exactly one
rule belongs to each rule container. The application number
of the rule can be defined here as well. By default, the
VMTS attempts to locate just one match for the LHS of the
transformation rule. However, if the IsExhaustive attribute
of the rule container is set to true, then the rule will be
applied repeatedly as long as its LHS pattern exists within
the model.

The edges are used to determine the sequence of the rule
containers. The control flow follows an edge, which corre-
sponds to the result of the rule application. In VMTS, the
edge to be followed in case of a successful rule application
is depicted with a solid gray flow edge, in case of a failed
rule application with a dashed gray flow edge. Solid black
flow edges represent the edges that can be followed in both
cases.

B. The Transformation

It was mentioned, in VMTS, the order of the transforma-
tion rules is determined in a separate model, the control flow.
The control flow of the TRANS_TYPEPROP transformation,
which implements the propagation algorithm, is shown in
Figure 1.

The first thing one may recognize is the number of di-
rected cycles in the model. These directed cycles implement
the repeat-until blocks of the algorithms.

Since the data types of the Constant blocks do not depend
on any other blocks, the transformation starts with setting
the OutDataTypeStr attribute of the Constant blocks. This is
achieved in the RW_MATLAB_SETCONSTANT transforma-
tion rule. The rule attempts to match the Constant blocks that
have their OutDataTypeStr attributes start out with being set

SetConstants [C

RW _Marigh SerConstant

SetNextBlock [
RW _Muotioh SetSimpleBlocks

SetTypeFirstinSub @|
system tem
RW Marigh SetSubsystemin RW_Marigh_SetSubsystemOut

|Verif3rAfterSubsystem A
| RW_Marias_ \VerifedfrerSubsystem |

Figure 1.

constant |_|

CommonlhyUsedBlocks__Constant

Model 0

Figure 2. The transformation rule RW_MATLAB_SETCONSTANT

to “Inherit”. The imperative code of the transformation finds
the appropriate data type for the given value and assigns it
to the attribute. The transformation rule is applied as long
as there is a Constant block without explicitly set data type.
The model of the transformation rule is shown in Figure 2.

Next, the transformation attempts to propagate the data
types in case of blocks on the same hierarchical level.
This is the responsibility of the RW_MATLAB_SETSIMPLE-
BLOCKS transformation rule, which is depicted in Figure 3.
The matched blocks have the following constraints:

« The blocks cannot be composite elements.

e« The data type of the source block, depicted as
fromBlock in Figure 3, must be set explicitly.

o The OutDataTypeStr attribute of the target block, de-
picted as roBlock in Figure 3, must start out to be set to
“Inherit”. As was mentioned, this means that the data
type of the block is calculated.

In case the rule finds a valid match, the OutDataType-
Str attribute of the target block is updated with the data
type of the source block. The transformation applies this
rule exhaustively, implementing the propagation as long as
possible. As a result, this transformation rule realizes the
SETNEXTINHERIT algorithm.

After there are no connected blocks where the data
propagation can be applied, the transformation looks for

SetTypeAfterSubsys [

SetPreviousBlock [1]
RW_Marigh SetSinwpleBlocks8
ackward

RW_Marizs \VerifiFirstinSubsyzre RW Maotiah VerifirSimpleBlocks
m

|Verif3rFirstIn5ubsystem A VerifySimpleBlocks €]

The control flow of the TRANS_TYPEPROP transformation

fromBlock B

Block

Figure 3. The transformation rule RW_MATLAB_SETSIMPLEBLOCKS

data propagation through hierarchical levels. As such, it
attempts to apply the RW_MATLAB_SETSUBSYSTEMIN
transformation rule, which is shown in Figure 4. This rule
attempts to find a match, where:

o A simple block is connected to a Subsystem element,

o The data type of the source block, depicted as
fromBlock, is explicitly set,

e The Inport block (the inBlock in the Figure) of the
Subsystem has its OutDataTypeStr attribute set to be
based on a calculated value, that is, it starts off being
set to “Inherited”.

