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Abstract - Model-Based Design in industry relies heavily on 

automatic code generation technology. The need to obtain 

code for different configurations such as rapid 

prototyping, hardware-in-the-loop simulation, and 

processor-in-the-loop simulation introduces extensive code 

generation from high-level models and to be cost effective 

and competitive requires the automation of this code 

generation. This paper shows some of the issues that 

embedded systems engineers have to negotiate as a 

consequence of this. It indicates that there is a shift in 

required skills from the algorithmic to the architectural 

level. As such, automatic code generation technology 

provides an opportunity in academia to better prepare 

students to be successful in the field of embedded control 

system design by including such architectural aspects in 

the curriculum, while shifting focus of algorithm design 

from creation to inspection. 

Index Terms - Engineering education; model-based design; 

automatic code generation 

INTRODUCTION

In its role of preparing the future workforce, a critical aspect 

of engineering education is to provide students with the skills 

and knowledge required to be successful in industry as well as 

appealing from a recruiting perspective. 

As such, it is important for academia to be aware of the 

needs and practices of industry and to recognize and act upon 

paradigm shifts as they occur. Conversely, industry has a 

responsibility to make the characteristics of prospective 

employees that are required are well known. As a corollary to 

that, tool vendors should educate academia as well as industry 

on the benefits and usages of their products. 

An important shift in industrial practice that has profound 

implications with regards to the required set of skills of 

employees is the adoption of Model-Based Design. The 

pervasive access to computing power originally was mostly 

exploited by automating support tasks in the design process 

such as word processing and data storage. This led to the 

popularity of office software and posed a need for engineering 

education to include training in word processing, spread sheet 

operation, and database handling in the curriculum. 

More recently, computing power has taken on a more 

integral role in system design by automating part of the 

required effort. As this has been facilitated by the use of 

computational models, modeling has become an increasingly 

important aspect of the required skill set of the engineering 

workforce. In addition, technologies that leverage the 

availability of models enable reaping the benefits of 

computational models in addressing the challenge of system 

design. 

FIGURE 1 

MODEL-BASED DESIGN.

Figure 1 illustrates the central position of computational 

models in Model-Based Design. An industrial-strength 

modeling environment such as Simulink® [1] supports the 

different technologies that comprise a successful Model-Based 

Design: 

Executable specifications allow immediate feedback on 

the behavior of a specification, as opposed to documented 

behavior that often is misinterpreted. 

Simulation in the design supports a quicker search of the 

design space as opposed to constructing hardware 

prototypes. 

Automatic code generation reduces the tedious and error-

prone stage of translating a design into a specification for 

the software engineers and manually writing the computer 

code accordingly. 

Test and verification can be performed in a much earlier 

stage in the design as a computational model is available 

with access to all internal variables, including those that 

may be difficult to obtain on a hardware prototype. 

This paper concentrates on how automatic generation 

technology is reshaping the design of embedded systems and 

how this potentially impacts education. It furthermore 

discusses possibilities in education to take advantage of such 
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technology to provide students with experiences that would 

otherwise have required prohibitively extensive programming 

assignments. 

The following section provides the context for automatic 

code generation technology by giving an overview of the 

typical approach to embedded control system design. The next 

section then illustrates automatic code generation in detail 

based on an electronic throttle control system. The effects that 

automatic code generation may have on education are then 

discussed and the final section presents the conclusions of this 

work. 

AN INDUSTRIAL DESIGN APPROACH

The complexity of embedded systems in terms of scale has 

dramatically increased over the past decades. In particular, the 

now prolific use of embedded computing power has enabled 

functionality much beyond what could be achieved with 

purely analog equipment. For example, in the automotive 

business the key differentiator between models has become 

features such as power seats, central door lock, park assist, 

built-in audio and video systems, which all rely on embedded 

computers. This trend is projected to continue, in particular 

when safety-critical systems such as braking and steering are 

implemented in embedded processors. 

In addition, in order to stay competitive, the time-to-

market of new automobile models has significantly reduced 

and to manage this confluence of factors successfully 

systematic design methods are essential. 

