
Session S1F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA

36
th

 ASEE/IEEE Frontiers in Education Conference

S1F-1

Automatic Code Generation: Facilitating New

Teaching Opportunities in Engineering Education

Pieter J. Mosterman
The MathWorks, Inc.,

Natick, MA 01760

pieter.mosterman@mathworks.com

Abstract - Model-Based Design in industry relies heavily on

automatic code generation technology. The need to obtain

code for different configurations such as rapid

prototyping, hardware-in-the-loop simulation, and

processor-in-the-loop simulation introduces extensive code

generation from high-level models and to be cost effective

and competitive requires the automation of this code

generation. This paper shows some of the issues that

embedded systems engineers have to negotiate as a

consequence of this. It indicates that there is a shift in

required skills from the algorithmic to the architectural

level. As such, automatic code generation technology

provides an opportunity in academia to better prepare

students to be successful in the field of embedded control

system design by including such architectural aspects in

the curriculum, while shifting focus of algorithm design

from creation to inspection.

Index Terms - Engineering education; model-based design;

automatic code generation

INTRODUCTION

In its role of preparing the future workforce, a critical aspect

of engineering education is to provide students with the skills

and knowledge required to be successful in industry as well as

appealing from a recruiting perspective.

As such, it is important for academia to be aware of the

needs and practices of industry and to recognize and act upon

paradigm shifts as they occur. Conversely, industry has a

responsibility to make the characteristics of prospective

employees that are required are well known. As a corollary to

that, tool vendors should educate academia as well as industry

on the benefits and usages of their products.

An important shift in industrial practice that has profound

implications with regards to the required set of skills of

employees is the adoption of Model-Based Design. The

pervasive access to computing power originally was mostly

exploited by automating support tasks in the design process

such as word processing and data storage. This led to the

popularity of office software and posed a need for engineering

education to include training in word processing, spread sheet

operation, and database handling in the curriculum.

More recently, computing power has taken on a more

integral role in system design by automating part of the

required effort. As this has been facilitated by the use of

computational models, modeling has become an increasingly

important aspect of the required skill set of the engineering

workforce. In addition, technologies that leverage the

availability of models enable reaping the benefits of

computational models in addressing the challenge of system

design.

FIGURE 1

MODEL-BASED DESIGN.

Figure 1 illustrates the central position of computational

models in Model-Based Design. An industrial-strength

modeling environment such as Simulink® [1] supports the

different technologies that comprise a successful Model-Based

Design:

Executable specifications allow immediate feedback on

the behavior of a specification, as opposed to documented

behavior that often is misinterpreted.

Simulation in the design supports a quicker search of the

design space as opposed to constructing hardware

prototypes.

Automatic code generation reduces the tedious and error-

prone stage of translating a design into a specification for

the software engineers and manually writing the computer

code accordingly.

Test and verification can be performed in a much earlier

stage in the design as a computational model is available

with access to all internal variables, including those that

may be difficult to obtain on a hardware prototype.

This paper concentrates on how automatic generation

technology is reshaping the design of embedded systems and

how this potentially impacts education. It furthermore

discusses possibilities in education to take advantage of such

Session S1F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA

36
th

 ASEE/IEEE Frontiers in Education Conference

S1F-2

technology to provide students with experiences that would

otherwise have required prohibitively extensive programming

assignments.

The following section provides the context for automatic

code generation technology by giving an overview of the

typical approach to embedded control system design. The next

section then illustrates automatic code generation in detail

based on an electronic throttle control system. The effects that

automatic code generation may have on education are then

discussed and the final section presents the conclusions of this

work.

AN INDUSTRIAL DESIGN APPROACH

The complexity of embedded systems in terms of scale has

dramatically increased over the past decades. In particular, the

now prolific use of embedded computing power has enabled

functionality much beyond what could be achieved with

purely analog equipment. For example, in the automotive

business the key differentiator between models has become

features such as power seats, central door lock, park assist,

built-in audio and video systems, which all rely on embedded

computers. This trend is projected to continue, in particular

when safety-critical systems such as braking and steering are

implemented in embedded processors.

In addition, in order to stay competitive, the time-to-

market of new automobile models has significantly reduced

and to manage this confluence of factors successfully

systematic design methods are essential.

A typical design approach in the automotive as well as the

aerospace industry is ‘V’ shaped, as illustrated in Figure 2.