In case a match is found with this structure, the rule
propagates the data type of the source block to the Inport
block of the Subsystem, realizing the data type propagation
across hierarchical levels.

This RW_MATLAB_SETSUBSYSTEMIN rule is the first
rule in the transformation, where the applicability of the
rule determines the next transformation rule. On the one
hand, if the transformation rule was applied successfully
(i.e., at least once), there might be connected simple blocks,
where hereby the data type propagation can be applied.
Therefore, the transformation steps back to the RW_MAT-
LAB_SETSIMPLEBLOCKS rule. On the other hand, in case
the transformation does not find any match with the desired
structure, there cannot be new block pairs where the data

fromBlock [subsystem =

CommonlyUsedBlocks__Subsystem

Medel §

inBlock E

CommonlylUsedBlocks__n1

Modet @

Figure 4. The transformation rule RW_MATLAB_SETSUBSYSTEMIN

type propagation on the same level would be possible.
Therefore, the transformation moves on to the RW_MAT-
LAB)SETSUBSYSTEM_OUT rule.

Note, that this is the implementation of the lazy evaluation
of conditional structures. In case the SETFIRSTINSUB-
SYSTEM algorithm returns true in the until block of the
SETTYPES algorithm, then the condition cannot be evaluated
as true, therefore, the execution returns to the body of
the repeat-until block, that is, to the SETNEXTINHERIT
algorithm, without checking the other conditions. This is
implemented in the graph transformation-based solution as
well. If the RW_MATLAB_SETSUBSYSTEMIN rule finds at
least one match, then the control flow of the transformation
navigates back to the RW_MATLAB_SETSIMPLEBLOCKS
rule.

The bottom-up direction of the hierarchical data type
propagation is implemented in the RW_MATLAB_SETSUB-
SYSTEMOUT transformation rule. This rule is shown in
Figure 5. This rule is similar to the one presented before.
However, in this case, the rule attempts to find a graph with
this structure:

o The direction of the edge between the Subsystem
and the simple block is reversed, it leads from the
Subsystem to the block.

o The data type of the Outport block of the Subsystem,
depicted as outBlock, is explicitly set.

o The data type of the target block, depicted as toBlock
in Figure 5 starts out being set to “Inherited”, which
means it is calculated.

If a match is found, then the OutDataTypeStr attribute
of the target block is set to the same value as the data
type of the Outport block. Note, that the applicability of the
transformation rule determines the direction of the control
flow as well. In case the rule was applied at least once, the
transformation returns to the RW_MATLAB_SETSIMPLE-
BLOCKS rule, otherwise, since there was no propagation,
the transformation moves on to the RW_MATLAB_SETSIM-
PLEBLOCKBACKWARD transformation rule.

The transformation focuses on the type of data type propa-

subsystem B

CommonlyUsedBlocks__Subsystem

Modei 0,

outBlock B

CommonlyUsedBlocks__Cutl

Mode! 0

Figure 5. The transformation rule RW_MATLAB_SETSUBSYSTEMOUT

gation, where the direction of the propagation coincides with
the direction of the connecting edge. This is called forward
propagation. However, in some cases it is unavoidable to
change the direction in order to specify the data type of
a block. For this reason, the transformation implements the
RW_MATLAB_SETSIMPLEBLOCKBACKWARD transforma-
tion rule, which realizes the backward propagation of data
types. The structure of the rule corresponds with the RW_-
MATLAB_SETSIMPLEBLOCKS rule (Figure 3), but this time
the toBlock must have its OutDataTypeStr attribute set
explicitly, and the data type of the fromBlock is calculated.

Note however, that this rule is applied just once. If the
match was successful, then the transformation returns to the
RW_MATLAB_SETSIMPLEBLOCKS transformation rule, no
matter how many more times the backward propagation
could be applied. This behavior supports the forward prop-
agation as opposed to the backward propagation.

In case the transformation does not find any match for
the RW_MATLAB_SETSIMPLEBLOCKS, the transformation
finishes by specifying the data type of the blocks. However,
this does not mean that every block in the model has its
data type set explicitly. In case there was not any block
with set data type and there was no Constant block in
the model, then the transformation could not propagate any
information. Moreover, since the transformation prefers the
forward data type propagation, the backward hierarchical
propagation would not be invoked, which might lead to
blocks with unspecified data type.