A typical design approach in the automotive as well as the 

aerospace industry is ‘V’ shaped, as illustrated in Figure 2. 

The approach starts at the top left with documenting the 

requirements for the system to be designed. These 

requirements are then processed into a set of formal 

specifications that constitute the foundation for a set of models 

of the desired system. Simulation allows prompt feedback on 

the designed system behavior and changes can be made to the 

model in case undesired behavior is present. 

FIGURE 2 

AN INDUSTRIAL DESIGN APPROACH.

Once a model is designed that behaves according to the 

requirements, a preliminary validation of feasibility is 

performed by producing a rapid prototype that includes some 

of the non-functional, and, therefore, not modeled, 

characteristics. These characteristics include response time, 

jitter, and delay behavior, and may require changes to the 

original design. On-target rapid prototyping is then employed 

to ensure appropriate behavior using the actual microprocessor 

that is envisioned in the production version of the designed 

system. This stage validates characteristics such as the 

compiler that is used, fixed-point effects, and interaction with 

other systems. 

Finally, when all prototyping shows that a feasible and 

correct design has been arrived at, the production code is 

produced. This is highly optimized code that will be used in 

the high-volume product, and is rigorously verified, validated, 

tested, and tuned while moving up the right-hand stroke of the 

‘V’ in Figure 2. A number of different configurations such as 

software-in-the-loop, processor-in-the-loop, and hardware-in-

the-loop are used to this end [2]. 

The successful execution of the above sketched approach 

is predicated upon the availability of automatic code 

generation facilities as different forms of code have to be 

obtained for the different stages such as rapid prototyping, on-

target rapid prototyping, production code, and processor-in-

the-loop simulation. Consequently, automatic code generation 

is an important, if not critical, technology for the design of 

embedded systems and familiarity with it is a necessity for the 

engineers active in this domain. 

AN ELECTRONIC THROTTLE CONTROL SYSTEM

To study the skills required in working with automatic code 

generation facilities, let us concentrate on the electronic 

throttle control as found in modern automobiles. 

I. Control Structure 

Figure 3 shows a paradigmatic structure of the throttle control. 

The discrete event state machine Throttle Sequencer is used 

to schedule the execution of the Throttle Position 

Controller task. Such explicit execution control requires an 

imperative model of computation as embraced by the 

dashed/dotted function-call connection from the Throttle

Sequencer to the Throttle Position Controller. The 

Throttle Sequencer executes the Throttle Position 

Controller in a nominal mode of behavior. When failures 

occur and during startup and shutdown, execution of the 

Throttle Position Controller may be suspended. 
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THROTTLE CONTROL.
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The Throttle Position Controller embodies the low 

level feedback control to position the throttle according to a 

setpoint. In this example, position, integral, and derivative 

(PID) control is employed. This type of control takes in the 

difference between the setpoint and actual position of the 

throttle and computes a control force as a weighed sum of this 

difference, the time integral of the difference and the time 

derivative of the difference. 

II. Automatic Code Generation 

In Figure 4, a model of the position and integral computation 

of the PID control is shown. When code is automatically 

generated for this model, the following code fragment 

represents the computations of the P Gain and PI_Sum blocks: 

  /* Gain: '<S1>/P Gain' */ 
  rtb_PI_Sum = rtu_Err * localP->PGain_Gain; 

  /* Sum: '<S1>/PI\_Sum' */ 
  rtb_PI_Sum += rtb_Saturation; 

Inspection of the code to review whether it properly 

reflects the model in Figure 4 is aided by the generated 

comments that state which block is responsible for each line of 

code. An HTML version of the code indeed hyperlinks block 

references such as '<S1>/P Gain' directly back to the original 

Simulink model.  

1

Out
Saturation

PI_Sum

-K-

P Gain

Error IFB

Integrate and Dump

-K-

I Gain

1

Err

FIGURE 4 

THE POSITION AND INTEGRAL PID CONTROL PART.