The approach starts at the top left with documenting the

requirements for the system to be designed. These

requirements are then processed into a set of formal

specifications that constitute the foundation for a set of models

of the desired system. Simulation allows prompt feedback on

the designed system behavior and changes can be made to the

model in case undesired behavior is present.

FIGURE 2

AN INDUSTRIAL DESIGN APPROACH.

Once a model is designed that behaves according to the

requirements, a preliminary validation of feasibility is

performed by producing a rapid prototype that includes some

of the non-functional, and, therefore, not modeled,

characteristics. These characteristics include response time,

jitter, and delay behavior, and may require changes to the

original design. On-target rapid prototyping is then employed

to ensure appropriate behavior using the actual microprocessor

that is envisioned in the production version of the designed

system. This stage validates characteristics such as the

compiler that is used, fixed-point effects, and interaction with

other systems.

Finally, when all prototyping shows that a feasible and

correct design has been arrived at, the production code is

produced. This is highly optimized code that will be used in

the high-volume product, and is rigorously verified, validated,

tested, and tuned while moving up the right-hand stroke of the

‘V’ in Figure 2. A number of different configurations such as

software-in-the-loop, processor-in-the-loop, and hardware-in-

the-loop are used to this end [2].

The successful execution of the above sketched approach

is predicated upon the availability of automatic code

generation facilities as different forms of code have to be

obtained for the different stages such as rapid prototyping, on-

target rapid prototyping, production code, and processor-in-

the-loop simulation. Consequently, automatic code generation

is an important, if not critical, technology for the design of

embedded systems and familiarity with it is a necessity for the

engineers active in this domain.

AN ELECTRONIC THROTTLE CONTROL SYSTEM

To study the skills required in working with automatic code

generation facilities, let us concentrate on the electronic

throttle control as found in modern automobiles.

I. Control Structure

Figure 3 shows a paradigmatic structure of the throttle control.

The discrete event state machine Throttle Sequencer is used

to schedule the execution of the Throttle Position

Controller task. Such explicit execution control requires an

imperative model of computation as embraced by the

dashed/dotted function-call connection from the Throttle

Sequencer to the Throttle Position Controller. The

Throttle Sequencer executes the Throttle Position

Controller in a nominal mode of behavior. When failures

occur and during startup and shutdown, execution of the

Throttle Position Controller may be suspended.

1

Throttle Ctrl
Bus

DOC

Text

ThrottleDocBlock
Abstract

brake

pedal_position

cruise_ctrl_set_accel

battery_v

battery_v_max

battery_v_min

performance_mode

errs

pedal_cmd

EventRunning

Throttle Sequencer
function()

Performance Mode

Throttle Position Sensor

Pedal Sensor

Duty Cycle

Throttle Direction

Throttle Position Controller

[errs]

[pedal_cmd]

[errs]

[pedal_cmd]

uint16
(SI)

uint16
(SI)

uint16
(SI)

Convert

battery_volts_min

battery_volts_max

6

Throttle Position

5

Battery (V)

4

Cruise Ctrl Set Accel

3

Performance Mode

2

Brake

1

Pedal Postion

direction

failures

duty_cycle

errs

FIGURE 3

THROTTLE CONTROL.

Session S1F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA

36
th

 ASEE/IEEE Frontiers in Education Conference

S1F-3

The Throttle Position Controller embodies the low

level feedback control to position the throttle according to a

setpoint. In this example, position, integral, and derivative

(PID) control is employed. This type of control takes in the

difference between the setpoint and actual position of the

throttle and computes a control force as a weighed sum of this

difference, the time integral of the difference and the time

derivative of the difference.

II. Automatic Code Generation

In Figure 4, a model of the position and integral computation

of the PID control is shown. When code is automatically

generated for this model, the following code fragment

represents the computations of the P Gain and PI_Sum blocks:

 /* Gain: '<S1>/P Gain' */
 rtb_PI_Sum = rtu_Err * localP->PGain_Gain;

 /* Sum: '<S1>/PI_Sum' */
 rtb_PI_Sum += rtb_Saturation;

Inspection of the code to review whether it properly

reflects the model in Figure 4 is aided by the generated

comments that state which block is responsible for each line of

code. An HTML version of the code indeed hyperlinks block

references such as '<S1>/P Gain' directly back to the original

Simulink model.