As the TYPEPROP algorithm suggests, after specifying the
types of the blocks, their compatibility should be checked.
This is the responsibility of the next three rules of the
TRANS_TYPEPROP transformation. The structure of these
rules (RW_MATLAB_VERIFYSIMPLEBLOCKS, RW_MAT-
LAB_VERIFYFIRSTINSUBSYSTEM and RW_MATLAB_-
VERIFYAFTERSUBSYSTEM) and the rules themselves are
very similar to the ones described before. As for the struc-
ture, these three rules realize a lazy evaluated repeat-until
block, where the RW_MATLAB_VEREIFYSIMPLEBLOCKS
is the only rule in the body of the block.

As for the rules, each of the three rules corresponds to one
of the already discussed rules, but with different imperative
code. These pairs are the following:

e The RW_MATLAB_VERIFYSIMPLEBLOCK transfor-
mation rule corresponds to the RW_MATLAB_SET-
SIMPLEBLOCKS rule,

¢ The RW_MATLAB_VERIFYFIRSTINSUBSYSTEM rule
corresponds to the RW_MATLAB_SETSUBSYSTEMIN
rule,

e The RW_MATLAB_VERIFYAFTERSUBSYSTEM rule
corresponds to the RW_MATLAB_SETSUBSYSTE-
MOUT transformation rule.

The only differences between the setting and verifying

rules are the constraints and the imperative code.

The constraints have to be different, since at this stage of
the transformation it does not look for inherited data types.
Moreover, the data types must be explicitly set to examine
their compatibility. This compatibility check is implemented
via imperative code. If the two data types are not compatible,
for example, the data type of the source block is “int32”
and the data type of the target block is “int16”, there
may be a possible arithmetic overflow. In these cases the
transformation modifies the OutDataTypeStr attribute of the
target block.

As their names suggest, the RW_MATLAB_VERIFYSIM-
PLEBLOCK transformation rule is responsible for the com-
patibility check of connected blocks in the same hierarchical
level, and the RW_MATLAB_VERIFYFIRSTINSUBSYSTEM
and RW_MATLAB_VERIFYAFTERSUBSYSTEM rules im-
plement this check across hierarchical levels.

Since the direction of the signals correspond to the direc-
tion of the edges, there is no need for backward checking.

It is worth mentioning that a verifying transformation
rule is successful if there is at least one block whose data
type is changed because of compatibility issues. The appli-
cation of the RW_MATLAB_VERIFYFIRSTINSUBSYSTEM
and RW_MATLAB_VERIFYAFTERSUBSYSTEM rules is not
exhaustive. If either of these rules is applied successfully, the
transformation returns to the RW_MATLAB_VERIFYSIM-
PLEBLOCKS to perform compatibility checks on the affected
hierarchical level.

C. The Termination of the Transformation

Before applying a graph transformation on a model, some
of its properties must be examined. The termination of
a transformation is arguably one of the most important
properties.

Proposition 1. The transformation TRANS_TYPEPROP al-
ways terminates.

Proof: In order to prove the transformation always
terminates, the following two statements must be proved:
1) Each transformation rule is applied only a bounded
number of times,

2) The transformation does not contain any nonterminat-
ing loop.

In VMTS, the application mode of a rule container, which
contains the applicable rule, can be set to either “Once” or
“Exhaustive”. In case this attribute is set to “Once”, then
the VMTS attempts to apply the rule exactly once and
moves on in the control flow based on the result of the
matching. Therefore, the transformation cannot apply the
rule indefinitely.