The above code fragment shows the code generated for 

the P Gain and PI_Sum blocks. Notice the need to understand 

the use of standardized data structures to store input variables, 

parameters, and block variables, here prefixed by rtu_,

localP, and rtb_, respectively, but in general these prefixes 

can be customized. 

In typical automotive applications, to save on stack space, 

function arguments are defined as globals and not explicitly 

passed in through the argument list. This is a significant 

departure from the focus in education on the use of local 

variables because of the increased modularity, which renders it 

less error prone. 

Automatic code generation can be configured by 

subsystem options to generate local variables that are passed 

into a function by means of an argument list. For the PID 

control in Figure 4, if the PID functionality is selected to be a 

reusable function, the following function header is 

automatically generated: 

void PI_Ctrl(real_T rtu_Err, rtB_PI_Ctrl *localB, 
 rtDW_PI_Ctrl *localDW, rtP_PI_Ctrl *localP) 

The corresponding data structures are defined in the 

accompanying header file.  

III. Code Optimization 

To obtain code with a smaller memory footprint and lower 

computational complexity, the user may choose to apply 

optimizations such as expression folding to remove 

superfluous variables. For the model in Figure 4, this results in 

the functionality of the P Gain and PI_Sum blocks to be 

combined into one line of code: 

  /* Sum: '<S1>/PI\_Sum' incorporates: 
   *  Gain: '<S1>/P Gain' 
   */ 
  rtb_PI_Sum = rtu_Err * localP->PGain_Gain +
    rtsaturate_U0DataInY0Container; 

IV. Fixed-Point Code 

Another important aspect of control systems in industry is 

their implementation using fixed-point computations because 

fixed-point microprocessors are less expensive than the 

floating-point counterpart. Some control functionality may be 

entirely implemented in fixed point, whereas in other cases, a 

floating-point implementation is employed with a fixed-point 

back-up system. In the latter case, this results in optimal 

behavior in nominal modes of operation, while in the face of 

faults, a rudimentary fixed-point control prevents total failure. 

The PID control in Figure 4 can be transformed into a 

fixed-point version by specifying the desired fixed-point data 

type. The polymorphic behavior of the model elements such as 

the gain and sum blocks causes the fixed-point functionality to 

be implemented. 
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FIGURE 5 

PID CONTROL IN FIXED POINT.

In Figure 5 a fixed-point version of the PID control in 

Figure 4 is shown. The fixed point data types are shown on the 

signal connections as, for example, T_SFIX16_FR14, which is 

shown as the fixed-point data type of the input signal of the 

Err port. To determine the fixed-point characteristics of this 

signal, its details can be requested at the MATLAB® [3] 

prompt 

>> T_SFIX16_FR14 

T_SFIX16_FR14 = 

   DataTypeMode: 'Fixed-point: binary point scaling' 
         Signed: true 
     WordLength: 16 
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 FractionLength: 14 
        IsAlias: true 
     HeaderFile: 'eng_ctrl_prj_types.h' 
    Description: '' 

This shows that the signal value is signed and stored in a 

16 bit word where 14 bits are used to represent the fraction of 

the signal value. Notice that this data type is mapped onto a 

signed short in the eng_ctrl_prj_types.h header file: 

typedef signed   short T_SFIX16_FR14; 

A fixed-point version of the PID control code that 

includes expression folding can now be automatically 

generated again. The part that reflects the PI_Sum and P Gain

blocks takes the form: 

    /* Sum: '<S1>/PI\_Sum' incorporates: 
     *  Gain: '<S1>/P Gain' 
     */ 
    rtb_PI_Sum = 
      (uint16_T)((uint32_T)((rtu_Err *
        rtp_P_Gain >> 14) << 5U) + 
      (uint32_T)((uint16_T)tmp_a << 5U)); 

Here the left and right bit shift operators, << and >>,

respectively, are used for optimal multiplication and addition 

in fixed point. 

V. Including Legacy Code 

Embedded software has been extensively used for decades in 

industry such as automotive and aerospace. Therefore, 

automatically generated code often must be integrated with 

existing code, so-called legacy code, that has proven its 

quality and value. 