1

Out
Saturation

PI_Sum

-K-

P Gain

Error IFB

Integrate and Dump

-K-

I Gain

1

Err

FIGURE 4

THE POSITION AND INTEGRAL PID CONTROL PART.

The above code fragment shows the code generated for

the P Gain and PI_Sum blocks. Notice the need to understand

the use of standardized data structures to store input variables,

parameters, and block variables, here prefixed by rtu_,

localP, and rtb_, respectively, but in general these prefixes

can be customized.

In typical automotive applications, to save on stack space,

function arguments are defined as globals and not explicitly

passed in through the argument list. This is a significant

departure from the focus in education on the use of local

variables because of the increased modularity, which renders it

less error prone.

Automatic code generation can be configured by

subsystem options to generate local variables that are passed

into a function by means of an argument list. For the PID

control in Figure 4, if the PID functionality is selected to be a

reusable function, the following function header is

automatically generated:

void PI_Ctrl(real_T rtu_Err, rtB_PI_Ctrl *localB,
 rtDW_PI_Ctrl *localDW, rtP_PI_Ctrl *localP)

The corresponding data structures are defined in the

accompanying header file.

III. Code Optimization

To obtain code with a smaller memory footprint and lower

computational complexity, the user may choose to apply

optimizations such as expression folding to remove

superfluous variables. For the model in Figure 4, this results in

the functionality of the P Gain and PI_Sum blocks to be

combined into one line of code:

 /* Sum: '<S1>/PI_Sum' incorporates:
 * Gain: '<S1>/P Gain'
 */
 rtb_PI_Sum = rtu_Err * localP->PGain_Gain +
 rtsaturate_U0DataInY0Container;

IV. Fixed-Point Code

Another important aspect of control systems in industry is

their implementation using fixed-point computations because

fixed-point microprocessors are less expensive than the

floating-point counterpart. Some control functionality may be

entirely implemented in fixed point, whereas in other cases, a

floating-point implementation is employed with a fixed-point

back-up system. In the latter case, this results in optimal

behavior in nominal modes of operation, while in the face of

faults, a rudimentary fixed-point control prevents total failure.

The PID control in Figure 4 can be transformed into a

fixed-point version by specifying the desired fixed-point data

type. The polymorphic behavior of the model elements such as

the gain and sum blocks causes the fixed-point functionality to

be implemented.

1

Out
Saturation

PI_Sum

-K-

P Gain

Error IFB

Integrate and Dump

-K-

I Gain

1

Err

T_SFIX16_FR10

T_SFIX16_FR10

T_SFIX16_FR10

T_UFIX16_FR15T_SFIX16_FR14 T_UFIX16_FR15

FIGURE 5

PID CONTROL IN FIXED POINT.

In Figure 5 a fixed-point version of the PID control in

Figure 4 is shown. The fixed point data types are shown on the

signal connections as, for example, T_SFIX16_FR14, which is

shown as the fixed-point data type of the input signal of the

Err port. To determine the fixed-point characteristics of this

signal, its details can be requested at the MATLAB® [3]

prompt

>> T_SFIX16_FR14

T_SFIX16_FR14 =

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signed: true
 WordLength: 16

Session S1F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA

36
th

 ASEE/IEEE Frontiers in Education Conference

S1F-4

 FractionLength: 14
 IsAlias: true
 HeaderFile: 'eng_ctrl_prj_types.h'
 Description: ''

This shows that the signal value is signed and stored in a

16 bit word where 14 bits are used to represent the fraction of

the signal value. Notice that this data type is mapped onto a

signed short in the eng_ctrl_prj_types.h header file:

typedef signed short T_SFIX16_FR14;

A fixed-point version of the PID control code that

includes expression folding can now be automatically

generated again. The part that reflects the PI_Sum and P Gain

blocks takes the form:

 /* Sum: '<S1>/PI_Sum' incorporates:
 * Gain: '<S1>/P Gain'
 */
 rtb_PI_Sum =
 (uint16_T)((uint32_T)((rtu_Err *
 rtp_P_Gain >> 14) << 5U) +
 (uint32_T)((uint16_T)tmp_a << 5U));

Here the left and right bit shift operators, << and >>,

respectively, are used for optimal multiplication and addition

in fixed point.

V. Including Legacy Code

Embedded software has been extensively used for decades in

industry such as automotive and aerospace. Therefore,

automatically generated code often must be integrated with

existing code, so-called legacy code, that has proven its

quality and value.