However, in case the transformation attempts to match
a rule exhaustively, an nonterminating loop might arise.
Therefore, these rules must be examined, in order to avoid
their indefinite application. In the TRANS_TYPEPROP trans-
formation the following rules are applied exhaustively:

e The RW_MATLAB_SETCONSTANT rule sets the Out-
DataTypeStr attribute based on the value of the Con-
stant block. Since the constraint of the LHS states,
that the OutDataTypeStr attribute must start being set
to “Inherit”, but the rule sets this property to a valid
data type, therefore the rule cannot be applied on
the matched block again. Considering that a Simulink
model always contains only finite number of elements,
the rule can be applied only a finite number of times.

e The RW_MATLAB_SETSIMPLEBLOCKS transforma-
tion rule sets the OutDataTypeStr attribute of a block
based on one of its predecessor. In the LHS graph, the
OutDataTypeStr attribute of the target block must start
being set to “Inherited”. However, the transformation
modifies the value of this attribute to a valid data type.
Therefore, this block cannot be matched as target block
in the LHS graph. In this manner, a block can be
matched as target block at most once. Since a Simulink
model contains finite number of blocks, the rule cannot
be applied infinite number of times.

e The RW_MATLAB_SETSUBSYSTEMIN rule is respon-
sible for the data type propagation across hierarchical
levels. The rule matches Inport blocks, which have their
OutDataTypeStr attribute set to “Inherit”. After the rule
application, the value of the attribute is set based on the
data type of the block connecting to the appropriate port
of the Subsystem. Since the rule modifies the value of
the attribute, which is the applicability condition, an
Inport block can be matched by this rule at most once.
Considering the number of block in the Simulink model
is always finite, the rule cannot be applied indefinite
number of times.

e The RW_MATLAB_SETSUBSYSTEMOUT rule imple-
ments the data type propagation across hierarchical
levels as well, but this rule propagates the data type
of the Outport block to the block connecting to the
Subsystem on a higher level. The reasoning behind the
bounded applicability of the rule is the same as before:
each block can satisfy the constraint of the LHS graph

at most once, and since there exists only a finite number
of blocks in the model, the rule is applied a bounded
number of times.

e The RW_MATLAB_VERIFYSIMPLEBLOCKS transfor-
mation rule is very similar to the RW_MATLAB_SET-
SIMPLEBLOCKS rule, but it looks for incompatible data
types. In case the rule finds a match, the data type of
the target block is modified. However, there may be
loops in the Simulink model, which makes it possible
to apply the rule on the very same S (Source) and T’
(Target) blocks. This occurs, when the OutDataTypeStr
of the S blocks is set to a type with broader range after
the first application. In this case, the OutDataTypeStr of
the T block is modified again. However, this cannot be
repeated indefinitely since there is only a finite number
of data types in Simulink, and the transformation rule
is applied only when the data type of S is broader than
the data type of 7.

After examining the exhaustively applied transformation
rules, the loops must be checked. Both the first and second
part of the transformation implement loops. However, the
rules in the first part, which explicitly set the data type of the
blocks, cannot form an nonterminating loop. The reason for
this behavior is the following: Each rule attempts to match
exactly one block, whose OutDataTypeStr attribute starts off
being set to “Inherit”. This value is then modified by the
rule. However, there is no rule in the transformation that
sets the OutDataTypeStr attribute to a value that starts off
being set to “Inherit”. Therefore, the rules cannot be applied
more often than there are blocks in the Simulink model.

This reasoning can be applied to the verification part
of the transformation as well, but it must be extended.
The successful application of either the RW_MATLAB_-
VERIFYFIRSTINSUBSYSTEM or the RW_MATLAB_VERI-
FYAFTERSUBSYSTEM may cause the already matched S-T'
block pair to be matched again by the RW_MATLAB_VERI-
FYSIMPLEBLOCKS rule. This happens when the application
of the rules changes the data type of the S block to a data
type with broader range. This way the data type of the T’
block is going to change again. However, there are only finite
number of data types, and the types are never narrowed by
any of the transformation. In this manner, the rules cannot
form an nonterminating loop, at some point there will be no
incompatible block pairs.

Since none of the transformation rules can be applied
indefinitely and the transformation does not contain any
nonterminating loop, it is proven that the transformation
always terminates.]