Importing Interface Definitions 

In legacy code, interface structures are typically specified in 

header files. These header files can be read by Simulink to 

import data structures that are defined in legacy code with 

which the automatically generated code needs to integrate. For 

example, in the eng_ctrl_prj_types.h header file, the 

throttle control data structure T_THROTTLE_CTRL is defined to 

be: 

typedef struct { 
  T_UFIX16_FR15 duty_cycle; 
  T_BOOLEAN     direction; 
  T_BOOLEAN     errs[3]; 
} T_THROTTLE_CTRL; 

The elements that it contains are the duty_cycle which 

determines the force with which the throttle is moved, the 

direction which captures the direction of movement of the 

throttle, and the errs which is a three-dimensional signal of 

the proportional, integral, derivative errors. 

After importing this structure definition from the header 

file, it becomes accessible in the MATLAB workspace as any 

regular MATLAB expression: 

>> T_THROTTLE_CTRL 

T_THROTTLE_CTRL = 

Simulink.Bus
    Description: '' 
     HeaderFile: 'eng_ctrl_prj_types.h' 
       Elements: [3x1 Simulink.BusElement] 

This shows the header file that contains the structure 

source and viewing one of the elements in the Simulink Bus 

provides the detailed information of the signal characteristics: 

>> T_THROTTLE_CTRL.Elements(1) 

ans = 

Simulink.BusElement
            Name: 'duty_cycle' 
        DataType: 'T_UFIX16_FR15' 
      Complexity: 'real' 
      Dimensions: 1 
    SamplingMode: 'Sample based' 
      SampleTime: -1 

This shows the duty_cycle bus element to be a fixed-

point signal (unsigned 16 bit word with a 15 bit fraction) that 

is real (i.e., not a ‘complex’), a scalar, and sampled with 

inherited sample time. 

Importing Algorithms 

In addition to interface definitions, entire algorithms 

implemented in legacy code may have to be integrated into 

automatically generated code.  

To illustrate, consider calibration tables as used in 

automotive applications to determine control setpoints such as 

throttle opening and spark advance. Such calibration tables are 

essential in the behavior of the automobile and require a 

tremendous amount of effort to achieve optimal behavior in 

different modes of operation (warm up, high performance, 

economy, etc.). 

Particular aspects in the use of calibration tables are the 

interpolation algorithms that are employed to compute throttle 

opening and spark advance setpoint values for input values in 

between grid points of the calibration table. For example, the 

following code may be employed for interpolation in 1-

dimensional look-up tables: 

#include "LookUpTables.h" 
T_UFIX16_FR15 LookUpTable1D_Interp( 
    const T_UFIX16_FR13  InputValue, 
    const T_UFIX16_FR13 *InputMap, 
    const T_UFIX16_FR15 *OutputMap, 
    const T_UINT16       MapLength) 
{
  T_SINT16 idx = 0; 
  T_SINT16 idx_n1 = 0; 

  if (InputValue <= InputMap[0])
      return( OutputMap[0]); 
  if (InputValue >= InputMap[MapLength-1])
      return( OutputMap[MapLength-1]); 

  /* Search for the Element in the InputMap Above the Input Value*/ 
  while ( (idx < (MapLength-1)) && (InputMap[idx] < InputValue) ) 
    idx++; 

  return ( (T_UINT16) 
           ((T_SINT16) OutputMap[idx\_n1] +
            (T_SINT32) ((2\^3)* 
            ((T_SINT32) (InputValue     - InputMap[idx_n1] )   * 
             (T_SINT32) (OutputMap[idx] - OutputMap[idx_n1]) 
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            )) /
             (T_SINT32) (InputMap[idx]  - InputMap[idx_n1])    )
          ); 
}

Such algorithms tend to be tried and tested in the field, 

and have proven themselves for many years in products. 

Therefore, rather than re-designing them, the legacy code may 

have to be reused.  
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FIGURE 6 

INCLUDING LOOK-UP TABLE LEGACY CODE.