Importing Interface Definitions

In legacy code, interface structures are typically specified in

header files. These header files can be read by Simulink to

import data structures that are defined in legacy code with

which the automatically generated code needs to integrate. For

example, in the eng_ctrl_prj_types.h header file, the

throttle control data structure T_THROTTLE_CTRL is defined to

be:

typedef struct {
 T_UFIX16_FR15 duty_cycle;
 T_BOOLEAN direction;
 T_BOOLEAN errs[3];
} T_THROTTLE_CTRL;

The elements that it contains are the duty_cycle which

determines the force with which the throttle is moved, the

direction which captures the direction of movement of the

throttle, and the errs which is a three-dimensional signal of

the proportional, integral, derivative errors.

After importing this structure definition from the header

file, it becomes accessible in the MATLAB workspace as any

regular MATLAB expression:

>> T_THROTTLE_CTRL

T_THROTTLE_CTRL =

Simulink.Bus
 Description: ''
 HeaderFile: 'eng_ctrl_prj_types.h'
 Elements: [3x1 Simulink.BusElement]

This shows the header file that contains the structure

source and viewing one of the elements in the Simulink Bus

provides the detailed information of the signal characteristics:

>> T_THROTTLE_CTRL.Elements(1)

ans =

Simulink.BusElement
 Name: 'duty_cycle'
 DataType: 'T_UFIX16_FR15'
 Complexity: 'real'
 Dimensions: 1
 SamplingMode: 'Sample based'
 SampleTime: -1

This shows the duty_cycle bus element to be a fixed-

point signal (unsigned 16 bit word with a 15 bit fraction) that

is real (i.e., not a ‘complex’), a scalar, and sampled with

inherited sample time.

Importing Algorithms

In addition to interface definitions, entire algorithms

implemented in legacy code may have to be integrated into

automatically generated code.

To illustrate, consider calibration tables as used in

automotive applications to determine control setpoints such as

throttle opening and spark advance. Such calibration tables are

essential in the behavior of the automobile and require a

tremendous amount of effort to achieve optimal behavior in

different modes of operation (warm up, high performance,

economy, etc.).

Particular aspects in the use of calibration tables are the

interpolation algorithms that are employed to compute throttle

opening and spark advance setpoint values for input values in

between grid points of the calibration table. For example, the

following code may be employed for interpolation in 1-

dimensional look-up tables:

#include "LookUpTables.h"
T_UFIX16_FR15 LookUpTable1D_Interp(
 const T_UFIX16_FR13 InputValue,
 const T_UFIX16_FR13 *InputMap,
 const T_UFIX16_FR15 *OutputMap,
 const T_UINT16 MapLength)
{
 T_SINT16 idx = 0;
 T_SINT16 idx_n1 = 0;

 if (InputValue <= InputMap[0])
 return(OutputMap[0]);
 if (InputValue >= InputMap[MapLength-1])
 return(OutputMap[MapLength-1]);

 /* Search for the Element in the InputMap Above the Input Value*/
 while ((idx < (MapLength-1)) && (InputMap[idx] < InputValue))
 idx++;

 return ((T_UINT16)
 ((T_SINT16) OutputMap[idx_n1] +
 (T_SINT32) ((2\^3)*
 ((T_SINT32) (InputValue - InputMap[idx_n1]) *
 (T_SINT32) (OutputMap[idx] - OutputMap[idx_n1])

Session S1F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA

36
th

 ASEE/IEEE Frontiers in Education Conference

S1F-5

)) /
 (T_SINT32) (InputMap[idx] - InputMap[idx_n1]))
);
}

Such algorithms tend to be tried and tested in the field,

and have proven themselves for many years in products.

Therefore, rather than re-designing them, the legacy code may

have to be reused.

1

Out
PedalSensLUT_OutMap

Normal Mode

Multiport
Switch

sldemo_pt_lut_fi

InVal

OutMap

OutVal

LookUpTable

PedalSensLUT_OutMap

High Performance Mode

PedalSensLUT_OutMap

Fuel Economy Mode

uint16
(SI)

Convert
uint16
(SI)

Convert

Convert

Convert
(SI)

2

Sensor

1

Mode

FIGURE 6

INCLUDING LOOK-UP TABLE LEGACY CODE.