IV. EXPERIMENTAL RESULTS

After presenting the algorithm and the transformation,
this section shows a simple example to demonstrate the
transformation functionality.

===

E Function Block Parameters: Add

Sum

Add or subtractinputs. Specify one of the following:

@) string containing + or - for each input port, | for spacer between ports (e.g. ++|-|++)
b) scalar, == 1, spedifies the number of input parts to be summed.

When there is only one input port, add or subtract elements over all dimensions or one
specified dimension

Signal Attributes

[require all inputs to have the same data type

Accumulator data type: Inherit: Inherit via internal rule

- =3
Output minimum:

1 0

Qutput data type: uintd - 3

[] Lodk data type settings against changes by the fixed-point tools

Qutput maximum:

Integer rounding mode: |Floor - I

|:| Saturate on integer averflow

H Cancel | [e Apply

9 x

Figure 6. The properties of the Add block before the transformation

B Sortedlist Complex_Example =Rl X

File Edit View Simulation Format Tools Help

O =zEdE 3 100 |Nomal -

Constant

Subsystem

Ready 100% oded5

Figure 7. The root level of the example Simulink model

Figure 6 shows the properties dialog of an Add block.
This Add block is the Add block from the model depicted in
Figure 7. It can be seen that one of its sources is a Constant
block and the other is a Product block. Both of these blocks
have their data type set as calculated. Moreover, the data type
of the In block, which is connected to the Product block, is
int16. As Figure 6 shows, the data type of the Add block is
set to uint8.

First, the transformation calculates the data types of the
Constant blocks. In this implementation, the data type of the
Constant block is set to inf8.

Next, the data type propagation begins. In this case, the
data type of the Product block is set to int/6 because one
of its source blocks, that is, the In block, has this data type.

Finally, the verification part of the transformation changes
the data type of the Add block from wuint8 to intl6, as it
is depicted in Figure 8. This modification is based on the
data type of the Product block, which is one of the sources
of the Add block. Note, that the other source of the Add

E)

E Function Block Parameters: Add

5um

Add or subtractinputs. Spedify one of the following:

a) string containing + or - for each input port, | for spacer between ports (e.g. ++|-1+4)
b) scalar, == 1, spedifies the number of input ports to be summed.

When there is only one input port, add or subtract elements over all dimensions or one
specified dimension

Signal Attributes

[Require all inputs to have the same data type

Accumulator data type: Inherit: Inherit via internal rule

- ==

Cutput minimum: Output maximum:

0 0

Qutput data type: intla - pa

[Lock data type settings against changes by the fixed-point tools

Integer rounding mode: | Floor - I

|:| Saturate on integer overflow

J oK l l Cancel] l Help Apply
Figure 8. The properties of the Add block after the transformation
) Lister - [c\DataType.tt] | =6 &r
File Edit Opticns Enceding Help 100 35

The Constant block was set to int8 type.

The Constant block was set to int1é type.

The Constant block was set to single type.

The Product block was set to int16 type.

The Product block was set to int16 type.

The Out1 block was set to int16 type.

The Add block was set to single type.

The In1 block was set to uint8 type.

The Divide block was set to uint8 type.

The Abs block was set to uint8 type.

The In1 block was set to uint8 type.

The Abs block was set to int16 type.

The Producti block was set to int1é6 type.

The type of Add block was changed from uint8 to int16 type.
The type of In1 block was changed from uint8 to int16 type.
The type of Divide block was changed from uint8 to int16 type.
The type of Abs block was changed from uint8 to int16 type.
The type of In1 block was changed from uint® to int16 type.

« »

Figure 9. The change log of the transformation

block, that is, the Constant block, would also imply a data
type change. The order of the matches in case of the same
rule is not deterministic in the VMTS, so the data type of
the Add block might have changed to int8 first, and then to
intl6.

Since logging functionality is also implemented in the
transformation, the data type changes can be conveniently
tracked in a clear listing. This logging is shown in Figure 9.

Note, that the effectiveness of the transformation depends
heavily on the implementation of the SETTYPEBASED-
ONVALUE and the COMPATIBLETYPES algorithms. Nev-
ertheless, the presented example conveys the value and
potential of graph transformations in software and system
modeling.