In Figure 6, the look-up table code is integrated into a part 

of the throttle controller that computes the setpoint for the PID 

control that governs the throttle opening. Depending on the 

Mode, different calibration tables may be employed; one for 

Normal Mode, one for High Performance Mode, and one for 

Fuel Economy Mode. In order to properly integrate the legacy 

look-up table code, data type conversions may be required so 

the fixed-point legacy code can be integrated with a floating-

point version of the overall control as well as a fixed-point 

version. The look-up table algorithm is then wrapped into an 

S-function interface, where it constitutes the mdlOutput

function. 

Other options of integrating legacy code exist. For 

example, the code can be explicitly included in a specific 

function that is called during execution or it can be called 

using the Stateflow [4] action language. Details of this 

integration will not be given here but can be found in the 

documentation of the products mentioned. 

AUTOMATIC CODE GENERATION AND EDUCATION

Automatic code generation technology is enabling some 

important opportunities in education. 

I. The Changing Skill Set 

The example of the electronic throttle control system has 

illustrated the automatic code generation technology and how 

it is increasingly being employed in industry. To provide 

students with the skills to be attractive hires in the domain of 

embedded control system design and for them to be 

successful, it is imperative to familiarize students with the 

aspects of automatic code generation as sketched for this 

electronic throttle control system. 

The most conspicuous change in required skills for 

software engineers in the embedded control system domain is 

probably the shift in focus from the algorithmic to the 

architectural aspect such as interfaces and file dependencies. 

The pervasiveness of architectural notions in throttle control 

system description represents how important they are in 

industry. Rather than designing very specific control 

algorithms in computer code such as C and C++, software 

engineers increasingly rely on the automatic code generators 

to produce these algorithms.  Instead, attention has shifted to 

integrating the automatically generated code into legacy code 

by importing legacy data structures, memory maps, generating 

the correct function-call argument lists, and reading data files 

with, for example, parameter values. 

The algorithmic side of the software engineering effort is 

increasingly handled by automatic code generators, and, 

therefore, the ability for software engineers to produce this 

code is shifting to the ability to review the automatically 

generated code. Intimate syntactic knowledge to generate C 

and C++ code is becoming less important than understanding 

how optimization algorithms affect the expression 

formulation. 

Furthermore, the range of algorithms that need to be dealt 

with is increasing as it is not limited to only fixed point, but 

ranges from floating point non-optimized code all the way to 

fixed-point code with highly optimized bit shift operations to 

implement modeled functionality. 

II. Eliminating the Tediousness 

Another important effect of automatic code generation 

technology in education is that it removes much of the tedious 

work to implement a control system. Removing the need for 

students to manually produce the code enables 

experimentation as hardware-in-the-loop simulation and rapid 

prototyping. 

This allows students to experiment with real-world effects 

such as noise, signal conversion lag-times, sample-time 

overruns, and dynamic scheduling effects. Furthermore, it 

allows students to design high-level control strategies and see 

their effect in real-world operation. 

CONCLUSIONS

This paper has given an overview of Model-Based Design in 

industry and discussed the use of automatic code generation as 

an enabling technology. An electronic throttle control system 

has been used to illustrate a number of aspects of the use of 

automatic code generation. 

To provide engineering students with the skill set 

necessary to be successful in the field of embedded control 

systems, it is important to familiarize and educate them on the 

technology of automatic code generation. This has been 

illustrated to require a shift from detailed knowledge of 

algorithm design in C and C++ to knowledge at a more 

architectural level. 

At the algorithmic level, required skills have shifted to 

being able to inspect code, understand optimizations, and 

being able to verify low-level fixed-point bit operations. 

Finally, it has briefly been indicated how automatic code 

generation may assume a prominent position in teaching real-

world phenomena in embedded control systems such as timing 



Session S1F 

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA 

36
th

 ASEE/IEEE Frontiers in Education Conference 

S1F-6

constraints and noise effects, because real-world 

implementations can be obtained without the tedious manual 

coding process. 
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