In Figure 6, the look-up table code is integrated into a part

of the throttle controller that computes the setpoint for the PID

control that governs the throttle opening. Depending on the

Mode, different calibration tables may be employed; one for

Normal Mode, one for High Performance Mode, and one for

Fuel Economy Mode. In order to properly integrate the legacy

look-up table code, data type conversions may be required so

the fixed-point legacy code can be integrated with a floating-

point version of the overall control as well as a fixed-point

version. The look-up table algorithm is then wrapped into an

S-function interface, where it constitutes the mdlOutput

function.

Other options of integrating legacy code exist. For

example, the code can be explicitly included in a specific

function that is called during execution or it can be called

using the Stateflow [4] action language. Details of this

integration will not be given here but can be found in the

documentation of the products mentioned.

AUTOMATIC CODE GENERATION AND EDUCATION

Automatic code generation technology is enabling some

important opportunities in education.

I. The Changing Skill Set

The example of the electronic throttle control system has

illustrated the automatic code generation technology and how

it is increasingly being employed in industry. To provide

students with the skills to be attractive hires in the domain of

embedded control system design and for them to be

successful, it is imperative to familiarize students with the

aspects of automatic code generation as sketched for this

electronic throttle control system.

The most conspicuous change in required skills for

software engineers in the embedded control system domain is

probably the shift in focus from the algorithmic to the

architectural aspect such as interfaces and file dependencies.

The pervasiveness of architectural notions in throttle control

system description represents how important they are in

industry. Rather than designing very specific control

algorithms in computer code such as C and C++, software

engineers increasingly rely on the automatic code generators

to produce these algorithms. Instead, attention has shifted to

integrating the automatically generated code into legacy code

by importing legacy data structures, memory maps, generating

the correct function-call argument lists, and reading data files

with, for example, parameter values.

The algorithmic side of the software engineering effort is

increasingly handled by automatic code generators, and,

therefore, the ability for software engineers to produce this

code is shifting to the ability to review the automatically

generated code. Intimate syntactic knowledge to generate C

and C++ code is becoming less important than understanding

how optimization algorithms affect the expression

formulation.

Furthermore, the range of algorithms that need to be dealt

with is increasing as it is not limited to only fixed point, but

ranges from floating point non-optimized code all the way to

fixed-point code with highly optimized bit shift operations to

implement modeled functionality.

II. Eliminating the Tediousness

Another important effect of automatic code generation

technology in education is that it removes much of the tedious

work to implement a control system. Removing the need for

students to manually produce the code enables

experimentation as hardware-in-the-loop simulation and rapid

prototyping.

This allows students to experiment with real-world effects

such as noise, signal conversion lag-times, sample-time

overruns, and dynamic scheduling effects. Furthermore, it

allows students to design high-level control strategies and see

their effect in real-world operation.

CONCLUSIONS

This paper has given an overview of Model-Based Design in

industry and discussed the use of automatic code generation as

an enabling technology. An electronic throttle control system

has been used to illustrate a number of aspects of the use of

automatic code generation.

To provide engineering students with the skill set

necessary to be successful in the field of embedded control

systems, it is important to familiarize and educate them on the

technology of automatic code generation. This has been

illustrated to require a shift from detailed knowledge of

algorithm design in C and C++ to knowledge at a more

architectural level.

At the algorithmic level, required skills have shifted to

being able to inspect code, understand optimizations, and

being able to verify low-level fixed-point bit operations.

Finally, it has briefly been indicated how automatic code

generation may assume a prominent position in teaching real-

world phenomena in embedded control systems such as timing

Session S1F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA

36
th

 ASEE/IEEE Frontiers in Education Conference

S1F-6

constraints and noise effects, because real-world

implementations can be obtained without the tedious manual

coding process.

ACKNOWLEDGMENT

The author would like to acknowledge Mark Corless for his

help in designing the electronic throttle control system.

REFERENCES

[1] Simulink, Using Simuilnk, The MathWorks, Inc., 3 Apple Hill Drive,

Natick, MA, 2004

[2] Mosterman, P. J., S. Prahbu and T. Erkkinen, " An industrial embedded

control system design process", Proceedings of The Inaugural CDEN

Design Conference, CD-ROM, July 2004

[3] MATLAB, The Language of Technical Computing, The MathWorks,

Inc., 3 Apple Hill Drive, Natick, MA, 2004

[4] Stateflow, Stateflow User’s Guide, The MathWorks, Inc., 3 Apple Hill

Drive, Natick, MA, 2004