V. CONCLUSION

Nowadays, Simulink is a popular tool in industry for
modeling embedded systems. In order to precisely model
the functionality of the modeled system, Simulink elaborates
the source model. This elaboration is practically a form of
model transformation, which is implemented in the Simulink
code base.

Part of the elaboration process is specifying the data
types of the blocks explicitly. In this paper, an algorithm
is presented in detail, which is suitable for defining and
verifying the data types of the different model elements by
using data propagation.

Moreover, the algorithm implemented via graph transfor-
mation is also presented in this paper. This novel approach
enables taking advantage of the benefits of model trans-
formation such as platform independence and reusability.
With this solution, the abstraction level of the data type
propagation problem can be also raised. In order to use
this graph transformation in practice, its termination was
examined as well.

Finally, a simple example was given to illustrate the
potential of the transformation.

Future work intends to study whether with the help of the
graph transformation the other model elaboration steps can
be implemented as well. These other steps include flatting
of the source models and creating the execution list. In this
manner, the abstraction level could be raised even further
and additional benefits unlocked.

ACKNOWLEDGMENT

This work was partially supported by the European Union
and the European Social Fund through project FuturICT.hu
(grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013) orga-
nized by VIKING Zrt. Balatonfiired. This work has been
supported by the project “Talent care and cultivation in the
scientific workshops of BME” financed by the grant TAMOP
- 4.2.2.B-10/1-2010-0009.

REFERENCES

[1] P. J. Mosterman, J. Zander, G. Hamon, and B. Denckla, “A
computational model of time for stiff hybrid systems applied
to control synthesis,” Control Engineering Practice, vol. 20,
no. 1, pp. 2-13, January 2012.

[2] P. J. Mosterman and J. Zander, “Advancing model-based
design by modeling approximations of computational seman-
tics,” in Proceedings of the 4th International Workshop on
Equation-Based Object-Oriented Modeling Languages and
Tools (EOOLT 2011), September 2011, pp. 3-7.

[3] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: En-
abling Full Code Generation. Wiley, 2008.

[4] M. Fowler, Domain Specific Languages, ser. The Addison-
Wesley Signature Series. Addison-Wesley, 2010.

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

“Simulink® 2012b,” http://www.mathworks.com/simulink/,
2012.

“Simulink® 2012b user’s manual,”
http://www.mathworks.com/help/simulink/index.html, 2012.

R. Hindley, “The principal type-scheme of an object in com-
binatory logic,” Transactions of the american mathematical
society, vol. 146, pp. 29-60, 1969.

R. Milner, “A theory of type polymorphism in programming,”
Journal of computer and system sciences, vol. 17, no. 3, pp.
348-375, 1978.

P. Fehér, P. J. Mosterman, T. Mészdros, and L. Lengyel, “Pro-
cessing Simulink models with graph rewriting-based model
transformation,” Model Driven Engineering Languages and
Systems (MODELS ¢12) - Tutorials, 2012.

P. J. Mosterman and H. Vangheluwe, “Computer automated
multi-paradigm modeling: An introduction,” SIMULATION:
Transactions of The Society for Modeling and Simulation
International, vol. 80, no. 9, pp. 433450, 2004.

P. Mosterman, J. Sztipanovits, and S. Engell, “Computer-
automated multiparadigm modeling in control systems tech-
nology,” Control Systems Technology, IEEE Transactions on,
vol. 12, no. 2, pp. 223-234, March 2004.

L. Angyal, M. Asztalos, L. Lengyel, T. Levendovszky,
I. Madari, G. Mezei, T. Mészaros, L. Siroki, and T. Vajk,
“Towards a fast, efficient and customizable domain-specific
modeling framework,” in Software Engineering. ACTA
Press, 2009.

“Simulink® 2012b - working with data types”
http://www.mathworks.com/help/simulink/ug/working-

with-data-types.html, 2012.

“VMTS website,” http://vmts.aut.bme.hu/, 2012.

